Power Requirements for Earth s Magnetic Field

Size: px
Start display at page:

Download "Power Requirements for Earth s Magnetic Field"

Transcription

1 Power Requirements for Earth s Magnetic Field QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Bruce Buffett University of Chicago

2 Structure of the Earth

3 Origin of Inner Core Inner core grows as the core cools

4 Composition of Core Addition of light elements required to explain density (popular suggestions include O, S, Si )

5 Phase Diagram

6 Physical Processes

7 Evolution of Core Total Energy: Evolution based on energy conservation: convective fluctuations in internal U and gravitational Ω energies are negligible Average over convective fluctuations to define mean state (hydrostatic, adiabatic, uniform composition)

8 Mean State Hydrostatic Adiabatic Uniform composition Energies U(P 0,S 0,C 0 ) Ω(P 0,S 0,C 0 )

9 Thermal State of the Earth D temperature drop across D : ΔT = K

10 Heat Flow at Top of Core conductivity k ~ 7-10 W / K m r = b temperature ΔT ~ K layer thickness δ km large uncertainty in total heat flow Q = 5-28 TW (Q surface = 44 TW) heat conducted down adiabat Q a = 5-6 TW

11 Limits on Heat Flow high core temperature implies large CMB heat flow

12 Thermal Evolution* Inner Core Radius CMB Temperature * assumes no radiogenic heat sources in core

13 Boundary-Layer Model Local stability of boundary layer Critical Rayleigh number Ra c ~ 10 3 Heat Flow

14 Power Requirements for Dynamo Glatzmaier & Roberts, 1996

15 Dynamo Power Dissipation Φ (ohmic) (viscous) Numerical Models Kuang - Bloxham model Glatzmaier - Roberts model 0.1 TW 1.0 TW

16 Work Done by Convection Mechanical Energy Balance Fluctuations about hydrostatic state Correlation of fluctuations with v (thermal) (compositional)

17 Buoyancy Flux - generation of buoyancy at the boundaries - flux calculated by requirement that core is well mixed

18 Efficiency of Convection Power can be expressed in terms of Carnot efficiencies

19 Heat Flow Requirement

20 Thermal History* inner-core radius CMB temperature * no radiogenic heat sources in the core

21 Inconsistencies 1. Current temperature estimates imply high CMB heat flow (problems during Archean) 2. Geodynamo power can be supplied with lower heat flow (incompatible with #1) 3. Geodynamo power Φ = 0.5 to 1.0 TW still yields implausible thermal history

22 Possible Solutions 1. Geodynamo power is low Φ ~ 0.1 TW Explanation of low heat flow CMB Q = 2 TW requires 11 TW of radiogenic heat source in D (oceanic crust or enriched partial melt?) How realistic is Φ=0.1 TW?

23 Possible Solutions 2. Additional heat sources in the core slows cooling for prescribed Q i) avoids high initial temperature ii) supplies additional power to dynamo present-day heat flow: Q(0) = 6 TW

24 Dynamo Power

25 Distinguishing between Possibilities Options 1 and 2 are not mutually exclusive Relative importance of 1 and 2? i) better estimates of Φ using more realistic dynamo models ii) better understanding of structure at base of mantle iii) partitioning of radiogenic elements in lower mantle minerals and melts transfer of radiogenic elements over time?

26 Conclusions 1. Current temperature estimates yield high heat flow (Q > 6 TW) 2. Geodynamo may operate with lower heat flow i) Φ = 0.1 TW implies Q ~ 2 TW ii) Φ = 1.0 TW implies Q ~ 4.6 TW 3. Power requirements Φ > 0.5 TW requires additional heat sources (200 ppm K is sufficient) -> gradual addition of heat sources is attractive

27 Power for the Geodynamo convective heat flux Q - Q ad adiabatic heat flux Q ad ~ 5-6 TW Dissipation Φ = (ε T + ε c ) Q present-day efficiencies ε T ~ 0.07 ε c ~ 0.16

Nature and origin of what s in the deep mantle

Nature and origin of what s in the deep mantle Nature and origin of what s in the deep mantle S. Labrosse 1, B. Bourdon 1, R. Nomura 2, K. Hirose 2 1 École Normale Supérieure de Lyon, Universtité Claude Bernard Lyon-1 2 Earth-Life Science Institute,

More information

Long term evolution of the deep Earth as a window on its initial state

Long term evolution of the deep Earth as a window on its initial state Long term evolution of the deep Earth as a window on its initial state Stéphane Labrosse École Normale Supérieure de Lyon Universtité Claude Bernard Lyon-1 Point Reyes May 2016 Stéphane Labrosse (Lyon)

More information

The geodynamo. Previously The Earth s magnetic field. Reading: Fowler Ch 8, p Glatzmaier et al. Nature 401,

The geodynamo. Previously The Earth s magnetic field. Reading: Fowler Ch 8, p Glatzmaier et al. Nature 401, The geodynamo Reading: Fowler Ch 8, p373-381 Glatzmaier et al. Nature 401, 885-890 1999 Previously The Earth s magnetic field TODAY: how is the Earth s field generated? 1 Generating the Earth s magnetic

More information

Emmanuel DORMY (CNRS / ENS)

Emmanuel DORMY (CNRS / ENS) Emmanuel DORMY (CNRS / ENS) dormy@phys.ens.fr The Earth s internal structure Mantle Fluid outer core ICB 3480 km 6366 km 1221 km Inner core CMB Roberts & King 2013 Governing Equations Governing Equations

More information

DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL

DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL MAGNETIC FIELD OF THE EARTH DIPOLE Field Structure Permanent magnetization of Core? 80% of field is dipole 20 % is non dipole 2)

More information

Earth s Power Budget: Significance of Radiogenic Heating

Earth s Power Budget: Significance of Radiogenic Heating Earth s Power Budget: Significance of Radiogenic Heating Global heat flux Total = 47 +/- 3 TW Continents = 13.8 TW nominal thermal history with Oceans constant = 30.9 TW viscosity (violates T-dep viscosity)

More information

Can the Earth s dynamo run on heat alone?

Can the Earth s dynamo run on heat alone? Geophys. J. Int. (2003) 155, 609 622 Can the Earth s dynamo run on heat alone? David Gubbins, 1, Dario Alfè, 2,4 Guy Masters, 3 G. David rice 2 and M. J. Gillan 4 1 School of Earth Sciences, University

More information

The Geodynamo and Paleomagnetism Brown and Mussett (1993) ch. 6; Fowler p

The Geodynamo and Paleomagnetism Brown and Mussett (1993) ch. 6; Fowler p In this lecture: The Core The Geodynamo and Paleomagnetism Brown and Mussett (1993) ch. 6; Fowler p. 32-50 Problems Outer core Physical state Composition Inner core Physical state Composition Paleomagnetism

More information

Synthetic Seismograms for a Synthetic Earth

Synthetic Seismograms for a Synthetic Earth LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN Geophysics Department of Earth and Environmental Sciences Synthetic Seismograms for a Synthetic Earth Computing 3-D wavefields in mantle circulation models to test

More information

Thermal and compositional structure of the Mantle and Lithosphere

Thermal and compositional structure of the Mantle and Lithosphere Chapter 1 Thermal and compositional structure of the Mantle and Lithosphere 1.1 Primordial heat of the Earth The most widely accepted planetary formation theory says that the solar system accreted from

More information

Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell

Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell PHYSICS OF PLASMAS VOLUME 11, NUMBER 11 NOVEMBER 2004 Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell Fujihiro Hamba a) Institute of Industrial Science,

More information

GEODYNAMO: NUMERICAL SIMULATIONS

GEODYNAMO: NUMERICAL SIMULATIONS Comp. by: womat Date:9/2/07 Time:20:05:52 Stage:First Proof File Path://spiina1001z/womat/production/ 302 GEODYNAMO: NUMERICAL SIMULATIONS The energy sources on the right-hand side of Eq. (5) are the same

More information

Thermal evolution of the core with a high thermal conductivity

Thermal evolution of the core with a high thermal conductivity Thermal evolution of the core with a high thermal conductivity Stéphane Labrosse To cite this version: Stéphane Labrosse. Thermal evolution of the core with a high thermal conductivity. Physics of the

More information

Thermo-chemical structure, dynamics and evolution of the deep mantle: spherical convection calculations

Thermo-chemical structure, dynamics and evolution of the deep mantle: spherical convection calculations Thermo-chemical structure, dynamics and evolution of the deep mantle: spherical convection calculations Paul J. Tackley ETH Zürich, Switzerland With help from Takashi Nakagawa, Frédéric Deschamps, James

More information

MS 130: Volume 8 - Core Dynamics: Thermal and Compositional Convection in the Outer Core

MS 130: Volume 8 - Core Dynamics: Thermal and Compositional Convection in the Outer Core MS 130: Volume 8 - Core Dynamics: Thermal and Compositional Convection in the Outer Core C. A. Jones Department of Applied Mathematics, University of Leeds, Leeds, LS2 9JT, UK August 29, 2006 Contents

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12574 1 Parameter space exploration and rationale for parameter choices Here we give a detailed account of the parameter space exploration (Extended Data Table 1) carried out in support

More information

GEODYNAMO SIMULATIONS HOW REALISTIC ARE THEY?

GEODYNAMO SIMULATIONS HOW REALISTIC ARE THEY? Annu. Rev. Earth Planet. Sci. 2002. 30:237 57 DOI: 10.1146/annurev.earth.30.091201.140817 Copyright c 2002 by Annual Reviews. All rights reserved GEODYNAMO SIMULATIONS HOW REALISTIC ARE THEY? Gary A. Glatzmaier

More information

Radioactivity. Lecture 11 The radioactive Earth

Radioactivity. Lecture 11 The radioactive Earth Radioactivity Lecture 11 The radioactive Earth The Violent Beginning Most of the planet s radioactivity was generated in neutron driven nucleosynthesis processes in previous star generations and implemented

More information

Pacific Secular Variation A result of hot lower mantle. David Gubbins School of Earth Sciences University of Leeds

Pacific Secular Variation A result of hot lower mantle. David Gubbins School of Earth Sciences University of Leeds Pacific Secular Variation A result of hot lower mantle David Gubbins School of Earth Sciences University of Leeds Thermal Core-Mantle Interaction (hot) (cold) Lateral variations in heat flux boundary condition

More information

Recall Hypsometric Curve?

Recall Hypsometric Curve? Structure of the Earth (Why?) Recall Hypsometric Curve? Continental lithosphere is very different from oceanic lithosphere. To understand this, we need to know more about the structure & composition of

More information

Recall Hypsometric Curve?

Recall Hypsometric Curve? Structure of the Earth (Why?) 1 Recall Hypsometric Curve? Continental lithosphere is very different from oceanic lithosphere. To understand this, we need to know more about the structure & composition

More information

Structure of the Earth (Why?)

Structure of the Earth (Why?) Structure of the Earth (Why?) 1 Recall Hypsometric Curve? Continental lithosphere is very different from oceanic lithosphere. To understand this, we need to know more about the structure & composition

More information

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include:

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include: Petrology Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include: Petrography: study of description and classification of rocks

More information

Radioactivity. Lecture 11 The radioactive Earth

Radioactivity. Lecture 11 The radioactive Earth Radioactivity Lecture 11 The radioactive Earth The Violent Beginning Most of the planet s radioactivity was generated in neutron driven nucleosynthesis processes in previous star generations and implemented

More information

Composition of bulk silicate Earth and global geodynamics

Composition of bulk silicate Earth and global geodynamics Composition of bulk silicate Earth and global geodynamics Jun Korenaga Department of Geology and Geophysics Yale University March 23, 2007 @ Hawaii Geoneutrino Workshop Overview Motivation: Thermal evolution

More information

A numerical study of dynamo action as a function of spherical shell geometry

A numerical study of dynamo action as a function of spherical shell geometry Earth and Planetary Science Letters 236 (2005) 542 557 www.elsevier.com/locate/epsl A numerical study of dynamo action as a function of spherical shell geometry M.H. Heimpel a, *, J.M. Aurnou b, F.M. Al-Shamali

More information

Earth and Planetary Science Letters

Earth and Planetary Science Letters Earth and Planetary Science Letters 297 (2010) 154 164 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Constraints on viscous

More information

Fluctuation dynamo amplified by intermittent shear bursts

Fluctuation dynamo amplified by intermittent shear bursts by intermittent Thanks to my collaborators: A. Busse (U. Glasgow), W.-C. Müller (TU Berlin) Dynamics Days Europe 8-12 September 2014 Mini-symposium on Nonlinear Problems in Plasma Astrophysics Introduction

More information

Large scale magnetic fields and Dynamo theory. Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008

Large scale magnetic fields and Dynamo theory. Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008 Large scale magnetic fields and Dynamo theory Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008 The Earth Mainly dipolar magnetic field Would decay in 20kyr if not regenerated Declination of the

More information

Convection-driven dynamos in the limit of rapid rotation

Convection-driven dynamos in the limit of rapid rotation Convection-driven dynamos in the limit of rapid rotation Michael A. Calkins Jonathan M. Aurnou (UCLA), Keith Julien (CU), Louie Long (CU), Philippe Marti (CU), Steven M. Tobias (Leeds) *Department of Physics,

More information

Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism

Planetary Interiors. Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism Planetary Interiors Earth s Interior Structure Hydrostatic Equilibrium Heating Constituent Relations Gravitational Fields Isostasy Magnetism Isostasy Courtesy of U of Leeds Now apply this idea to topography

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NGEO1521 Possible links between long-term geomagnetic variations and whole-mantle convection processes Biggin, A.J., Steinberger, B., Aubert, J., Suttie, N., Holme, R., Torsvik, T.H., van der

More information

Homework VII: Mantle Evolution and Heat Flow

Homework VII: Mantle Evolution and Heat Flow 1 Revised November 13, 1 EENS 634/434 The Earth Homework VII: Mantle Evolution and Heat Flow 1. Melting events in the mantle can cause fractionation of trace elements. For radiogenic isotopes this is important

More information

Low plume excess temperature and high core heat flux inferred from non-adiabatic geotherms in internally heated mantle circulation models

Low plume excess temperature and high core heat flux inferred from non-adiabatic geotherms in internally heated mantle circulation models Physics of the Earth and Planetary Interiors 153 (2005) 3 10 Low plume excess temperature and high core heat flux inferred from non-adiabatic geotherms in internally heated mantle circulation models Hans-Peter

More information

Rotating dynamo turbulence: theoretical and numerical insights

Rotating dynamo turbulence: theoretical and numerical insights Rotating dynamo turbulence: theoretical and numerical insights Nathanaël Schaeffer 1, H.-C. Nataf 1, A. Fournier 2, J. Aubert 2, D. Jault 1, F. Plunian 1, P. Zitzke 1 1: ISTerre / CNRS /Université Joseph

More information

Anisotropic turbulence in rotating magnetoconvection

Anisotropic turbulence in rotating magnetoconvection Anisotropic turbulence in rotating magnetoconvection André Giesecke Astrophysikalisches Institut Potsdam An der Sternwarte 16 14482 Potsdam MHD-Group seminar, 2006 André Giesecke (AIP) Anisotropic turbulence

More information

Icarus 198 (2008) Contents lists available at ScienceDirect. Icarus.

Icarus 198 (2008) Contents lists available at ScienceDirect. Icarus. Icarus 198 (2008) 384 399 Contents lists available at ScienceDirect Icarus www.elsevier.com/locate/icarus The production of Ganymede s magnetic field Michael T. Bland a,,adamp.showman a,gabrieltobie b,c

More information

Thermal Evolution of Terrestrial Exoplanets. System Earth Modelling Masters Thesis

Thermal Evolution of Terrestrial Exoplanets. System Earth Modelling Masters Thesis Thermal Evolution of Terrestrial Exoplanets System Earth Modelling Masters Thesis Supervisor: Dr. A. P. van den Berg Institute of Earth Sciences Utrecht University Yue Zhao August 30, 2011 Abstract The

More information

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Classification:

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Classification: Petrology Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include: Petrography: study of description and classification of rocks

More information

The above cartoon (from p239, Origin of the Earth and Moon) illustrates the likely range of processes.

The above cartoon (from p239, Origin of the Earth and Moon) illustrates the likely range of processes. 219 20. Core Formation and Evolution Core Formation (Terrestrial Planets) Core formation is the biggest differentiation event in the life of any terrestrial planet. At least in the cases of Earth and Mars,

More information

Earliest Swiss magnetic observation: degrees East by ZWINGER

Earliest Swiss magnetic observation: degrees East by ZWINGER Earliest Swiss magnetic observation: 1717 13degrees East by ZWINGER Likely THEODORE ZWINGER at BASEL Theodor Zwinger III. (* 26. August 1658 in Basel; 22. April 1724 ebenda) war ein Schweizer Mediziner

More information

Geotherms. Reading: Fowler Ch 7. Equilibrium geotherms One layer model

Geotherms. Reading: Fowler Ch 7. Equilibrium geotherms One layer model Geotherms Reading: Fowler Ch 7 Equilibrium geotherms One layer model (a) Standard model: k = 2.5 W m -1 C -1 A = 1.25 x 10-6 W m -3 Q moho = 21 x 10-3 W m -2 shallow T-gradient: 30 C km -1 deep T-gradient:

More information

Dynamics of Lunar mantle evolution: exploring the role of compositional buoyancy

Dynamics of Lunar mantle evolution: exploring the role of compositional buoyancy Dynamics of Lunar mantle evolution: exploring the role of compositional buoyancy E.M. Parmentier Brown University September 26, 2018 JAXA/NHK Global scale characteristics of the Moon 1) hemispheric crustal

More information

Earth s Interior: Big Ideas. Structure of the Earth

Earth s Interior: Big Ideas. Structure of the Earth Earth s Interior: Big Ideas Earth science investigations take many different forms. Earth scientists do reproducible experiments and collect multiple lines of evidence. Our understanding of Earth is continuously

More information

Exercise 1: Vertical structure of the lower troposphere

Exercise 1: Vertical structure of the lower troposphere EARTH SCIENCES SCIENTIFIC BACKGROUND ASSESSMENT Exercise 1: Vertical structure of the lower troposphere In this exercise we will describe the vertical thermal structure of the Earth atmosphere in its lower

More information

What can noble gases really say about mantle. 2) Extent of mantle degassing

What can noble gases really say about mantle. 2) Extent of mantle degassing What can noble gases really say about mantle convection and the deep Earth volatile cycles? 1) Constraints on mass flow 1) Constraints on mass flow 2) Extent of mantle degassing Outline: -Noble gas geochemistry

More information

Why might planets and moons have early dynamos?

Why might planets and moons have early dynamos? Why might planets and moons have early dynamos? J. Monteux, A.M. Jellinek, C.L. Johnson To cite this version: J. Monteux, A.M. Jellinek, C.L. Johnson. Why might planets and moons have early dynamos?. Earth

More information

Scaling laws for planetary dynamos driven by helical waves

Scaling laws for planetary dynamos driven by helical waves Scaling laws for planetary dynamos driven by helical waves P. A. Davidson A. Ranjan Cambridge What keeps planetary magnetic fields alive? (Earth, Mercury, Gas giants) Two ingredients of the early theories:

More information

Magnetic power spectrum in a dynamo model of Jupiter. Yue-Kin Tsang

Magnetic power spectrum in a dynamo model of Jupiter. Yue-Kin Tsang Magnetic power spectrum in a dynamo model of Jupiter Yue-Kin Tsang School of Mathematics, University of Leeds Chris Jones University of Leeds Structure of the Earth Let s start on Earth... CRUST various

More information

This is a repository copy of Gross thermodynamics of two-component core convection.

This is a repository copy of Gross thermodynamics of two-component core convection. This is a repository copy of Gross thermodynamics of two-component core convection. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/438/ Article: Gubbins, D., Alfe, D., Masters,

More information

Earth s Interior Earth - Chapter 12 Stan Hatfield Southwestern Illinois College

Earth s Interior Earth - Chapter 12 Stan Hatfield Southwestern Illinois College Earth s Interior Earth - Chapter 12 Stan Hatfield Southwestern Illinois College Probing Earth s Interior Most of our knowledge of Earth s interior comes from the study of earthquake waves. Travel times

More information

The Moon: Internal Structure & Magma Ocean

The Moon: Internal Structure & Magma Ocean The Moon: Internal Structure & Magma Ocean 1 Lunar Magma Ocean & Lunar Interior 2 Two possible views of the Moon s interior: The Moon: Internal Structure 3 Like Earth, the Moon is a differentiated body.

More information

Units. specified to be meaningful. between different scales. - All physical quantities must have their units. - We will always used SI units.

Units. specified to be meaningful. between different scales. - All physical quantities must have their units. - We will always used SI units. Units - All physical quantities must have their units specified to be meaningful. - We will always used SI units. - We must be comfortable with conversions between different scales. 2 General View of the

More information

Earth as a planet: Interior and Surface layers

Earth as a planet: Interior and Surface layers Earth as a planet: Interior and Surface layers Bibliographic material: Langmuir & Broecker (2012) How to build a habitable planet Internal structure of the Earth: Observational techniques Seismology Analysis

More information

Large Scale Structure (Galaxy Correlations)

Large Scale Structure (Galaxy Correlations) Large Scale Structure (Galaxy Correlations) Bob Nichol (ICG,Portsmouth) QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime and a TIFF (Uncompressed) decompressor

More information

What can isotopes tell us about mantle dynamics? Sujoy Mukhopadhyay. Harvard University

What can isotopes tell us about mantle dynamics? Sujoy Mukhopadhyay. Harvard University What can isotopes tell us about mantle dynamics? Sujoy Mukhopadhyay Harvard University The mantle zoo Hofmann, 1997 187 Os/ 188 Os 0.168 0.156 0.144 0.132 EM1 Hawaii Pitcairn DMM peridotites Shield Basalts

More information

Earth s s Topographic Regions

Earth s s Topographic Regions Earth s s Topographic Regions Continental Shields GEOLOGY OF THE USA Atlantic Ocean Crustal Ages Clues to Earth s s Surface Mountains only in certain areas Rock types differ regionally Shields in interior

More information

Earth s Magnetic Field

Earth s Magnetic Field April 20, 2014 1 Outline Acknowledgments 2 Introduction Geomagnetism Geographic vs Magnetic Poles Composition of Earth s Interior Dynamo Effect 3 Measuring in the lab Theory Former Apparatus New Apparatus

More information

Q: Why do the Sun and planets have magnetic fields?

Q: Why do the Sun and planets have magnetic fields? Q: Why do the Sun and planets have magnetic fields? Dana Longcope Montana State University w/ liberal borrowing from Bagenal, Stanley, Christensen, Schrijver, Charbonneau, Q: Why do the Sun and planets

More information

Sudden termination of Martian dynamo?: Implications from subcritical dynamo simulations

Sudden termination of Martian dynamo?: Implications from subcritical dynamo simulations GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L14204, doi:10.1029/2008gl034183, 2008 Sudden termination of Martian dynamo?: Implications from subcritical dynamo simulations W. Kuang, 1 W. Jiang, 2 and T. Wang

More information

Planetary dynamos: Dipole-multipole transition and dipole reversals

Planetary dynamos: Dipole-multipole transition and dipole reversals Planetary dynamos: Dipole-multipole transition and dipole reversals Ulrich Christensen Max-Planck-Institute for Solar System Research Katlenburg-Lindau, Germany in collaboration with Hagay Amit, Julien

More information

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 4ac kr L T 3 4pr 2 Large luminosity and / or a large opacity k implies

More information

Powering Ganymede s dynamo

Powering Ganymede s dynamo JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012je004052, 2012 Powering Ganymede s dynamo X. Zhan 1 and G. Schubert 1 Received 12 January 2012; revised 3 July 2012; accepted 6 July 2012; published

More information

UC Berkeley UC Berkeley Previously Published Works

UC Berkeley UC Berkeley Previously Published Works UC Berkeley UC Berkeley Previously Published Works Title Core-Mantle Interactions Permalink https://escholarship.org/uc/item/4j81z5vw ISBN 9780444538031 Author Buffett, BA Publication Date 2015 DOI 10.1016/B978-0-444-53802-4.00148-2

More information

Controls on plume heat flux and plume excess temperature

Controls on plume heat flux and plume excess temperature Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jb005155, 2008 Controls on plume heat flux and plume excess temperature Wei Leng 1 and Shijie Zhong 1 Received 3

More information

Note: Question/answers in italics are Daily Doubles. They are on the same topic as the category they are found in.

Note: Question/answers in italics are Daily Doubles. They are on the same topic as the category they are found in. AP Physics Jeopardy Q&A By Seth Baum August 4, 2007 Note: Question/answers in italics are Daily Doubles. They are on the same topic as the category they are found in. Game 1 Newtonian Mechanics 1) The

More information

Magnetic and velocity fields in a dynamo operating at extremely small Ekman and magnetic Prandtl numbers

Magnetic and velocity fields in a dynamo operating at extremely small Ekman and magnetic Prandtl numbers Contributions to Geophysics and Geodesy Vol. 47/4, 2017 (261 276) Magnetic and velocity fields in a dynamo operating at extremely small Ekman and magnetic Prandtl numbers Ján ŠIMKANIN,Juraj KYSELICA Institute

More information

ARTICLE IN PRESS Physics of the Earth and Planetary Interiors xxx (2010) xxx xxx

ARTICLE IN PRESS Physics of the Earth and Planetary Interiors xxx (2010) xxx xxx Physics of the Earth and Planetary Interiors xxx (2010) xxx xxx Contents lists available at ScienceDirect Physics of the Earth and Planetary Interiors journal homepage: www.elsevier.com/locate/pepi Geodynamo

More information

ES265 Order of Magnitude Phys & Chem Convection

ES265 Order of Magnitude Phys & Chem Convection ES265 Order of Magnitude Phys & Chem Convection Convection deals with moving fluids in which there are spatial variations in temperature or chemical concentration. In forced convection, these variations

More information

Rupert Croft. QuickTime and a decompressor are needed to see this picture.

Rupert Croft. QuickTime and a decompressor are needed to see this picture. Rupert Croft QuickTime and a decompressor are needed to see this picture. yesterday: Plan for lecture 1: History : -the first quasar spectra -first theoretical models (all wrong) -CDM cosmology meets the

More information

Planetary Dynamos: A Brief Overview

Planetary Dynamos: A Brief Overview Planetary Dynamos: A Brief Overview Nick Featherstone Dept. of Applied Mathematics & Research Computing University of Colorado 04/22/15 HAO Colloquium Series 1 ( with contributions and inspiration from

More information

Radiogenic Isotope Systematics and Noble Gases. Sujoy Mukhopadhyay CIDER 2006

Radiogenic Isotope Systematics and Noble Gases. Sujoy Mukhopadhyay CIDER 2006 Radiogenic Isotope Systematics and Noble Gases Sujoy Mukhopadhyay CIDER 2006 What I will not cover.. U-Th-Pb sytematics 206 Pb 204 Pb 207 Pb 204 Pb 208 Pb 204 Pb = t = t = t 206 Pb 204 Pb 207 Pb 204 Pb

More information

Engineering Geology. Earth Structure. Hussien aldeeky

Engineering Geology. Earth Structure. Hussien aldeeky Earth Structure Hussien aldeeky 1 Earth major spheres 1. Hydrosphere Ocean is the most prominent feature of the hydrosphere. - Is nearly 71% of Earth's surface - Holds about 97% of Earth's water Fresh

More information

Volatiles and Fluids in Earth s Core

Volatiles and Fluids in Earth s Core Volatiles and Fluids in Earth s Core Jie Jackie Li! University of Michigan July 6, 2010 CIDER Water and Volatiles Discover Earth s Core Mineral Physics 1/3 1/6 1 Oldham 06 Lehmann 36 Dziewonski and Anderson

More information

Volume?? - Thermal and Compositional Evolution of the Core. Dept. Earth Sciences, University of California, Santa Cruz, California, USA

Volume?? - Thermal and Compositional Evolution of the Core. Dept. Earth Sciences, University of California, Santa Cruz, California, USA Volume?? - Thermal and Compositional Evolution of the Core Francis Nimmo Dept. Earth Sciences, University of California, Santa Cruz, California, USA 27 May 2006 F. Nimmo, Dept. Earth Sciences, University

More information

Common Misconceptions in Physical Geography. Chan Lung Sang Department of Earth Sciences Faculty of Science, HKU

Common Misconceptions in Physical Geography. Chan Lung Sang Department of Earth Sciences Faculty of Science, HKU Common Misconceptions in Physical Geography Chan Lung Sang Department of Earth Sciences Faculty of Science, HKU Causes of Inaccuracies Inaccuracies caused by technical details Obsolete concepts Erroneous

More information

Geodynamics. Heat conduction and production Lecture Heat production. Lecturer: David Whipp

Geodynamics. Heat conduction and production Lecture Heat production. Lecturer: David Whipp Geodynamics Heat conduction and production Lecture 7.3 - Heat production Lecturer: David Whipp david.whipp@helsinki.fi Geodynamics www.helsinki.fi/yliopisto 1 Goals of this lecture Discuss radiogenic heat

More information

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Chapter 1 Earth Science Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Project Representative Yozo Hamano Authors Ataru Sakuraba Yusuke Oishi

More information

Extracting scaling laws from numerical dynamo models

Extracting scaling laws from numerical dynamo models Extracting scaling laws from numerical dynamo models Z. Stelzer and A. Jackson Earth and Planetary Magnetism Group, ETH Zurich, Switzerland zacharias.stelzer@erdw.ethz.ch arxiv:1307.3938v1 [physics.geo-ph]

More information

Physics of the Earth

Physics of the Earth Physics of the Earth Fourth edition Frank D Stacey CSIRO Exploration and Mining, Brisbane, Australia Paul M Davis Department of Earth and Space Sciences, University of California, Los Angeles, USA CAMBRIDGE

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (2014) 198, 828 847 GJI Geomagnetism, rock magnetism and palaeomagnetism doi: 10.1093/gji/ggu159 Predictive scaling laws for spherical rotating dynamos

More information

Earth Structure and Evolution

Earth Structure and Evolution Earth Structure and Evolution Bulk earth composition, radioactive heating, partitioning/fractionation, natural reactors 12.744 October 2, 2012 2 A word about dealing with real data for isotope isotope

More information

Generation of magnetic fields by large-scale vortices in rotating convection

Generation of magnetic fields by large-scale vortices in rotating convection Generation of magnetic fields by large-scale vortices in rotating convection Céline Guervilly, David Hughes & Chris Jones School of Mathematics, University of Leeds, UK Generation of the geomagnetic field

More information

Gravitational energy release in an evolving Earth model

Gravitational energy release in an evolving Earth model Earth Planets Space, 59, 651 659, 7 Gravitational energy release in an evolving Earth model Paul H. Roberts 1 and Masaru Kono 1 Institute of Geophysics and Planetary Physics, University of California,

More information

Numerical simulation of heat and mass transfer processes in a stratified molten pool

Numerical simulation of heat and mass transfer processes in a stratified molten pool Numerical simulation of heat and mass transfer processes in a stratified molten pool Aksenova A.E., Chudanov V.V., Korotkov A.A., Pervichko V.A., Semenov V.N., Srtizhov V.F. IBRAE RAS, Moscow, Russia Abstract

More information

Chapter 30. Sources of the Magnetic Field Amperes and Biot-Savart Laws

Chapter 30. Sources of the Magnetic Field Amperes and Biot-Savart Laws Chapter 30 Sources of the Magnetic Field Amperes and Biot-Savart Laws F B on a Charge Moving in a Magnetic Field Magnitude proportional to charge and speed of the particle Direction depends on the velocity

More information

Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields

Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields Geophys. J. Int. (006) 66, 97 4 doi: 0./j.365-46X.006.03009.x Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields U. R. Christensen

More information

DETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a

DETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a DETAILS ABOUT THE TECHNIQUE We use a global mantle convection model (Bunge et al., 1997) in conjunction with a global model of the lithosphere (Kong and Bird, 1995) to compute plate motions consistent

More information

Hydromagnetic dynamos in rotating spherical fluid shells in dependence on the Prandtl number and stratification

Hydromagnetic dynamos in rotating spherical fluid shells in dependence on the Prandtl number and stratification Hydromagnetic dynamos in rotating spherical fluid shells in dependence on the Prandtl number and stratification Ján Šimkanin and Pavel Hejda Institute of Geophysics, Academy of Sciences of CR, Prague,

More information

DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO

DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO RAMANDEEP GILL March 21, 2006 Abstract Magnetic field of the Earth is maintained as a result of turbulent motions in it s core. Dynamo theory, based on the framework

More information

The anisotropy of local turbulence in the Earth s core

The anisotropy of local turbulence in the Earth s core Earth Planets Space, 51, 277 286, 1999 The anisotropy of local turbulence in the Earth s core Masaki Matsushima, Takahiro Nakajima, and Paul H. Roberts Institute of Geophysics and Planetary Physics, University

More information

Planetary interiors: Magnetic fields, Convection and Dynamo Theory 1. Observational background to planetary structure

Planetary interiors: Magnetic fields, Convection and Dynamo Theory 1. Observational background to planetary structure Planetary interiors: Magnetic fields, Convection and Dynamo Theory 1. Observational background to planetary structure Chris Jones, Department of Applied Mathematics University of Leeds UK FDEPS Lecture

More information

USING NEUTRINOS TO STUDY THE EARTH. Nikolai Tolich University of Washington

USING NEUTRINOS TO STUDY THE EARTH. Nikolai Tolich University of Washington USING NEUTRINOS TO STUDY THE EARTH Nikolai Tolich University of Washington Outline Introduction Recent results The future Structure of the Earth Seismic data splits Earth into 5 basic regions: inner core,

More information

Models of the Earth: thermal evolution and Geoneutrino studies

Models of the Earth: thermal evolution and Geoneutrino studies Models of the Earth: thermal evolution and Geoneutrino studies Bill McDonough, Yu Huang and Ondřej Šrámek Geology, U Maryland Steve Dye, Natural Science, Hawaii Pacific U and Physics, U Hawaii Shijie Zhong,

More information

Melting-induced stratification above the Earth s inner core due to convective translation

Melting-induced stratification above the Earth s inner core due to convective translation Melting-induced stratification above the Earth s inner core due to convective translation Thierry Alboussiere, Renaud Deguen, Mickael Melzani To cite this version: Thierry Alboussiere, Renaud Deguen, Mickael

More information

Earth s Magnetic Field Differential Rotation between the inner core and the outer core.

Earth s Magnetic Field Differential Rotation between the inner core and the outer core. Geology 15 Lecture 7 Schedule: Hazard Update: Review Lecture 6 Activity 2 cont: Plate Boundaries and Their Motions Cover Material/Objectives Plate Tectonics (continued) Earth s Structure Evidence for Continental

More information

Dynamo Scaling Laws and Applications to the Planets

Dynamo Scaling Laws and Applications to the Planets Space Sci Rev (2010) 152: 565 590 DOI 10.1007/s11214-009-9553-2 Dynamo Scaling Laws and Applications to the Planets U.R. Christensen Received: 6 February 2009 / Accepted: 8 June 2009 / Published online:

More information

Geodynamics Lecture 10 The forces driving plate tectonics

Geodynamics Lecture 10 The forces driving plate tectonics Geodynamics Lecture 10 The forces driving plate tectonics Lecturer: David Whipp! david.whipp@helsinki.fi!! 2.10.2014 Geodynamics www.helsinki.fi/yliopisto 1 Goals of this lecture Describe how thermal convection

More information

GS388 Handout: Radial density distribution via the Adams-Williamson equation 1

GS388 Handout: Radial density distribution via the Adams-Williamson equation 1 GS388 Handout: Radial density distribution via the Adams-Williamson equation 1 TABLE OF CONTENTS ADIABATIC COMPRESSION: THE ADAMS WILLIAMSON EQUATION...1 EFFECT OF NON-ADIABATIC TEMPERATURE GRADIENT...3

More information

Impact-driven subduction on the Hadean Earth

Impact-driven subduction on the Hadean Earth In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO3029 Impact-driven subduction on the Hadean Earth C. O Neill, S. Marchi, S. Zhang and W. Bottke NATURE GEOSCIENCE

More information