Gravity Models. Elena Nikolaeva, Egon Elbre, Roland Pihlakas. MTAT Graph Mining

Size: px
Start display at page:

Download "Gravity Models. Elena Nikolaeva, Egon Elbre, Roland Pihlakas. MTAT Graph Mining"

Transcription

1 Gravity Models Elena Nikolaeva, Egon Elbre, Roland Pihlakas

2 G=(V,C) network graph Introduction Origin Destination Flow as traffic FLOW

3 Traffic flow

4 Characteristics Of The Network Flows

5 Characteristics Of The Network Flows How does the traffic move throughout the network?

6 Characteristics Of The Network Flows How does the traffic move throughout the network? Routing Matrix

7 Routing Matrix Captures the manner in which traffic moves throughout the network. B - binary values - fraction of flow in case multiple routes are possible A 1 B 2 C 3 D B e;ij = AC AD BD BC CD Figures are from Lauri Eskor s slides

8 Characteristics Of The Network Flows How much traffic flows from point A to point B?

9 Characteristics Of The Network Flows How much traffic flows from point A to point B? Traffic Matrix

10 Constructing Traffic Matrix A B A B C D E Ti A C 30 B C D D E E Tj Copyright , Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University.

11 Origin-Destination Matrix (Traffic Matrix) Where Z ij is the total volume of traffic flowing from origin vertex i to a destination vertex j in a given period of time. Net out-flow corresponding to vertices i Net in-flow corresponding to vertices j

12 Link Totals,where X e the total flow over a given link e E,where Z-traffic matrix written as a vector A 1 B 2 Xe = C i, j X 1 AC AD BD BC CD X 2 = X D Be;ij Zij X X B Z AC Z AD Z BD Z BC Z CD Z

13 Characteristics Of The Network Flows How much will it cost us?

14 Characteristics Of The Network Flows How much will it cost us? Cost

15 The Four Ts in International Trade Transaction costs Tariff and non-tariff costs Transport costs Time costs Copyright , Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University.

16 Total Logistics Costs Tradeoff Total Logistics Costs Costs Warehousing Costs Transport Costs Shipment Size or Number of Warehouses Copyright , Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University.

17 Additional Measurements Of Traffic Volume C cost associated with paths or links. i.e. generalized cost (in transport economics)-is the sum of the monetary and non-monetary costs of a journey Costs associated with QoS - quality of service (in computer and telecommunication networks ) is the ability to provide different priority to different applications, users, or data flows, or to guarantee a certain level of performance to a data flow

18 Characteristics Of The Network Flows How will traffic change over time?

19 Characteristics Of The Network Flows How will traffic change over time? Time

20 Time-Varying Perspective Flows have dynamic nature Z (t) - time dependent traffic matrix B - fixed (changes in routing occur in longer time than those associated with the scale )

21 Characteristics Summary Origin FLOW Destination B Routing Matrix Z - Traffic Matrix C - Cost T - Time

22 Flow analysis classification Measurements Goal Method OD flow volumes Z ij Link volumes X e OD costs c ij Model observed flow volumes Z ij Predict unobserved OD flow volumes Z ij Predict unobserved OD and link costs Gravity Models Traffic matrix estimation(static, dynamic) Estimation of network flow costs

23 Gravity Models Metaphor of physical gravity Tij = G Mi Mj Dij 2 M i, M j -population size (mass) D ij - measure of separation (distance, cost) Applications: Social science (interaction between people of different populations), geography, economics, analysis of computer network traffic etc.

24 Application of an Elementary Spatial Interaction Equation 2,000,000 X 800 km 2,000,000 Y Elementary Formulation T ij = k P i P j D ij W X Y Z Ti 400 km W 100, ,000 W Z X 100,000 50,000 25, ,000 2,000,000 k = (people per week) 1,000,000 Y 50,000 50,000 Z 25,000 25,000 Centroid (i) Weight (P) Distance (D) Constant (k) Interaction (T) Tj 100, ,000 50,000 25, ,000 Copyright , Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University.

25 Relationship between Distance and Interactions T(B-A) A B T(C-A) A C Interaction T(D-A) A D A B C D Copyright , Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University. Distance

26 General Gravity Model Specifies that the traffic flows Z ij to be in the form of counts, with independent Poisson distributions and the mean function of the form of: T ij = k P i P j D ij 2,000,000 P i D ij =800 km 2,000,000 P j,where T ij =E(Z ij )- expected value of interaction h O (i)=p i - origin function h D (j)=p j - destination function h S (c ij )=D ij - separation function c ij - vector of K separation attributes

27 Extension of the Gravity Model. 2,000,000 X λ = 0.95 α = km 2,000,000 Y Simple Formulation T ij = k P α β i P j θ D ij W 2,000, km λ = 1.03 α = 0.96 k = (people per week) Z 1,000,000 λ = 1.00 α = 0.90 λ = 1.2 α = 0.7 W X Y Z Ti W 71,378 71,378 X 6,059 2, ,298 Y 19,420 19,420 Z 153, ,893 Centroid (i) Weight (P) Distance (D) Constant (k) Interaction (T) Exponent Tj 6, ,692 2, ,990 Copyright , Dr. Jean-Paul Rodrigue, Dept. of Global Studies & Geography, Hofstra University.

28 Extension of the Gravity Model. Power functions,where origin function h O (i) = (Pi) α = (π O,i) α destination function h D ( j) = (Pj) β = (π D j) β flow ~1/x a separation function h S (cij) = (Dij) θ = (cij) θ C ij -scalar, 0 ~exp() OR cost

29 Gravity Models. Example Austrian Call Data Need to understand the spatial structure of telecommunication interactions among populations between different geographical regions

30 Gravity Models. Example Austrian Call Data Need to understand the spatial structure of telecommunication interactions among populations between different geographical regions WHY?

31 Gravity Models. Example Austrian Call Data Need to understand the spatial structure of telecommunication interactions among populations between different geographical regions Regulation of the telecommunication sector Anticipating the influence of telecommunication technologies on regional development

32 Number of districts - 32 Time -1 year Measurements - intensity z ij, i j=1,,32 Austrian Call Data π O, i is the GRP of origin i, π D, j is the GRP of destination j, c i j is the distance from origin i to destination j

33 Austrian Call Data Scatter plots: Call flow volume versus each of Origin GRP Destination GRP Distance nonparametric smoother linear regression

34 Alternative Representation. Interaction Probabilities represent the expected relative frequency at which interactions are specifically ij-interactions,where Under the general gravity model specification they can be expressed as:

35 Alternative Representation. Destination Gravity Models related to the counts of Z ij from given origin i to all destinations j Conditional destination probabilities: P(A B) = P(A B) P(B) In terms of components in general probabilities:

36 Inference For The Gravity Models Z ij independent Poisson random variables with means: General model specification:,where

37 Poisson Distribution is a discrete probability distribution that expresses the probability of a number of events occurring in a fixed period of time if these events occur with a known average rate and independently of the time since the last event. (The Poisson distribution can also be used for the number of events in other specified intervals such as distance, area or volume.) The horizontal axis is the index k, the number of occurrences. The function is only defined at integer values of k.

38 Ma Given a sample of n measured values ki we wish to estimate the value of the parameter of the Poisson population from which the sample was drawn. To calculate the maximum likelihood value, we form the log-likelihood function Take the derivative of L with respect to and equate it to zero: Solving for yields a stationary point, which if the second derivative is negative is the maximum-likelihood estimate of : Checking the second derivative, it is found that it is negative for all and ki greater than zero, therefore this stationary point is indeed a maximum of the initial likelihood function:

39 Inference For The Gravity Models. Maximum Likelihood Z = z be an (IJ) 1 vector of observations of the flows Zij, ordered by origin i, and by destination j within origin i Poisson log-likelihood for : maximum likelihood for estimates: for i j satisfys the equations:,where

40 Example. Analysis Of The Austrian Call Data consider two models Fitted using generic iteratively weighted least- squares method for generalized linear models Model arguments are considered significant at the 0,05 level

41 Fitted Values versus Flow Volume Shows the fitted values ˆ i j versus observed flow volumes z ij The relationship between the two quantities is found to be fairly linear for both models, and the variation around their linear trend, fairly uniform The standard model tends to over-estimate in somewhat greater frequency than the general model, particularly for medium- and low-volume flows

42 Relative Error versus Flow Volume Shows the relative errors (z ij ˆij )/z ij versus the flow volumes z ij light and dark points indicate under- and over- estimation, respectively For both models the relative error varies widely in magnitude. The relative error decreases with volume. For low volumes both models are inclined to over-estimate, while for higher volumes, they are increasingly inclined to under-estimate.

43 Thank you for your attention!

Trip Distribution Modeling Milos N. Mladenovic Assistant Professor Department of Built Environment

Trip Distribution Modeling Milos N. Mladenovic Assistant Professor Department of Built Environment Trip Distribution Modeling Milos N. Mladenovic Assistant Professor Department of Built Environment 25.04.2017 Course Outline Forecasting overview and data management Trip generation modeling Trip distribution

More information

Transportation Theory and Applications

Transportation Theory and Applications Fall 2017 - MTAT.08.043 Transportation Theory and Applications Lecture IV: Trip distribution A. Hadachi outline Our objective Introducing two main methods for trip generation objective Trip generation

More information

CIV3703 Transport Engineering. Module 2 Transport Modelling

CIV3703 Transport Engineering. Module 2 Transport Modelling CIV3703 Transport Engineering Module Transport Modelling Objectives Upon successful completion of this module you should be able to: carry out trip generation calculations using linear regression and category

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

Geographically weighted regression approach for origin-destination flows

Geographically weighted regression approach for origin-destination flows Geographically weighted regression approach for origin-destination flows Kazuki Tamesue 1 and Morito Tsutsumi 2 1 Graduate School of Information and Engineering, University of Tsukuba 1-1-1 Tennodai, Tsukuba,

More information

( ).666 Information Extraction from Speech and Text

( ).666 Information Extraction from Speech and Text (520 600).666 Information Extraction from Speech and Text HMM Parameters Estimation for Gaussian Output Densities April 27, 205. Generalization of the Results of Section 9.4. It is suggested in Section

More information

An Overview of Traffic Matrix Estimation Methods

An Overview of Traffic Matrix Estimation Methods An Overview of Traffic Matrix Estimation Methods Nina Taft Berkeley www.intel.com/research Problem Statement 1 st generation solutions 2 nd generation solutions 3 rd generation solutions Summary Outline

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 00 MODULE : Statistical Inference Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks. The

More information

Introduction to Signal Detection and Classification. Phani Chavali

Introduction to Signal Detection and Classification. Phani Chavali Introduction to Signal Detection and Classification Phani Chavali Outline Detection Problem Performance Measures Receiver Operating Characteristics (ROC) F-Test - Test Linear Discriminant Analysis (LDA)

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 18 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 18 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 31, 2012 Andre Tkacenko

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models David Sontag New York University Lecture 4, February 16, 2012 David Sontag (NYU) Graphical Models Lecture 4, February 16, 2012 1 / 27 Undirected graphical models Reminder

More information

Correlation and Regression

Correlation and Regression Elementary Statistics A Step by Step Approach Sixth Edition by Allan G. Bluman http://www.mhhe.com/math/stat/blumanbrief SLIDES PREPARED BY LLOYD R. JAISINGH MOREHEAD STATE UNIVERSITY MOREHEAD KY Updated

More information

High-Throughput Sequencing Course

High-Throughput Sequencing Course High-Throughput Sequencing Course DESeq Model for RNA-Seq Biostatistics and Bioinformatics Summer 2017 Outline Review: Standard linear regression model (e.g., to model gene expression as function of an

More information

Statistics 572 Semester Review

Statistics 572 Semester Review Statistics 572 Semester Review Final Exam Information: The final exam is Friday, May 16, 10:05-12:05, in Social Science 6104. The format will be 8 True/False and explains questions (3 pts. each/ 24 pts.

More information

Lecture 14: Introduction to Poisson Regression

Lecture 14: Introduction to Poisson Regression Lecture 14: Introduction to Poisson Regression Ani Manichaikul amanicha@jhsph.edu 8 May 2007 1 / 52 Overview Modelling counts Contingency tables Poisson regression models 2 / 52 Modelling counts I Why

More information

Modelling counts. Lecture 14: Introduction to Poisson Regression. Overview

Modelling counts. Lecture 14: Introduction to Poisson Regression. Overview Modelling counts I Lecture 14: Introduction to Poisson Regression Ani Manichaikul amanicha@jhsph.edu Why count data? Number of traffic accidents per day Mortality counts in a given neighborhood, per week

More information

CIE4801 Transportation and spatial modelling Modal split

CIE4801 Transportation and spatial modelling Modal split CIE4801 Transportation and spatial modelling Modal split Rob van Nes, Transport & Planning 31-08-18 Delft University of Technology Challenge the future Content Nested logit part 2 Modelling component 3:

More information

A NOTE ON A SINGLE VEHICLE AND ONE DESTINATION ROUTING PROBLEM AND ITS GAME-THEORETIC MODELS

A NOTE ON A SINGLE VEHICLE AND ONE DESTINATION ROUTING PROBLEM AND ITS GAME-THEORETIC MODELS ALS Advanced Logistic Systems A NOTE ON A SINGLE VEHICLE AND ONE DESTINATION ROUTING PROBLEM AND ITS GAME-THEORETIC MODELS Andrzej Grzybowski Czestochowa University of Technology, Poland Abstract: In the

More information

Mohammed. Research in Pharmacoepidemiology National School of Pharmacy, University of Otago

Mohammed. Research in Pharmacoepidemiology National School of Pharmacy, University of Otago Mohammed Research in Pharmacoepidemiology (RIPE) @ National School of Pharmacy, University of Otago What is zero inflation? Suppose you want to study hippos and the effect of habitat variables on their

More information

b k b m 1 b m 2 b 1 b 0 b k

b k b m 1 b m 2 b 1 b 0 b k International Mathematical Forum, Vol. 6, 2011, no. 62, 3087-3092 Estimating Changes in Traffic Intensity for M/M/1/m Queueing Systems Sarat Kumar Acharya Departament of Statistics, Sambalpur University

More information

SPACE Workshop NSF NCGIA CSISS UCGIS SDSU. Aldstadt, Getis, Jankowski, Rey, Weeks SDSU F. Goodchild, M. Goodchild, Janelle, Rebich UCSB

SPACE Workshop NSF NCGIA CSISS UCGIS SDSU. Aldstadt, Getis, Jankowski, Rey, Weeks SDSU F. Goodchild, M. Goodchild, Janelle, Rebich UCSB SPACE Workshop NSF NCGIA CSISS UCGIS SDSU Aldstadt, Getis, Jankowski, Rey, Weeks SDSU F. Goodchild, M. Goodchild, Janelle, Rebich UCSB August 2-8, 2004 San Diego State University Some Examples of Spatial

More information

Even Simpler Standard Errors for Two-Stage Optimization Estimators: Mata Implementation via the DERIV Command

Even Simpler Standard Errors for Two-Stage Optimization Estimators: Mata Implementation via the DERIV Command Even Simpler Standard Errors for Two-Stage Optimization Estimators: Mata Implementation via the DERIV Command by Joseph V. Terza Department of Economics Indiana University Purdue University Indianapolis

More information

Problem #1 #2 #3 #4 #5 #6 Total Points /6 /8 /14 /10 /8 /10 /56

Problem #1 #2 #3 #4 #5 #6 Total Points /6 /8 /14 /10 /8 /10 /56 STAT 391 - Spring Quarter 2017 - Midterm 1 - April 27, 2017 Name: Student ID Number: Problem #1 #2 #3 #4 #5 #6 Total Points /6 /8 /14 /10 /8 /10 /56 Directions. Read directions carefully and show all your

More information

The Model Research of Urban Land Planning and Traffic Integration. Lang Wang

The Model Research of Urban Land Planning and Traffic Integration. Lang Wang International Conference on Materials, Environmental and Biological Engineering (MEBE 2015) The Model Research of Urban Land Planning and Traffic Integration Lang Wang Zhejiang Gongshang University, Hangzhou

More information

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul Generative Learning INFO-4604, Applied Machine Learning University of Colorado Boulder November 29, 2018 Prof. Michael Paul Generative vs Discriminative The classification algorithms we have seen so far

More information

Models for Count and Binary Data. Poisson and Logistic GWR Models. 24/07/2008 GWR Workshop 1

Models for Count and Binary Data. Poisson and Logistic GWR Models. 24/07/2008 GWR Workshop 1 Models for Count and Binary Data Poisson and Logistic GWR Models 24/07/2008 GWR Workshop 1 Outline I: Modelling counts Poisson regression II: Modelling binary events Logistic Regression III: Poisson Regression

More information

Calculus first semester exam information and practice problems

Calculus first semester exam information and practice problems Calculus first semester exam information and practice problems As I ve been promising for the past year, the first semester exam in this course encompasses all three semesters of Math SL thus far. It is

More information

Notes on Markov Networks

Notes on Markov Networks Notes on Markov Networks Lili Mou moull12@sei.pku.edu.cn December, 2014 This note covers basic topics in Markov networks. We mainly talk about the formal definition, Gibbs sampling for inference, and maximum

More information

Fuzzy Geographically Weighted Clustering

Fuzzy Geographically Weighted Clustering Fuzzy Geographically Weighted Clustering G. A. Mason 1, R. D. Jacobson 2 1 University of Calgary, Dept. of Geography 2500 University Drive NW Calgary, AB, T2N 1N4 Telephone: +1 403 210 9723 Fax: +1 403

More information

CSC321 Lecture 6: Backpropagation

CSC321 Lecture 6: Backpropagation CSC321 Lecture 6: Backpropagation Roger Grosse Roger Grosse CSC321 Lecture 6: Backpropagation 1 / 21 Overview We ve seen that multilayer neural networks are powerful. But how can we actually learn them?

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models Slides revised and adapted to Bioinformática 55 Engª Biomédica/IST 2005 Ana Teresa Freitas Forward Algorithm For Markov chains we calculate the probability of a sequence, P(x) How

More information

Graph Detection and Estimation Theory

Graph Detection and Estimation Theory Introduction Detection Estimation Graph Detection and Estimation Theory (and algorithms, and applications) Patrick J. Wolfe Statistics and Information Sciences Laboratory (SISL) School of Engineering and

More information

Lecture 1: Introduction to Sublinear Algorithms

Lecture 1: Introduction to Sublinear Algorithms CSE 522: Sublinear (and Streaming) Algorithms Spring 2014 Lecture 1: Introduction to Sublinear Algorithms March 31, 2014 Lecturer: Paul Beame Scribe: Paul Beame Too much data, too little time, space for

More information

Number, Number Sense, and Operations Data Analysis and Probability

Number, Number Sense, and Operations Data Analysis and Probability Algebra 1 Unit 1 Numbers 3 weeks Number, Number Sense, and Operations Data Analysis and Probability NC Apply properties of operations and the real number system, and justify when they hold for a set of

More information

Bayesian non-parametric model to longitudinally predict churn

Bayesian non-parametric model to longitudinally predict churn Bayesian non-parametric model to longitudinally predict churn Bruno Scarpa Università di Padova Conference of European Statistics Stakeholders Methodologists, Producers and Users of European Statistics

More information

Generalized Linear Models

Generalized Linear Models York SPIDA John Fox Notes Generalized Linear Models Copyright 2010 by John Fox Generalized Linear Models 1 1. Topics I The structure of generalized linear models I Poisson and other generalized linear

More information

Biostat 2065 Analysis of Incomplete Data

Biostat 2065 Analysis of Incomplete Data Biostat 2065 Analysis of Incomplete Data Gong Tang Dept of Biostatistics University of Pittsburgh October 20, 2005 1. Large-sample inference based on ML Let θ is the MLE, then the large-sample theory implies

More information

Communications in Statistics - Simulation and Computation. Comparison of EM and SEM Algorithms in Poisson Regression Models: a simulation study

Communications in Statistics - Simulation and Computation. Comparison of EM and SEM Algorithms in Poisson Regression Models: a simulation study Comparison of EM and SEM Algorithms in Poisson Regression Models: a simulation study Journal: Manuscript ID: LSSP-00-0.R Manuscript Type: Original Paper Date Submitted by the Author: -May-0 Complete List

More information

Exploring spatial decay effect in mass media and social media: a case study of China

Exploring spatial decay effect in mass media and social media: a case study of China Exploring spatial decay effect in mass media and social media: a case study of China 1. Introduction Yihong Yuan Department of Geography, Texas State University, San Marcos, TX, USA, 78666. Tel: +1(512)-245-3208

More information

STA216: Generalized Linear Models. Lecture 1. Review and Introduction

STA216: Generalized Linear Models. Lecture 1. Review and Introduction STA216: Generalized Linear Models Lecture 1. Review and Introduction Let y 1,..., y n denote n independent observations on a response Treat y i as a realization of a random variable Y i In the general

More information

From transport to accessibility: the new lease of life of an old concept

From transport to accessibility: the new lease of life of an old concept Paris 07 /01/ 2015 From transport to accessibility: the new lease of life of an old concept Pr. Yves Crozet Laboratory of Transport Economics (LET) University of Lyon (IEP) - France yves.crozet@let.ish-lyon.cnrs.fr

More information

Using Markov Chains To Model Human Migration in a Network Equilibrium Framework

Using Markov Chains To Model Human Migration in a Network Equilibrium Framework Using Markov Chains To Model Human Migration in a Network Equilibrium Framework Jie Pan Department of Mathematics and Computer Science Saint Joseph s University Philadelphia, PA 19131 Anna Nagurney School

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

Dynamic Factor Models and Factor Augmented Vector Autoregressions. Lawrence J. Christiano

Dynamic Factor Models and Factor Augmented Vector Autoregressions. Lawrence J. Christiano Dynamic Factor Models and Factor Augmented Vector Autoregressions Lawrence J Christiano Dynamic Factor Models and Factor Augmented Vector Autoregressions Problem: the time series dimension of data is relatively

More information

Assessing Model Adequacy

Assessing Model Adequacy Assessing Model Adequacy A number of assumptions were made about the model, and these need to be verified in order to use the model for inferences. In cases where some assumptions are violated, there are

More information

Multilevel Modeling Day 2 Intermediate and Advanced Issues: Multilevel Models as Mixed Models. Jian Wang September 18, 2012

Multilevel Modeling Day 2 Intermediate and Advanced Issues: Multilevel Models as Mixed Models. Jian Wang September 18, 2012 Multilevel Modeling Day 2 Intermediate and Advanced Issues: Multilevel Models as Mixed Models Jian Wang September 18, 2012 What are mixed models The simplest multilevel models are in fact mixed models:

More information

Represent processes and observations that span multiple levels (aka multi level models) R 2

Represent processes and observations that span multiple levels (aka multi level models) R 2 Hierarchical models Hierarchical models Represent processes and observations that span multiple levels (aka multi level models) R 1 R 2 R 3 N 1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N i = true abundance on a

More information

Statistics 203: Introduction to Regression and Analysis of Variance Course review

Statistics 203: Introduction to Regression and Analysis of Variance Course review Statistics 203: Introduction to Regression and Analysis of Variance Course review Jonathan Taylor - p. 1/?? Today Review / overview of what we learned. - p. 2/?? General themes in regression models Specifying

More information

EXPLORATORY SPATIAL DATA ANALYSIS OF BUILDING ENERGY IN URBAN ENVIRONMENTS. Food Machinery and Equipment, Tianjin , China

EXPLORATORY SPATIAL DATA ANALYSIS OF BUILDING ENERGY IN URBAN ENVIRONMENTS. Food Machinery and Equipment, Tianjin , China EXPLORATORY SPATIAL DATA ANALYSIS OF BUILDING ENERGY IN URBAN ENVIRONMENTS Wei Tian 1,2, Lai Wei 1,2, Pieter de Wilde 3, Song Yang 1,2, QingXin Meng 1 1 College of Mechanical Engineering, Tianjin University

More information

Facility Location and Distribution System Planning. Thomas L. Magnanti

Facility Location and Distribution System Planning. Thomas L. Magnanti Facility Location and Distribution System Planning Thomas L. Magnanti Today s Agenda Why study facility location? Issues to be modeled Basic models Fixed charge problems Core uncapacitated and capacitated

More information

Maximum Likelihood Estimation of the Flow Size Distribution Tail Index from Sampled Packet Data

Maximum Likelihood Estimation of the Flow Size Distribution Tail Index from Sampled Packet Data Maximum Likelihood Estimation of the Flow Size Distribution Tail Index from Sampled Packet Data Patrick Loiseau 1, Paulo Gonçalves 1, Stéphane Girard 2, Florence Forbes 2, Pascale Vicat-Blanc Primet 1

More information

Machine Learning I Continuous Reinforcement Learning

Machine Learning I Continuous Reinforcement Learning Machine Learning I Continuous Reinforcement Learning Thomas Rückstieß Technische Universität München January 7/8, 2010 RL Problem Statement (reminder) state s t+1 ENVIRONMENT reward r t+1 new step r t

More information

Logistic Regression. Advanced Methods for Data Analysis (36-402/36-608) Spring 2014

Logistic Regression. Advanced Methods for Data Analysis (36-402/36-608) Spring 2014 Logistic Regression Advanced Methods for Data Analysis (36-402/36-608 Spring 204 Classification. Introduction to classification Classification, like regression, is a predictive task, but one in which the

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS141: Discrete Mathematics for Computer Science I Dept. Information & Computer Sci., Jan Stelovsky based on slides by Dr. Baek and Dr. Still Originals by Dr. M. P. Frank and Dr. J.L. Gross Provided by

More information

+ τ t R t 1B t 1 + M t 1. = R t 1B t 1 + M t 1. = λ t (1 + γ f t + γ f t v t )

+ τ t R t 1B t 1 + M t 1. = R t 1B t 1 + M t 1. = λ t (1 + γ f t + γ f t v t ) Eco504, Part II Spring 2006 C. Sims FTPL WITH MONEY 1. FTPL WITH MONEY This model is that of Sims (1994). Agent: [ ] max E β t log C t {C t,m t,b t } t=0 s.t. C t (1 + γ f (v t )) + M t + B t + τ t R t

More information

Based on slides by Richard Zemel

Based on slides by Richard Zemel CSC 412/2506 Winter 2018 Probabilistic Learning and Reasoning Lecture 3: Directed Graphical Models and Latent Variables Based on slides by Richard Zemel Learning outcomes What aspects of a model can we

More information

Learning Bayesian Networks (part 1) Goals for the lecture

Learning Bayesian Networks (part 1) Goals for the lecture Learning Bayesian Networks (part 1) Mark Craven and David Page Computer Scices 760 Spring 2018 www.biostat.wisc.edu/~craven/cs760/ Some ohe slides in these lectures have been adapted/borrowed from materials

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

Created by T. Madas 2D VECTORS. Created by T. Madas

Created by T. Madas 2D VECTORS. Created by T. Madas 2D VECTORS Question 1 (**) Relative to a fixed origin O, the point A has coordinates ( 2, 3). The point B is such so that AB = 3i 7j, where i and j are mutually perpendicular unit vectors lying on the

More information

Outline. 15. Descriptive Summary, Design, and Inference. Descriptive summaries. Data mining. The centroid

Outline. 15. Descriptive Summary, Design, and Inference. Descriptive summaries. Data mining. The centroid Outline 15. Descriptive Summary, Design, and Inference Geographic Information Systems and Science SECOND EDITION Paul A. Longley, Michael F. Goodchild, David J. Maguire, David W. Rhind 2005 John Wiley

More information

Applied Probability. School of Mathematics and Statistics, University of Sheffield. (University of Sheffield) Applied Probability / 8

Applied Probability. School of Mathematics and Statistics, University of Sheffield. (University of Sheffield) Applied Probability / 8 Applied Probability School of Mathematics and Statistics, University of Sheffield 2018 19 (University of Sheffield) Applied Probability 2018 19 1 / 8 Introduction You will have seen probability models.

More information

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning Lecture 0 Neural networks and optimization Machine Learning and Data Mining November 2009 UBC Gradient Searching for a good solution can be interpreted as looking for a minimum of some error (loss) function

More information

Machine Learning 2017

Machine Learning 2017 Machine Learning 2017 Volker Roth Department of Mathematics & Computer Science University of Basel 21st March 2017 Volker Roth (University of Basel) Machine Learning 2017 21st March 2017 1 / 41 Section

More information

THE METHOD OF CONDITIONAL PROBABILITIES: DERANDOMIZING THE PROBABILISTIC METHOD

THE METHOD OF CONDITIONAL PROBABILITIES: DERANDOMIZING THE PROBABILISTIC METHOD THE METHOD OF CONDITIONAL PROBABILITIES: DERANDOMIZING THE PROBABILISTIC METHOD JAMES ZHOU Abstract. We describe the probabilistic method as a nonconstructive way of proving the existence of combinatorial

More information

Bayesian Analysis of Risk for Data Mining Based on Empirical Likelihood

Bayesian Analysis of Risk for Data Mining Based on Empirical Likelihood 1 / 29 Bayesian Analysis of Risk for Data Mining Based on Empirical Likelihood Yuan Liao Wenxin Jiang Northwestern University Presented at: Department of Statistics and Biostatistics Rutgers University

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 13 Measuring and Inferring Traffic Matrices

More information

URBAN TRANSPORTATION SYSTEM (ASSIGNMENT)

URBAN TRANSPORTATION SYSTEM (ASSIGNMENT) BRANCH : CIVIL ENGINEERING SEMESTER : 6th Assignment-1 CHAPTER-1 URBANIZATION 1. What is Urbanization? Explain by drawing Urbanization cycle. 2. What is urban agglomeration? 3. Explain Urban Class Groups.

More information

Location Theory and Decision Analysis

Location Theory and Decision Analysis Location Theory and Decision Analysis Analytics of Spatial Information Second Edition Yupo Chan Professor & Founding Chair Department of Systems Engineering Donaghey College of Engineering and Information

More information

Ad Placement Strategies

Ad Placement Strategies Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox 2014 Emily Fox January

More information

MULTIPLE CHOICE QUESTIONS DECISION SCIENCE

MULTIPLE CHOICE QUESTIONS DECISION SCIENCE MULTIPLE CHOICE QUESTIONS DECISION SCIENCE 1. Decision Science approach is a. Multi-disciplinary b. Scientific c. Intuitive 2. For analyzing a problem, decision-makers should study a. Its qualitative aspects

More information

Spatial Economics and Potential Games

Spatial Economics and Potential Games Outline Spatial Economics and Potential Games Daisuke Oyama Graduate School of Economics, Hitotsubashi University Hitotsubashi Game Theory Workshop 2007 Session Potential Games March 4, 2007 Potential

More information

11 : Gaussian Graphic Models and Ising Models

11 : Gaussian Graphic Models and Ising Models 10-708: Probabilistic Graphical Models 10-708, Spring 2017 11 : Gaussian Graphic Models and Ising Models Lecturer: Bryon Aragam Scribes: Chao-Ming Yen 1 Introduction Different from previous maximum likelihood

More information

Tied survival times; estimation of survival probabilities

Tied survival times; estimation of survival probabilities Tied survival times; estimation of survival probabilities Patrick Breheny November 5 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/22 Introduction Tied survival times Introduction Breslow approximation

More information

ST MARY S DSG, KLOOF GRADE: SEPTEMBER 2017 MATHEMATICS PAPER 2

ST MARY S DSG, KLOOF GRADE: SEPTEMBER 2017 MATHEMATICS PAPER 2 ST MARY S DSG, KLOOF GRADE: 12 12 SEPTEMBER 2017 MATHEMATICS PAPER 2 TIME: 3 HOURS ASSESSOR: S Drew TOTAL: 150 MARKS MODERATORS: J van Rooyen E Robertson EXAMINATION NUMBER: TEACHER: INSTRUCTIONS: 1. This

More information

bound on the likelihood through the use of a simpler variational approximating distribution. A lower bound is particularly useful since maximization o

bound on the likelihood through the use of a simpler variational approximating distribution. A lower bound is particularly useful since maximization o Category: Algorithms and Architectures. Address correspondence to rst author. Preferred Presentation: oral. Variational Belief Networks for Approximate Inference Wim Wiegerinck David Barber Stichting Neurale

More information

Geospatial Analysis of Job-Housing Mismatch Using ArcGIS and Python

Geospatial Analysis of Job-Housing Mismatch Using ArcGIS and Python Geospatial Analysis of Job-Housing Mismatch Using ArcGIS and Python 2016 ESRI User Conference June 29, 2016 San Diego, CA Jung Seo, Frank Wen, Simon Choi and Tom Vo, Research & Analysis Southern California

More information

arxiv: v1 [cs.it] 21 Feb 2013

arxiv: v1 [cs.it] 21 Feb 2013 q-ary Compressive Sensing arxiv:30.568v [cs.it] Feb 03 Youssef Mroueh,, Lorenzo Rosasco, CBCL, CSAIL, Massachusetts Institute of Technology LCSL, Istituto Italiano di Tecnologia and IIT@MIT lab, Istituto

More information

The spatial autocorrelation problem in spatial interaction modelling: a comparison of two common solutions

The spatial autocorrelation problem in spatial interaction modelling: a comparison of two common solutions MPRA Munich Personal RePEc Archive The spatial autocorrelation problem in spatial interaction modelling: a comparison of two common solutions Daniel A. Griffith and Manfred M. Fischer and James P. LeSage

More information

Final. Introduction to Artificial Intelligence. CS 188 Spring You have approximately 2 hours and 50 minutes.

Final. Introduction to Artificial Intelligence. CS 188 Spring You have approximately 2 hours and 50 minutes. CS 188 Spring 2014 Introduction to Artificial Intelligence Final You have approximately 2 hours and 50 minutes. The exam is closed book, closed notes except your two-page crib sheet. Mark your answers

More information

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 Plan for today and next week Today and next time: Bayesian networks (Bishop Sec. 8.1) Conditional

More information

Modeling Longitudinal Count Data with Excess Zeros and Time-Dependent Covariates: Application to Drug Use

Modeling Longitudinal Count Data with Excess Zeros and Time-Dependent Covariates: Application to Drug Use Modeling Longitudinal Count Data with Excess Zeros and : Application to Drug Use University of Northern Colorado November 17, 2014 Presentation Outline I and Data Issues II Correlated Count Regression

More information

Commuting in Northern Ireland: Exploring Spatial Variations through Spatial Interaction Modelling

Commuting in Northern Ireland: Exploring Spatial Variations through Spatial Interaction Modelling Commuting in Northern Ireland: Exploring Spatial Variations through Spatial Interaction Modelling 1. Introduction C. D. Lloyd, I. G. Shuttleworth, G. Catney School of Geography, Archaeology and Palaeoecology,

More information

Text Mining for Economics and Finance Latent Dirichlet Allocation

Text Mining for Economics and Finance Latent Dirichlet Allocation Text Mining for Economics and Finance Latent Dirichlet Allocation Stephen Hansen Text Mining Lecture 5 1 / 45 Introduction Recall we are interested in mixed-membership modeling, but that the plsi model

More information

Computational statistics

Computational statistics Computational statistics Lecture 3: Neural networks Thierry Denœux 5 March, 2016 Neural networks A class of learning methods that was developed separately in different fields statistics and artificial

More information

Measuring the impact of freeway infrastructure on the accessibility of the city of Fez

Measuring the impact of freeway infrastructure on the accessibility of the city of Fez Measuring the impact of freeway infrastructure on the accessibility of the city of Fez Imane MOUFAD Laboratory of Energy & Sustainable Development (LPE2D) Sidi Mohamed Ben Abdellah University - EST, Road

More information

Changes in the Spatial Distribution of Mobile Source Emissions due to the Interactions between Land-use and Regional Transportation Systems

Changes in the Spatial Distribution of Mobile Source Emissions due to the Interactions between Land-use and Regional Transportation Systems Changes in the Spatial Distribution of Mobile Source Emissions due to the Interactions between Land-use and Regional Transportation Systems A Framework for Analysis Urban Transportation Center University

More information

Poverty and Inclusion in the West Bank and Gaza. Tara Vishwanath and Roy Van der Weide

Poverty and Inclusion in the West Bank and Gaza. Tara Vishwanath and Roy Van der Weide Poverty and Inclusion in the West Bank and Gaza Tara Vishwanath and Roy Van der Weide Oslo accord created a fragmented territory, with no Palestinian control over Area C Overlaid by a regime of internal

More information

Nonparametric Location Tests: k-sample

Nonparametric Location Tests: k-sample Nonparametric Location Tests: k-sample Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 04-Jan-2017 Nathaniel E. Helwig (U of Minnesota)

More information

Efficiency and Braess Paradox under Pricing

Efficiency and Braess Paradox under Pricing Efficiency and Braess Paradox under Pricing Asuman Ozdaglar Joint work with Xin Huang, [EECS, MIT], Daron Acemoglu [Economics, MIT] October, 2004 Electrical Engineering and Computer Science Dept. Massachusetts

More information

An online data and consulting resource of THE UNIVERSITY OF TOLEDO THE JACK FORD URBAN AFFAIRS CENTER

An online data and consulting resource of THE UNIVERSITY OF TOLEDO THE JACK FORD URBAN AFFAIRS CENTER An online data and consulting resource of THE JACK FORD URBAN AFFAIRS CENTER THE CENTER FOR GEOGRAPHIC INFORMATION SCIENCE AND APPLIED GEOGRAPHICS DEPARTMENT OF GEOGRAPHY AND PLANNING THE UNIVERSITY OF

More information

13.7 ANOTHER TEST FOR TREND: KENDALL S TAU

13.7 ANOTHER TEST FOR TREND: KENDALL S TAU 13.7 ANOTHER TEST FOR TREND: KENDALL S TAU In 1969 the U.S. government instituted a draft lottery for choosing young men to be drafted into the military. Numbers from 1 to 366 were randomly assigned to

More information

CSE 546 Final Exam, Autumn 2013

CSE 546 Final Exam, Autumn 2013 CSE 546 Final Exam, Autumn 0. Personal info: Name: Student ID: E-mail address:. There should be 5 numbered pages in this exam (including this cover sheet).. You can use any material you brought: any book,

More information

YEAR 12 - Mathematics Pure (C1) Term 1 plan

YEAR 12 - Mathematics Pure (C1) Term 1 plan Week YEAR 12 - Mathematics Pure (C1) Term 1 plan 2016-2017 1-2 Algebra Laws of indices for all rational exponents. Use and manipulation of surds. Quadratic functions and their graphs. The discriminant

More information

Bayesian nonparametric models for bipartite graphs

Bayesian nonparametric models for bipartite graphs Bayesian nonparametric models for bipartite graphs François Caron Department of Statistics, Oxford Statistics Colloquium, Harvard University November 11, 2013 F. Caron 1 / 27 Bipartite networks Readers/Customers

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

STA 216: GENERALIZED LINEAR MODELS. Lecture 1. Review and Introduction. Much of statistics is based on the assumption that random

STA 216: GENERALIZED LINEAR MODELS. Lecture 1. Review and Introduction. Much of statistics is based on the assumption that random STA 216: GENERALIZED LINEAR MODELS Lecture 1. Review and Introduction Much of statistics is based on the assumption that random variables are continuous & normally distributed. Normal linear regression

More information

APPENDIX Should the Private Sector Provide Public Capital?

APPENDIX Should the Private Sector Provide Public Capital? APPENIX Should the Private Sector Provide Public Capital? Santanu Chatterjee epartment of Economics Terry College of Business University of eorgia Appendix A The appendix describes the optimization problem

More information

Modeling Network Optimization Problems

Modeling Network Optimization Problems Modeling Network Optimization Problems John E. Mitchell http://www.rpi.edu/~mitchj Mathematical Models of Operations Research MATP4700 / ISYE4770 October 19, 01 Mitchell (MATP4700) Network Optimization

More information

Large-Scale Behavioral Targeting

Large-Scale Behavioral Targeting Large-Scale Behavioral Targeting Ye Chen, Dmitry Pavlov, John Canny ebay, Yandex, UC Berkeley (This work was conducted at Yahoo! Labs.) June 30, 2009 Chen et al. (KDD 09) Large-Scale Behavioral Targeting

More information

Chapter 7 Network Flow Problems, I

Chapter 7 Network Flow Problems, I Chapter 7 Network Flow Problems, I Network flow problems are the most frequently solved linear programming problems. They include as special cases, the assignment, transportation, maximum flow, and shortest

More information