v Fc v < 3 v < 2 v < 1 v

Size: px
Start display at page:

Download "v Fc v < 3 v < 2 v < 1 v"

Transcription

1

2 Fc v

3 v Fc v< 3 v< 2 v< 1 v

4 v Fc ( ) v F c

5 Fc v

6 v Fc rv 8r >0

7 v Fc rv 8r >0 = prox C ( rv)

8 My Favorite Benefits Local non-linear friction models used directly without any discretization = prox C ( rv) Fixed point problem gives us Gauss-Seidel and Jacobi schemes almost for free see paper for details Any solution for any r>0 value will be an exact solution! Supports stabilization, simultaneous impacts, various time-stepping methods and more see paper for details {z} x = prox C ( rv) {z } F (x) x k+1 = F (x k )

9 The Drawbacks = prox C ( rv) Not obvious what r-value to use Some r-values cause divergence, others can accelerate convergence Our solution is to use adaptive r-values {z} x = prox C ( rv) {z } F (x) x k+1 = F (x k )

10 Adaptive r-factor Scheme while not converged k+1 =prox C ( k Rv) r k+1 = if r k+1 >r k k+1 k 1 R R else k k+1

11 Initial r-factor values Global strategy Local strategy r =5 r i = 1 A ii Blocked strategy R k = apple 1 A ii 0 0 A 1 s:r,s:r

12 Insight on Global Strategy We have the iterative scheme k+1 =prox C k R(A k + b) If R = A 1 Then k+1 =prox C ( Rb) Just one iteration

13 Insight on Global Strategy We have the iterative scheme k+1 =prox C k R(A k + b) If R = A 1 Then k+1 =prox C ( Rb) Just one iteration Problem: we do not want to compute A or its inverse so we approximate it

14 Insight on Local Strategy Let us choose r i = 1 A ii 2 [0, 2] A = L + D + U Then i =prox C i =prox C i P j<i U ij j + P j>i L ij j + D ii i b i (1 ) i + b i P D ii j<i U ij j + P j>i L ij j D ii This is exactly the usual LCP-PSOR variant

15 Little Matlab Example

16 Adaptive r-factor PSOR (1.4)

17 Test Scenes

18 Gauss-Seidel or Jacobi Variant?

19 Merit function Convergence rate behaviors of 424 runs of Jacks (Jacobi) Max 3rd Quartile Median 1st Quartile Min Solver iteration

20 Merit function 10-2 Convergence rate behaviors of 424 runs of Jacks (Gauss Seidel) Max 3rd Quartile Median 1st Quartile Min Solver iteration

21 Divergence Count Comparison Count (#) Jacks (Jacobi) Spheres (Jacobi) Tower (Jacobi) Wall (Jacobi) Jacks (Gauss Seidel) Spheres (Gauss Seidel) Tower (Gauss Seidel) Wall (Gauss Seidel) Solver run(#)

22 Exit Status

23 Observations (#) Blocked r-factor Absolute Convergence Relative Convergence Non Convergence Divergence Glasses Jacks Spheres Tower Wall Test Scenes

24 Observations (#) Global r-factor Absolute Convergence Relative Convergence Non Convergence Divergence Glasses Jacks Spheres Tower Wall Test Scenes

25 Observations (#) Local r-factor Absolute Convergence Relative Convergence Non Convergence Divergence Glasses Jacks Spheres Tower Wall Test Scenes

26 Iterations

27 Merit function Convergence rate behaviors of 424 runs of Jacks (Blocked) Max 3rd Quartile Median 1st Quartile Min Solver iteration

28 Merit function Convergence rate behaviors of 424 runs of Jacks (Global) Max 3rd Quartile Median 1st Quartile Min Solver iteration

29 Merit function Convergence rate behaviors of 424 runs of Jacks (Local) Max 3rd Quartile Median 1st Quartile Min Solver iteration

30 Overall Performance

31 Time (ms) Timing details of Spheres (Blocked) test scene Solver Collision Detection Narrow Phase Preprocessing Contact Reduction Broad Phase Simulaiton Step (#)

32 Time (ms) Timing details of Spheres (Global) test scene Solver Collision Detection Narrow Phase Preprocessing Contact Reduction Broad Phase Simulaiton Step (#)

33 Time (ms) Timing details of Spheres (Local) test scene Collision Detection Narrow Phase Solver Preprocessing Contact Reduction Broad Phase Simulaiton Step (#)

34

35

36

37

38

39 Summary of Findings Proximal operators are a flexible modeling tool for contact dynamics Gauss-Seidel or Jacobi? Gauss-Seidel variant is more predictable than Jacobi variant Jacobi variant causes divergence more often than Gauss-Seidel variant The r-factor strategies They only change the numerics not the model Adaptive r-values improves convergence over constant r-values Blocked is hopeless for our test cases Global has advantages for structured stacks, local is slightly faster but not much

40 Thanks

Solving Linear Systems

Solving Linear Systems Solving Linear Systems Iterative Solutions Methods Philippe B. Laval KSU Fall 207 Philippe B. Laval (KSU) Linear Systems Fall 207 / 2 Introduction We continue looking how to solve linear systems of the

More information

Iterative Methods. Splitting Methods

Iterative Methods. Splitting Methods Iterative Methods Splitting Methods 1 Direct Methods Solving Ax = b using direct methods. Gaussian elimination (using LU decomposition) Variants of LU, including Crout and Doolittle Other decomposition

More information

JACOBI S ITERATION METHOD

JACOBI S ITERATION METHOD ITERATION METHODS These are methods which compute a sequence of progressively accurate iterates to approximate the solution of Ax = b. We need such methods for solving many large linear systems. Sometimes

More information

Solving Linear Systems

Solving Linear Systems Solving Linear Systems Iterative Solutions Methods Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) Linear Systems Fall 2015 1 / 12 Introduction We continue looking how to solve linear systems of

More information

Chapter 12: Iterative Methods

Chapter 12: Iterative Methods ES 40: Scientific and Engineering Computation. Uchechukwu Ofoegbu Temple University Chapter : Iterative Methods ES 40: Scientific and Engineering Computation. Gauss-Seidel Method The Gauss-Seidel method

More information

COURSE Iterative methods for solving linear systems

COURSE Iterative methods for solving linear systems COURSE 0 4.3. Iterative methods for solving linear systems Because of round-off errors, direct methods become less efficient than iterative methods for large systems (>00 000 variables). An iterative scheme

More information

Solving Linear Systems of Equations

Solving Linear Systems of Equations November 6, 2013 Introduction The type of problems that we have to solve are: Solve the system: A x = B, where a 11 a 1N a 12 a 2N A =.. a 1N a NN x = x 1 x 2. x N B = b 1 b 2. b N To find A 1 (inverse

More information

ME Computational Fluid Mechanics Lecture 5

ME Computational Fluid Mechanics Lecture 5 ME - 733 Computational Fluid Mechanics Lecture 5 Dr./ Ahmed Nagib Elmekawy Dec. 20, 2018 Elliptic PDEs: Finite Difference Formulation Using central difference formulation, the so called five-point formula

More information

MA3232 Numerical Analysis Week 9. James Cooley (1926-)

MA3232 Numerical Analysis Week 9. James Cooley (1926-) MA umerical Analysis Week 9 James Cooley (96-) James Cooley is an American mathematician. His most significant contribution to the world of mathematics and digital signal processing is the Fast Fourier

More information

Gauss-Seidel method. Dr. Motilal Panigrahi. Dr. Motilal Panigrahi, Nirma University

Gauss-Seidel method. Dr. Motilal Panigrahi. Dr. Motilal Panigrahi, Nirma University Gauss-Seidel method Dr. Motilal Panigrahi Solving system of linear equations We discussed Gaussian elimination with partial pivoting Gaussian elimination was an exact method or closed method Now we will

More information

Lecture 17: Iterative Methods and Sparse Linear Algebra

Lecture 17: Iterative Methods and Sparse Linear Algebra Lecture 17: Iterative Methods and Sparse Linear Algebra David Bindel 25 Mar 2014 Logistics HW 3 extended to Wednesday after break HW 4 should come out Monday after break Still need project description

More information

Process Model Formulation and Solution, 3E4

Process Model Formulation and Solution, 3E4 Process Model Formulation and Solution, 3E4 Section B: Linear Algebraic Equations Instructor: Kevin Dunn dunnkg@mcmasterca Department of Chemical Engineering Course notes: Dr Benoît Chachuat 06 October

More information

Fixed Points and Contractive Transformations. Ron Goldman Department of Computer Science Rice University

Fixed Points and Contractive Transformations. Ron Goldman Department of Computer Science Rice University Fixed Points and Contractive Transformations Ron Goldman Department of Computer Science Rice University Applications Computer Graphics Fractals Bezier and B-Spline Curves and Surfaces Root Finding Newton

More information

arxiv: v1 [math.na] 28 Jun 2013

arxiv: v1 [math.na] 28 Jun 2013 A New Operator and Method for Solving Interval Linear Equations Milan Hladík July 1, 2013 arxiv:13066739v1 [mathna] 28 Jun 2013 Abstract We deal with interval linear systems of equations We present a new

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 3: Iterative Methods PD

More information

Motivation: Sparse matrices and numerical PDE's

Motivation: Sparse matrices and numerical PDE's Lecture 20: Numerical Linear Algebra #4 Iterative methods and Eigenproblems Outline 1) Motivation: beyond LU for Ax=b A little PDE's and sparse matrices A) Temperature Equation B) Poisson Equation 2) Splitting

More information

CLASSICAL ITERATIVE METHODS

CLASSICAL ITERATIVE METHODS CLASSICAL ITERATIVE METHODS LONG CHEN In this notes we discuss classic iterative methods on solving the linear operator equation (1) Au = f, posed on a finite dimensional Hilbert space V = R N equipped

More information

6. Iterative Methods for Linear Systems. The stepwise approach to the solution...

6. Iterative Methods for Linear Systems. The stepwise approach to the solution... 6 Iterative Methods for Linear Systems The stepwise approach to the solution Miriam Mehl: 6 Iterative Methods for Linear Systems The stepwise approach to the solution, January 18, 2013 1 61 Large Sparse

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 3 Chapter 10 LU Factorization PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

SyDe312 (Winter 2005) Unit 1 - Solutions (continued)

SyDe312 (Winter 2005) Unit 1 - Solutions (continued) SyDe3 (Winter 5) Unit - Solutions (continued) March, 5 Chapter 6 - Linear Systems Problem 6.6 - b Iterative solution by the Jacobi and Gauss-Seidel iteration methods: Given: b = [ 77] T, x = [ ] T 9x +

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method

10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS. The Jacobi Method 54 CHAPTER 10 NUMERICAL METHODS 10. ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS As a numerical technique, Gaussian elimination is rather unusual because it is direct. That is, a solution is obtained after

More information

3.2 Iterative Solution Methods for Solving Linear

3.2 Iterative Solution Methods for Solving Linear 22 CHAPTER 3. NUMERICAL LINEAR ALGEBRA 3.2 Iterative Solution Methods for Solving Linear Systems 3.2.1 Introduction We continue looking how to solve linear systems of the form Ax = b where A = (a ij is

More information

Iterative Rigid Multibody Dynamics A Comparison of Computational Methods

Iterative Rigid Multibody Dynamics A Comparison of Computational Methods Iterative Rigid Multibody Dynamics A Comparison of Computational Methods Tobias Preclik, Klaus Iglberger, Ulrich Rüde University Erlangen-Nuremberg Chair for System Simulation (LSS) July 1st 2009 T. Preclik

More information

Linear System of Equations

Linear System of Equations Linear System of Equations Linear systems are perhaps the most widely applied numerical procedures when real-world situation are to be simulated. Example: computing the forces in a TRUSS. F F 5. 77F F.

More information

Up to this point, our main theoretical tools for finding eigenvalues without using det{a λi} = 0 have been the trace and determinant formulas

Up to this point, our main theoretical tools for finding eigenvalues without using det{a λi} = 0 have been the trace and determinant formulas Finding Eigenvalues Up to this point, our main theoretical tools for finding eigenvalues without using det{a λi} = 0 have been the trace and determinant formulas plus the facts that det{a} = λ λ λ n, Tr{A}

More information

Kasetsart University Workshop. Multigrid methods: An introduction

Kasetsart University Workshop. Multigrid methods: An introduction Kasetsart University Workshop Multigrid methods: An introduction Dr. Anand Pardhanani Mathematics Department Earlham College Richmond, Indiana USA pardhan@earlham.edu A copy of these slides is available

More information

The Solution of Linear Systems AX = B

The Solution of Linear Systems AX = B Chapter 2 The Solution of Linear Systems AX = B 21 Upper-triangular Linear Systems We will now develop the back-substitution algorithm, which is useful for solving a linear system of equations that has

More information

Numerical Analysis: Solutions of System of. Linear Equation. Natasha S. Sharma, PhD

Numerical Analysis: Solutions of System of. Linear Equation. Natasha S. Sharma, PhD Mathematical Question we are interested in answering numerically How to solve the following linear system for x Ax = b? where A is an n n invertible matrix and b is vector of length n. Notation: x denote

More information

The pe Physics Engine

The pe Physics Engine The pe Physics Engine Klaus Iglberger University Erlangen-Nuremberg System Simulation December 18th 2007 Klaus Iglberger (LSS Erlangen-Nuremberg) The pe Physics Engine 18/12/2007 1 / 32 Outline The pe

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

Coding to show Newton s laws

Coding to show Newton s laws Coding to show Newton s laws * A CoSpaces Edu Pro license plan is needed for this lesson. Lesson complexity: Intermediate Grades: Grade 7 and up Subjects : STEM, Physics, Computer science Created by :

More information

TAU Solver Improvement [Implicit methods]

TAU Solver Improvement [Implicit methods] TAU Solver Improvement [Implicit methods] Richard Dwight Megadesign 23-24 May 2007 Folie 1 > Vortrag > Autor Outline Motivation (convergence acceleration to steady state, fast unsteady) Implicit methods

More information

9. Iterative Methods for Large Linear Systems

9. Iterative Methods for Large Linear Systems EE507 - Computational Techniques for EE Jitkomut Songsiri 9. Iterative Methods for Large Linear Systems introduction splitting method Jacobi method Gauss-Seidel method successive overrelaxation (SOR) 9-1

More information

Nonsmooth Newton methods for frictional contact problems in flexible multi-body systems

Nonsmooth Newton methods for frictional contact problems in flexible multi-body systems 1/21 Nonsmooth Newton methods for frictional contact problems in flexible multi-body systems V. Acary, M. Brémond, F. Dubois INRIA Rhône Alpes, Grenoble. LMGC Montpellier 13 eme Colloque National en Calcul

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Iteration basics Notes for 2016-11-07 An iterative solver for Ax = b is produces a sequence of approximations x (k) x. We always stop after finitely many steps, based on some convergence criterion, e.g.

More information

Jordan Journal of Mathematics and Statistics (JJMS) 5(3), 2012, pp A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS

Jordan Journal of Mathematics and Statistics (JJMS) 5(3), 2012, pp A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS Jordan Journal of Mathematics and Statistics JJMS) 53), 2012, pp.169-184 A NEW ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS OF EQUATIONS ADEL H. AL-RABTAH Abstract. The Jacobi and Gauss-Seidel iterative

More information

EXAMPLES OF CLASSICAL ITERATIVE METHODS

EXAMPLES OF CLASSICAL ITERATIVE METHODS EXAMPLES OF CLASSICAL ITERATIVE METHODS In these lecture notes we revisit a few classical fixpoint iterations for the solution of the linear systems of equations. We focus on the algebraic and algorithmic

More information

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015

Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in. NUMERICAL ANALYSIS Spring 2015 Department of Mathematics California State University, Los Angeles Master s Degree Comprehensive Examination in NUMERICAL ANALYSIS Spring 2015 Instructions: Do exactly two problems from Part A AND two

More information

Poisson Equation in 2D

Poisson Equation in 2D A Parallel Strategy Department of Mathematics and Statistics McMaster University March 31, 2010 Outline Introduction 1 Introduction Motivation Discretization Iterative Methods 2 Additive Schwarz Method

More information

Partitioned Methods for Multifield Problems

Partitioned Methods for Multifield Problems Partitioned Methods for Multifield Problems Joachim Rang, 10.5.2017 10.5.2017 Joachim Rang Partitioned Methods for Multifield Problems Seite 1 Contents Blockform of linear iteration schemes Examples 10.5.2017

More information

Visual Interactive Simulation, TDBD24, Spring 2006

Visual Interactive Simulation, TDBD24, Spring 2006 Visual Interactive Simulation, TDBD24, Spring 2006 Lecture 6 Outline Cross product as matrix multiplication The collision matrix The Newton Coulomb impulse for rigid bodies N C updates of translational

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725 Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: proximal gradient descent Consider the problem min g(x) + h(x) with g, h convex, g differentiable, and h simple

More information

Background. Background. C. T. Kelley NC State University tim C. T. Kelley Background NCSU, Spring / 58

Background. Background. C. T. Kelley NC State University tim C. T. Kelley Background NCSU, Spring / 58 Background C. T. Kelley NC State University tim kelley@ncsu.edu C. T. Kelley Background NCSU, Spring 2012 1 / 58 Notation vectors, matrices, norms l 1 : max col sum... spectral radius scaled integral norms

More information

General Physical Chemistry I

General Physical Chemistry I General Physical Chemistry I Lecture 5 Aleksey Kocherzhenko February 10, 2015" Last time " Diffusion, effusion, and molecular collisions" Diffusion" Effusion" Graham s law: " " " 1 2 r / M " (@ fixed T

More information

4.6 Iterative Solvers for Linear Systems

4.6 Iterative Solvers for Linear Systems 4.6 Iterative Solvers for Linear Systems Why use iterative methods? Virtually all direct methods for solving Ax = b require O(n 3 ) floating point operations. In practical applications the matrix A often

More information

Numerical Methods. Midterm 2. May 14, Please give details of your calculation. A direct answer without explanation is not counted.

Numerical Methods. Midterm 2. May 14, Please give details of your calculation. A direct answer without explanation is not counted. Numerical Methods Midterm 2 May 4, 208 Please give details of your calculation A direct answer without explanation is not counted Your answers must be in English You can bring notes and the textbook Other

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 3 Solvers of linear algebraic equations 3.1. Outline of Lecture Finite-difference method for a 2D elliptic PDE

More information

TMA4125 Matematikk 4N Spring 2017

TMA4125 Matematikk 4N Spring 2017 Norwegian University of Science and Technology Institutt for matematiske fag TMA15 Matematikk N Spring 17 Solutions to exercise set 1 1 We begin by writing the system as the augmented matrix.139.38.3 6.

More information

Linear Equation Systems Direct Methods

Linear Equation Systems Direct Methods Linear Equation Systems Direct Methods Content Solution of Systems of Linear Equations Systems of Equations Inverse of a Matrix Cramer s Rule Gauss Jordan Method Montante Method Solution of Systems of

More information

CME342 Parallel Methods in Numerical Analysis. Matrix Computation: Iterative Methods II. Sparse Matrix-vector Multiplication.

CME342 Parallel Methods in Numerical Analysis. Matrix Computation: Iterative Methods II. Sparse Matrix-vector Multiplication. CME342 Parallel Methods in Numerical Analysis Matrix Computation: Iterative Methods II Outline: CG & its parallelization. Sparse Matrix-vector Multiplication. 1 Basic iterative methods: Ax = b r = b Ax

More information

Chapter 2. Solving Systems of Equations. 2.1 Gaussian elimination

Chapter 2. Solving Systems of Equations. 2.1 Gaussian elimination Chapter 2 Solving Systems of Equations A large number of real life applications which are resolved through mathematical modeling will end up taking the form of the following very simple looking matrix

More information

Iterative Methods for Solving A x = b

Iterative Methods for Solving A x = b Iterative Methods for Solving A x = b A good (free) online source for iterative methods for solving A x = b is given in the description of a set of iterative solvers called templates found at netlib: http

More information

Review: From problem to parallel algorithm

Review: From problem to parallel algorithm Review: From problem to parallel algorithm Mathematical formulations of interesting problems abound Poisson s equation Sources: Electrostatics, gravity, fluid flow, image processing (!) Numerical solution:

More information

Lab 1: Iterative Methods for Solving Linear Systems

Lab 1: Iterative Methods for Solving Linear Systems Lab 1: Iterative Methods for Solving Linear Systems January 22, 2017 Introduction Many real world applications require the solution to very large and sparse linear systems where direct methods such as

More information

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12,

LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, LINEAR ALGEBRA: NUMERICAL METHODS. Version: August 12, 2000 74 6 Summary Here we summarize the most important information about theoretical and numerical linear algebra. MORALS OF THE STORY: I. Theoretically

More information

Classical iterative methods for linear systems

Classical iterative methods for linear systems Classical iterative methods for linear systems Ed Bueler MATH 615 Numerical Analysis of Differential Equations 27 February 1 March, 2017 Ed Bueler (MATH 615 NADEs) Classical iterative methods for linear

More information

LINEAR SYSTEMS (11) Intensive Computation

LINEAR SYSTEMS (11) Intensive Computation LINEAR SYSTEMS () Intensive Computation 27-8 prof. Annalisa Massini Viviana Arrigoni EXACT METHODS:. GAUSSIAN ELIMINATION. 2. CHOLESKY DECOMPOSITION. ITERATIVE METHODS:. JACOBI. 2. GAUSS-SEIDEL 2 CHOLESKY

More information

Numerical Programming I (for CSE)

Numerical Programming I (for CSE) Technische Universität München WT 1/13 Fakultät für Mathematik Prof. Dr. M. Mehl B. Gatzhammer January 1, 13 Numerical Programming I (for CSE) Tutorial 1: Iterative Methods 1) Relaxation Methods a) Let

More information

CS 323: Numerical Analysis and Computing

CS 323: Numerical Analysis and Computing CS 323: Numerical Analysis and Computing MIDTERM #1 Instructions: This is an open notes exam, i.e., you are allowed to consult any textbook, your class notes, homeworks, or any of the handouts from us.

More information

Hence a root lies between 1 and 2. Since f a is negative and f(x 0 ) is positive The root lies between a and x 0 i.e. 1 and 1.

Hence a root lies between 1 and 2. Since f a is negative and f(x 0 ) is positive The root lies between a and x 0 i.e. 1 and 1. The Bisection method or BOLZANO s method or Interval halving method: Find the positive root of x 3 x = 1 correct to four decimal places by bisection method Let f x = x 3 x 1 Here f 0 = 1 = ve, f 1 = ve,

More information

Parallel Programming. Parallel algorithms Linear systems solvers

Parallel Programming. Parallel algorithms Linear systems solvers Parallel Programming Parallel algorithms Linear systems solvers Terminology System of linear equations Solve Ax = b for x Special matrices Upper triangular Lower triangular Diagonally dominant Symmetric

More information

Stochastic Shortest Path Problems

Stochastic Shortest Path Problems Chapter 8 Stochastic Shortest Path Problems 1 In this chapter, we study a stochastic version of the shortest path problem of chapter 2, where only probabilities of transitions along different arcs can

More information

Math 471 (Numerical methods) Chapter 3 (second half). System of equations

Math 471 (Numerical methods) Chapter 3 (second half). System of equations Math 47 (Numerical methods) Chapter 3 (second half). System of equations Overlap 3.5 3.8 of Bradie 3.5 LU factorization w/o pivoting. Motivation: ( ) A I Gaussian Elimination (U L ) where U is upper triangular

More information

Non-Equidistant Particle-In-Cell for Ion Thruster Plumes

Non-Equidistant Particle-In-Cell for Ion Thruster Plumes Non-Equidistant Particle-In-Cell for Ion Thruster Plumes IEPC-213-67 Presented at the 33 rd International Electric Propulsion Conference, The George Washington University, Washington, D.C., USA October

More information

7 Mathematical Methods 7.6 Insulation (10 units)

7 Mathematical Methods 7.6 Insulation (10 units) 7 Mathematical Methods 7.6 Insulation (10 units) There are no prerequisites for this project. 1 Introduction When sheets of plastic and of other insulating materials are used in the construction of building

More information

A NEW EFFECTIVE PRECONDITIONED METHOD FOR L-MATRICES

A NEW EFFECTIVE PRECONDITIONED METHOD FOR L-MATRICES Journal of Mathematical Sciences: Advances and Applications Volume, Number 2, 2008, Pages 3-322 A NEW EFFECTIVE PRECONDITIONED METHOD FOR L-MATRICES Department of Mathematics Taiyuan Normal University

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

Iterative Techniques for Solving Ax b -(3.8). Assume that the system has a unique solution. Let x be the solution. Then x A 1 b.

Iterative Techniques for Solving Ax b -(3.8). Assume that the system has a unique solution. Let x be the solution. Then x A 1 b. Iterative Techiques for Solvig Ax b -(8) Cosider solvig liear systems of them form: Ax b where A a ij, x x i, b b i Assume that the system has a uique solutio Let x be the solutio The x A b Jacobi ad Gauss-Seidel

More information

Iterative Solution methods

Iterative Solution methods p. 1/28 TDB NLA Parallel Algorithms for Scientific Computing Iterative Solution methods p. 2/28 TDB NLA Parallel Algorithms for Scientific Computing Basic Iterative Solution methods The ideas to use iterative

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Review of matrices. Let m, n IN. A rectangle of numbers written like A =

Review of matrices. Let m, n IN. A rectangle of numbers written like A = Review of matrices Let m, n IN. A rectangle of numbers written like a 11 a 12... a 1n a 21 a 22... a 2n A =...... a m1 a m2... a mn where each a ij IR is called a matrix with m rows and n columns or an

More information

ARock: an algorithmic framework for asynchronous parallel coordinate updates

ARock: an algorithmic framework for asynchronous parallel coordinate updates ARock: an algorithmic framework for asynchronous parallel coordinate updates Zhimin Peng, Yangyang Xu, Ming Yan, Wotao Yin ( UCLA Math, U.Waterloo DCO) UCLA CAM Report 15-37 ShanghaiTech SSDS 15 June 25,

More information

Parallel programming practices for the solution of Sparse Linear Systems (motivated by computational physics and graphics)

Parallel programming practices for the solution of Sparse Linear Systems (motivated by computational physics and graphics) Parallel programming practices for the solution of Sparse Linear Systems (motivated by computational physics and graphics) Eftychios Sifakis CS758 Guest Lecture - 19 Sept 2012 Introduction Linear systems

More information

Here is an example of a block diagonal matrix with Jordan Blocks on the diagonal: J

Here is an example of a block diagonal matrix with Jordan Blocks on the diagonal: J Class Notes 4: THE SPECTRAL RADIUS, NORM CONVERGENCE AND SOR. Math 639d Due Date: Feb. 7 (updated: February 5, 2018) In the first part of this week s reading, we will prove Theorem 2 of the previous class.

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION

FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION EDMOND CHOW AND AFTAB PATEL Abstract. This paper presents a new fine-grained parallel algorithm for computing an incomplete LU factorization. All nonzeros

More information

Comparison of Fixed Point Methods and Krylov Subspace Methods Solving Convection-Diffusion Equations

Comparison of Fixed Point Methods and Krylov Subspace Methods Solving Convection-Diffusion Equations American Journal of Computational Mathematics, 5, 5, 3-6 Published Online June 5 in SciRes. http://www.scirp.org/journal/ajcm http://dx.doi.org/.436/ajcm.5.5 Comparison of Fixed Point Methods and Krylov

More information

Introduction Linear system Nonlinear equation Interpolation

Introduction Linear system Nonlinear equation Interpolation Interpolation Interpolation is the process of estimating an intermediate value from a set of discrete or tabulated values. Suppose we have the following tabulated values: y y 0 y 1 y 2?? y 3 y 4 y 5 x

More information

Computational Methods. Systems of Linear Equations

Computational Methods. Systems of Linear Equations Computational Methods Systems of Linear Equations Manfred Huber 2010 1 Systems of Equations Often a system model contains multiple variables (parameters) and contains multiple equations Multiple equations

More information

1.Chapter Objectives

1.Chapter Objectives LU Factorization INDEX 1.Chapter objectives 2.Overview of LU factorization 2.1GAUSS ELIMINATION AS LU FACTORIZATION 2.2LU Factorization with Pivoting 2.3 MATLAB Function: lu 3. CHOLESKY FACTORIZATION 3.1

More information

1. Fast Iterative Solvers of SLE

1. Fast Iterative Solvers of SLE 1. Fast Iterative Solvers of crucial drawback of solvers discussed so far: they become slower if we discretize more accurate! now: look for possible remedies relaxation: explicit application of the multigrid

More information

Simulating Solid Tumor Growth using Multigrid Algorithms

Simulating Solid Tumor Growth using Multigrid Algorithms Simulating Solid Tumor Growth using Multigrid Applied Mathematics, Statistics, and Program Advisor: Doron Levy, PhD Department of Mathematics/CSCAMM University of Maryland, College Park September 30, 2014

More information

c 2015 Society for Industrial and Applied Mathematics

c 2015 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 37, No. 2, pp. C169 C193 c 2015 Society for Industrial and Applied Mathematics FINE-GRAINED PARALLEL INCOMPLETE LU FACTORIZATION EDMOND CHOW AND AFTAB PATEL Abstract. This paper

More information

Lecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 7: Iterative methods for solving linear systems Xiaoqun Zhang Shanghai Jiao Tong University Last updated: December 24, 2014 1.1 Review on linear algebra Norms of vectors and matrices vector

More information

Introduction, basic but important concepts

Introduction, basic but important concepts Introduction, basic but important concepts Felix Kubler 1 1 DBF, University of Zurich and Swiss Finance Institute October 7, 2017 Felix Kubler Comp.Econ. Gerzensee, Ch1 October 7, 2017 1 / 31 Economics

More information

Numerical methods part 2

Numerical methods part 2 Numerical methods part 2 Alain Hébert alain.hebert@polymtl.ca Institut de génie nucléaire École Polytechnique de Montréal ENE6103: Week 6 Numerical methods part 2 1/33 Content (week 6) 1 Solution of an

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

A Novel Technique to Improve the Online Calculation Performance of Nonlinear Problems in DC Power Systems

A Novel Technique to Improve the Online Calculation Performance of Nonlinear Problems in DC Power Systems electronics Article A Novel Technique to Improve the Online Calculation Performance of Nonlinear Problems in DC Power Systems Qingshan Xu 1, Yuqi Wang 1, * ID, Minjian Cao 1 and Jiaqi Zheng 2 1 School

More information

STOP, a i+ 1 is the desired root. )f(a i) > 0. Else If f(a i+ 1. Set a i+1 = a i+ 1 and b i+1 = b Else Set a i+1 = a i and b i+1 = a i+ 1

STOP, a i+ 1 is the desired root. )f(a i) > 0. Else If f(a i+ 1. Set a i+1 = a i+ 1 and b i+1 = b Else Set a i+1 = a i and b i+1 = a i+ 1 53 17. Lecture 17 Nonlinear Equations Essentially, the only way that one can solve nonlinear equations is by iteration. The quadratic formula enables one to compute the roots of p(x) = 0 when p P. Formulas

More information

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn Today s class Linear Algebraic Equations LU Decomposition 1 Linear Algebraic Equations Gaussian Elimination works well for solving linear systems of the form: AX = B What if you have to solve the linear

More information

An introduction to parallel algorithms

An introduction to parallel algorithms An introduction to parallel algorithms Knut Mørken Department of Informatics Centre of Mathematics for Applications University of Oslo Winter School on Parallel Computing Geilo January 20 25, 2008 1/26

More information

Linear Models for the Prediction of Animal Breeding Values

Linear Models for the Prediction of Animal Breeding Values Linear Models for the Prediction of Animal Breeding Values R.A. Mrode, PhD Animal Data Centre Fox Talbot House Greenways Business Park Bellinger Close Chippenham Wilts, UK CAB INTERNATIONAL Preface ix

More information

Finite-volume Poisson solver with applications to conduction in

Finite-volume Poisson solver with applications to conduction in Finite-volume Poisson solver with applications to conduction in biological ion channels I. Kaufman 1, R. Tindjong 1, D. G. Luchinsky 1,2, P. V. E. McClintock 1 1 Department of Physics, Lancaster University,

More information

The conjugate gradient method

The conjugate gradient method The conjugate gradient method Michael S. Floater November 1, 2011 These notes try to provide motivation and an explanation of the CG method. 1 The method of conjugate directions We want to solve the linear

More information

Numerical Methods I Non-Square and Sparse Linear Systems

Numerical Methods I Non-Square and Sparse Linear Systems Numerical Methods I Non-Square and Sparse Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 25th, 2014 A. Donev (Courant

More information

Next topics: Solving systems of linear equations

Next topics: Solving systems of linear equations Next topics: Solving systems of linear equations 1 Gaussian elimination (today) 2 Gaussian elimination with partial pivoting (Week 9) 3 The method of LU-decomposition (Week 10) 4 Iterative techniques:

More information

An exploration of matrix equilibration

An exploration of matrix equilibration An exploration of matrix equilibration Paul Liu Abstract We review three algorithms that scale the innity-norm of each row and column in a matrix to. The rst algorithm applies to unsymmetric matrices,

More information

Parallel Scientific Computing

Parallel Scientific Computing IV-1 Parallel Scientific Computing Matrix-vector multiplication. Matrix-matrix multiplication. Direct method for solving a linear equation. Gaussian Elimination. Iterative method for solving a linear equation.

More information

Iterative Methods for Ax=b

Iterative Methods for Ax=b 1 FUNDAMENTALS 1 Iterative Methods for Ax=b 1 Fundamentals consider the solution of the set of simultaneous equations Ax = b where A is a square matrix, n n and b is a right hand vector. We write the iterative

More information