Emmanuel DORMY (CNRS / ENS)

Size: px
Start display at page:

Download "Emmanuel DORMY (CNRS / ENS)"

Transcription

1 Emmanuel DORMY (CNRS / ENS) dormy@phys.ens.fr

2

3 The Earth s internal structure Mantle Fluid outer core ICB 3480 km 6366 km 1221 km Inner core CMB Roberts & King 2013

4 Governing Equations

5 Governing Equations

6 Governing Equations

7 Governing Equations

8 Governing Equations

9 Governing Equations

10 Governing Equations

11 E η E/Pm=E η

12 E η E/Pm=E η

13 E η E/Pm=E η

14 Weak and Strong field branches Chandrasekhar, 1961 Eltayeb & Roberts, 1970 Eltayeb & Kumar, 1977 Roberts & Soward, 1978 Soward, 1979 Fearn, 1979 Fautrelle & Childress, 1982 Proctor & Weiss, 1982

15 Weak and Strong field branches Rac Λ = B2/ρµηΩ Fearn (1979)

16 Weak and Strong field branches Λ = B2/ρµηΩ Ο(1) (Roberts, GAFD, 1988)

17 E η E/Pm=E η

18 Glatzmaier & Roberts, 1995

19 Ema Roberts number q = Pm / Pr Carsten Kutzner, Uli Christensen 2003 g No dynamo

20 Christensen-Aubert 2006

21 Power based scaling laws for the magnetic field (Christensen & Aubert, 2006) : Lorentz number : fraction of ohmic dissipation : flux-based Rayleigh number (directly related to the injected power) Parameter range

22 Statistical energy balance between production and dissipation where : magnetic dissipation length scale Oruba & Dormy, GJI, 198, (2014).

23 Statistical energy balance between production and dissipation Verified by any statistically steady dynamo Oruba & Dormy, GJI, 198, (2014).

24 Statistical energy balance between production and dissipation The simplest approximation: constant Oruba & Dormy, GJI, 198, (2014).

25 Power based scaling laws for the magnetic field Energy balance + constant Energy balance + more precise description of : (Christensen & Aubert, 2006) Oruba & Dormy, GJI, 198, (2014).

26 Power based scaling laws for the magnetic field Energy balance + constant Energy balance + more precise description of : (Christensen & Aubert, 2006) Oruba & Dormy, GJI, 198, (2014).

27 =Verified by any statistically steady dynamo Power based magnetic field scalings = TOO GENERAL: applicable to any model irrespectively of the magnetic field generation mechanism Oruba & Dormy, GJI, 198, (2014).

28 Viscous length scale of the flow (see King & Buffett, 2013) In numerical models: non negligible viscous effects in the bulk of the flow Oruba & Dormy, GJI, 198, (2014).

29 Magnetic field strength Bifurcation from a laminar flow (Fauve & Pétrélis, 2007): Lorentz force modified viscous force with : Elsasser (Reduced database) Oruba & Dormy, GJI, 198, (2014).

30 Magnetic field strength Bifurcation from a laminar flow (Fauve & Pétrélis, 2007): Lorentz force modified viscous force with : Elsasser Application to the Earth s core? (Reduced database) much smaller than Oruba & Dormy, GJI, 198, (2014).

31 Intermediate result Dipolar Dynamos at moderate forcing are dominated by a balance between viscous and Coriolis forces

32 Ema Roberts number q = Pm / Pr Carsten Kutzner, Uli Christensen 2003 g No dynamo

33 Transition from dipolar to multipolar regime Relative dipole field strength vs the local Rossby number: Christensen & Aubert 2006

34 Transition from dipolar to multipolar regime Dominance of the Coriolis force in both regimes: Transition controlled by the relative strength of inertial to viscous forces: Soderlund et al 2012

35 Inertial forces versus Coriolis Typical length scales the kinematic dissipation length scale the length scale the parallel length scale : : (Oruba & Dormy 2014) (quasi-geostrophy) with Oruba & Dormy, GRL in press.

36 Inertial forces versus Coriolis Test with the numerical database (U. Christensen): Oruba & Dormy, GRL in press.

37 Viscous forces versus Coriolis Well verified by dipolar dynamos: (King & Buffet 2013 and Oruba & Dormy 2014) Oruba & Dormy, GRL in press.

38 Inertial versus viscous forces Oruba & Dormy, GRL in press.

39 Inertial versus viscous forces Test against the numerical database: Oruba & Dormy, GRL in press.

40 A dominant three forces balance at the transition C I V Oruba & Dormy, GRL in press.

41 Unified description of the transition Oruba & Dormy, GRL in press.

42 Bistability between both branches Simitev & Busse, Bistability and hysteresis of dipolar dynamos generated by turbulent convection in rotating spherical shells, Europhysics Letters (EPL), 85 (2009) 19001

43 Bistability between both branches Schrinner, Petitdemange, Dormy, ApJ, 2012

44 Intermediate results - Dipolar Dynamos at moderate forcing are dominated by a balance between viscous and Coriolis forces - Loss of dipolarity, and multipolar Dynamos at larger forcing are associated with the increasing strength of inertia

45 Key question: Is the Magnetostrophic balance achievable with todays computer?

46 Ema Roberts number q = Pm / Pr Carsten Kutzner, Uli Christensen 2003 g No dynamo

47 q Ra / Rac Morin & Dormy (2005, 2009)

48 Magnetic energy -4 E=3.10, q=6 Morin & Dormy (2005, 2009) Magnetic energy q

49 -4 E=3.10, q=3 Morin & Dormy (2005, 2009) Magnetic energy q

50 -4 E=3.10, q=1.5 Morin & Dormy (2005, 2009) Magnetic energy q

51

52 q Morin & Dormy (2005, 2009) E

53 q -4 E=3.10, q=6

54 Weak and Strong field branches q=pm=12 (Dormy, in prep)

55 Weak and Strong field branches q=pm=18 (Dormy, in prep)

56 Weak and Strong field branches Vφ, E = , Pm = 18, Ra/Rac = 1.72 (Dormy, in prep)

57 E η E/Pm=E η

58 Weak and Strong field branches (Dormy, in prep)

59 Weak and Strong field branches Λ = B2/ρµηΩ Ο(1) (Roberts, GAFD, 1988)

60 Weak and Strong field branches Ra/Rac = > 1.83 (Dormy, in prep)

61 Weak and Strong field branches Ra/Rac = 1.73-> 1.68 (Dormy, in prep)

62 3D bifurcation diagram E= (Dormy, in prep)

63 Weak and Strong field branches Λ = B2/ρµηΩ Ο(1) (Roberts, GAFD, 1988)

64 Relevant parameter space

65 Toward a distinguished limit Ema Roberts number q = Pm / Pr Carsten Kutzner, 2003 g No dynamo

66 Toward a distinguished limit Dormy & Le Mouël (2008)

67 Toward a distinguished limit (Dormy, in prep)

68 The Elsasser number Christensen-Aubert 2006

69 The Elsasser number

70 The Elsasser number (Dormy, in prep)

71 CLAIMS - None of the published spherical dynamo models correspond to a force balance relevant to the geodynamo! - This force balance can be approached in numerical models.

72 OPENED ISSUES - All terms are of similar amplitude, Yet well identified balances seem to emerge. Why? - How do these models evolve at lower E, and lower Pm? - Is it possible to sustain dynamo action for Ra<Ra? c

73 Glatzmaier & Roberts, 1995

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (2014) 198, 828 847 GJI Geomagnetism, rock magnetism and palaeomagnetism doi: 10.1093/gji/ggu159 Predictive scaling laws for spherical rotating dynamos

More information

Planetary dynamos: Dipole-multipole transition and dipole reversals

Planetary dynamos: Dipole-multipole transition and dipole reversals Planetary dynamos: Dipole-multipole transition and dipole reversals Ulrich Christensen Max-Planck-Institute for Solar System Research Katlenburg-Lindau, Germany in collaboration with Hagay Amit, Julien

More information

Weak- and strong-field dynamos: from the Earth to the stars

Weak- and strong-field dynamos: from the Earth to the stars Mon. Not. R. Astron. Soc. 418, L133 L137 (2011) doi:10.1111/j.1745-3933.2011.01159.x Weak- and strong-field dynamos: from the Earth to the stars J. Morin, 1 E. Dormy, 2 M. Schrinner 2 and J.-F. Donati

More information

Does inertia determine the magnetic topology of low-mass stars?

Does inertia determine the magnetic topology of low-mass stars? Does inertia determine the magnetic topology of low-mass stars? Julien Morin Institut für Astrophysik Göttingen T. Gastine Max Planck Institut für Sonnensystemforschung A. Reiners Institut für Astrophysik

More information

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Chapter 1 Earth Science Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Project Representative Yozo Hamano Authors Ataru Sakuraba Yusuke Oishi

More information

Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields

Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields Geophys. J. Int. (006) 66, 97 4 doi: 0./j.365-46X.006.03009.x Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields U. R. Christensen

More information

Hydromagnetic dynamos at the low Ekman and magnetic Prandtl numbers

Hydromagnetic dynamos at the low Ekman and magnetic Prandtl numbers Contributions to Geophysics and Geodesy Vol. 46/3, 2016 (221 244) Hydromagnetic dynamos at the low Ekman and magnetic Prandtl numbers Ján ŠIMKANIN Institute of Geophysics, Academy of Sciences of the Czech

More information

Convection-driven dynamos in the limit of rapid rotation

Convection-driven dynamos in the limit of rapid rotation Convection-driven dynamos in the limit of rapid rotation Michael A. Calkins Jonathan M. Aurnou (UCLA), Keith Julien (CU), Louie Long (CU), Philippe Marti (CU), Steven M. Tobias (Leeds) *Department of Physics,

More information

Magnetic and velocity fields in a dynamo operating at extremely small Ekman and magnetic Prandtl numbers

Magnetic and velocity fields in a dynamo operating at extremely small Ekman and magnetic Prandtl numbers Contributions to Geophysics and Geodesy Vol. 47/4, 2017 (261 276) Magnetic and velocity fields in a dynamo operating at extremely small Ekman and magnetic Prandtl numbers Ján ŠIMKANIN,Juraj KYSELICA Institute

More information

Hydromagnetic dynamos in rotating spherical fluid shells in dependence on the Prandtl number and stratification

Hydromagnetic dynamos in rotating spherical fluid shells in dependence on the Prandtl number and stratification Hydromagnetic dynamos in rotating spherical fluid shells in dependence on the Prandtl number and stratification Ján Šimkanin and Pavel Hejda Institute of Geophysics, Academy of Sciences of CR, Prague,

More information

Power Requirements for Earth s Magnetic Field

Power Requirements for Earth s Magnetic Field Power Requirements for Earth s Magnetic Field QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Bruce Buffett University of Chicago Structure of the Earth Origin of Inner

More information

Convective heat transfer in planetary dynamo models

Convective heat transfer in planetary dynamo models Article Volume 11, Number 6 29 June 2010 Q06016, doi:10.1029/2010gc003053 ISSN: 1525 2027 Click Here for Full Article Convective heat transfer in planetary dynamo models Eric M. King and Krista M. Soderlund

More information

Magnetic reversals from planetary dynamo waves

Magnetic reversals from planetary dynamo waves Letter doi:1.138/nature19842 Magnetic reversals from planetary dynamo waves Andrey Sheyko 1, Christopher C. Finlay 2 & Andrew Jackson 1 A striking feature of many natural dynamos is their ability to undergo

More information

arxiv: v1 [physics.geo-ph] 10 Oct 2016

arxiv: v1 [physics.geo-ph] 10 Oct 2016 Approaching a realistic force balance in geodynamo simulations arxiv:1610.03107v1 [physics.geo-ph] 10 Oct 2016 Rakesh Yadav, 1, 2 Thomas Gastine, 2, 3 Ulrich Christensen, 2 Scott J. Wolk, 1 and Katja Poppenhaeger

More information

On the role of thermal boundary conditions in dynamo scaling laws

On the role of thermal boundary conditions in dynamo scaling laws Geophysical & Astrophysical Fluid Dynamics ISSN: 0309-1929 (Print) 1029-0419 (Online) Journal homepage: http://www.tandfonline.com/loi/ggaf20 On the role of thermal boundary conditions in dynamo scaling

More information

Dynamo Scaling Laws and Applications to the Planets

Dynamo Scaling Laws and Applications to the Planets Space Sci Rev (2010) 152: 565 590 DOI 10.1007/s11214-009-9553-2 Dynamo Scaling Laws and Applications to the Planets U.R. Christensen Received: 6 February 2009 / Accepted: 8 June 2009 / Published online:

More information

Scaling laws for planetary dynamos driven by helical waves

Scaling laws for planetary dynamos driven by helical waves Scaling laws for planetary dynamos driven by helical waves P. A. Davidson A. Ranjan Cambridge What keeps planetary magnetic fields alive? (Earth, Mercury, Gas giants) Two ingredients of the early theories:

More information

Turbulent geodynamo simulations: a leap towards Earth s core

Turbulent geodynamo simulations: a leap towards Earth s core Turbulent geodynamo simulations: a leap towards Earth s core N. Schaeffer 1, D. Jault 1, H.-C. Nataf 1, A. Fournier 2 1 Univ. Grenoble Alpes, CNRS, ISTerre, F-38000 Grenoble, France arxiv:1701.01299v3

More information

GEODYNAMO: NUMERICAL SIMULATIONS

GEODYNAMO: NUMERICAL SIMULATIONS Comp. by: womat Date:9/2/07 Time:20:05:52 Stage:First Proof File Path://spiina1001z/womat/production/ 302 GEODYNAMO: NUMERICAL SIMULATIONS The energy sources on the right-hand side of Eq. (5) are the same

More information

DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL

DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL DYNAMO THEORY: THE PROBLEM OF THE GEODYNAMO PRESENTED BY: RAMANDEEP GILL MAGNETIC FIELD OF THE EARTH DIPOLE Field Structure Permanent magnetization of Core? 80% of field is dipole 20 % is non dipole 2)

More information

Scaling laws for dynamos in rotating spheres: from planets to stars

Scaling laws for dynamos in rotating spheres: from planets to stars Scaling laws for dynamos in rotating spheres: from planets to stars Ulrich Christensen Max Planck Institute for Solar System Research, Katlenburg- Lindau, Germany In collaboration with: Julien Aubert,

More information

Geomagnetic dipole moment collapse by convective mixing in the core

Geomagnetic dipole moment collapse by convective mixing in the core Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L10305, doi:10.1029/2009gl038130, 2009 Geomagnetic dipole moment collapse by convective mixing in the core Lijun Liu 1 and Peter Olson

More information

Energy transfers during dynamo reversals

Energy transfers during dynamo reversals December 213 EPL, 14 (213) 692 doi: 1.129/295-575/14/692 www.epljournal.org Energy transfers during dynamo reversals Pankaj Mishra 1, Christophe Gissinger 1, Emmanuel Dormy 2 and Stephan Fauve 1 1 Laboratoire

More information

Dynamics in the Earth s core. Philippe Cardin, ISTerre, Université Grenoble Alpes et CNRS

Dynamics in the Earth s core. Philippe Cardin, ISTerre, Université Grenoble Alpes et CNRS Dynamics in the Earth s core Philippe Cardin, ISTerre, Université Grenoble Alpes et CNRS Doctoral training on internal Earth, Barcelonnette, oct 2016 Sources of motions inside the core Core cooling and

More information

A numerical study of dynamo action as a function of spherical shell geometry

A numerical study of dynamo action as a function of spherical shell geometry Earth and Planetary Science Letters 236 (2005) 542 557 www.elsevier.com/locate/epsl A numerical study of dynamo action as a function of spherical shell geometry M.H. Heimpel a, *, J.M. Aurnou b, F.M. Al-Shamali

More information

2. Magnetic Mixing Flows LXXXXX

2. Magnetic Mixing Flows LXXXXX Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 36, LXXXXX, doi:10.1029/2009gl038130, 2009 2 Geomagnetic dipole moment collapse by convective mixing in the core 3 Lijun Liu 1 and Peter Olson

More information

arxiv: v1 [astro-ph.ep] 28 Jan 2015

arxiv: v1 [astro-ph.ep] 28 Jan 2015 A Gaussian Model for Simulated Geomagnetic Field Reversals arxiv:1501.07118v1 [astro-ph.ep] 28 Jan 2015 Abstract Johannes Wicht 1 and Domenico Meduri 1,2 1 Max-Planck-Institut für Sonnensystemforschung,

More information

VARYING THE SPHERICAL SHELL GEOMETRY IN ROTATING THERMAL CONVECTION

VARYING THE SPHERICAL SHELL GEOMETRY IN ROTATING THERMAL CONVECTION Geophysical and Astrophysical Fluid Dynamics Vol. 98, No. 2, April 2004, pp. 153 169 VARYING THE SPHERICAL SHELL GEOMETRY IN ROTATING THERMAL CONVECTION F.M. AL-SHAMALI a, *, M.H. HEIMPEL a and J.M. AURNOU

More information

Turbulent three-dimensional MHD dynamo model in spherical shells: Regular oscillations of the dipolar field

Turbulent three-dimensional MHD dynamo model in spherical shells: Regular oscillations of the dipolar field Center for Turbulence Research Proceedings of the Summer Program 2010 475 Turbulent three-dimensional MHD dynamo model in spherical shells: Regular oscillations of the dipolar field By R. D. Simitev, F.

More information

Large scale magnetic fields and Dynamo theory. Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008

Large scale magnetic fields and Dynamo theory. Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008 Large scale magnetic fields and Dynamo theory Roman Shcherbakov, Turbulence Discussion Group 14 Apr 2008 The Earth Mainly dipolar magnetic field Would decay in 20kyr if not regenerated Declination of the

More information

Rotating dynamo turbulence: theoretical and numerical insights

Rotating dynamo turbulence: theoretical and numerical insights Rotating dynamo turbulence: theoretical and numerical insights Nathanaël Schaeffer 1, H.-C. Nataf 1, A. Fournier 2, J. Aubert 2, D. Jault 1, F. Plunian 1, P. Zitzke 1 1: ISTerre / CNRS /Université Joseph

More information

Earth and Planetary Science Letters

Earth and Planetary Science Letters Earth and Planetary Science Letters 333 334 (2012) 9 20 Contents lists available at SciVerse ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl The influence

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Convection-driven spherical dynamos: remarks on bistability and on simple models of the Solar cycle

Convection-driven spherical dynamos: remarks on bistability and on simple models of the Solar cycle University of Cambridge DAMTP, Astrophysics Group Seminar 2014-11-17 Convection-driven spherical dynamos: remarks on bistability and on simple models of the Solar cycle R.D. Simitev F.H. Busse School of

More information

Fluctuations of electrical conductivity: a new source for astrophysical magnetic fields

Fluctuations of electrical conductivity: a new source for astrophysical magnetic fields Fluctuations of electrical conductivity: a new source for astrophysical magnetic fields F. Pétrélis, A. Alexakis, C. Gissinger 1 1 Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, Université

More information

Extracting scaling laws from numerical dynamo models

Extracting scaling laws from numerical dynamo models Extracting scaling laws from numerical dynamo models Z. Stelzer and A. Jackson Earth and Planetary Magnetism Group, ETH Zurich, Switzerland zacharias.stelzer@erdw.ethz.ch arxiv:1307.3938v1 [physics.geo-ph]

More information

Fifty years after Roberts MHD: Dynamos and planetary flows today. Book of Abstracts

Fifty years after Roberts MHD: Dynamos and planetary flows today. Book of Abstracts Fifty years after Roberts MHD: Dynamos and planetary flows today Book of s 1 Magnetostrophy Cheng-chin Wu & Paul H. Roberts Maths Department, UCLA, Los Angeles A dynamo driven by motions unaffected by

More information

Morphology of field reversals in turbulent dynamos

Morphology of field reversals in turbulent dynamos May EPL, 9 () 49 doi:.9/95-575/9/49 www.epljournal.org C. Gissinger,, E. Dormy and S. Fauve Laboratoire de Physique Statistique, Ecole Normale Supérieure, UPMC Université Paris 6, Université Paris Diderot,

More information

Diffusive magnetic images of upwelling patterns in the core

Diffusive magnetic images of upwelling patterns in the core JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. B12, 2348, doi:10.1029/2001jb000384, 2002 Diffusive magnetic images of upwelling patterns in the core Peter Olson, Ikuro Sumita, 1 and Jonathan Aurnou 2 Department

More information

Planetary core dynamics and convective heat transfer scalingy

Planetary core dynamics and convective heat transfer scalingy Geophysical and Astrophysical Fluid Dynamics, Vol. 101, Nos. 5 6, October December 2007, 327 345 Planetary core dynamics and convective heat transfer scalingy J. M. AURNOU* Department of Earth and Space

More information

Geodynamo Simulations and Electromagnetic Induction Studies

Geodynamo Simulations and Electromagnetic Induction Studies Chapter 2 Solid Earth Simulation Geodynamo Simulations and Electromagnetic Induction Studies Project Representative Yozo Hamano Japan Agency for Marine-Earth Science and Technology Authors Yozo Hamano

More information

Planetary Dynamos 1. HISTORICAL INTRODUCTION. PACS numbers:

Planetary Dynamos 1. HISTORICAL INTRODUCTION. PACS numbers: Planetary Dynamos F. H. Busse 1 and R. Simitev 2 1 Physikalisches Institut der Universität Bayreuth, D-95440 Bayreuth, Germany 2 Department of Mathematics, University of Glasgow, Glasgow G12 8QW, UK email:

More information

THE EARTH S MAGNETIC FIELD AND ITS DYNAMO ORIGIN

THE EARTH S MAGNETIC FIELD AND ITS DYNAMO ORIGIN ARTICLE THE EARTH S MAGNETIC FIELD AND ITS DYNAMO ORIGIN BINOD SREENIVASAN* The Earth s magnetic field is powered by convection occurring in its fluid outer core. Variations in the intensity of core convection

More information

This is a repository copy of A Multiscale Dynamo Model Driven by Quasi-geostrophic Convection.

This is a repository copy of A Multiscale Dynamo Model Driven by Quasi-geostrophic Convection. This is a repository copy of A Multiscale Dynamo Model Driven by Quasi-geostrophic Convection. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/88779/ Version: Accepted Version

More information

GEODYNAMO SIMULATIONS HOW REALISTIC ARE THEY?

GEODYNAMO SIMULATIONS HOW REALISTIC ARE THEY? Annu. Rev. Earth Planet. Sci. 2002. 30:237 57 DOI: 10.1146/annurev.earth.30.091201.140817 Copyright c 2002 by Annual Reviews. All rights reserved GEODYNAMO SIMULATIONS HOW REALISTIC ARE THEY? Gary A. Glatzmaier

More information

Chaotic dynamics of the magnetic field generated by a turbulent flow in the VKS experiment

Chaotic dynamics of the magnetic field generated by a turbulent flow in the VKS experiment Chaotic dynamics of the magnetic field generated by a turbulent flow in the VKS experiment Stéphan Fauve LPS - ENS-Paris Wolfgang Pauli Institute, Vienna, february 14 th 2008 MHD equations and dimensionless

More information

Generation of magnetic fields by large-scale vortices in rotating convection

Generation of magnetic fields by large-scale vortices in rotating convection Generation of magnetic fields by large-scale vortices in rotating convection Céline Guervilly, David Hughes & Chris Jones School of Mathematics, University of Leeds, UK Generation of the geomagnetic field

More information

10.08 Planetary Dynamos

10.08 Planetary Dynamos 10.08 Planetary Dynamos F. H. Busse, Physikalisches Institut der Universität Bayreuth, Bayreuth, Germany R. Simitev, University of Glasgow, Glasgow, UK ª 2007 Elsevier B.V. All rights reserved. 10.08.1

More information

Oscillatory dynamos and their induction mechanisms

Oscillatory dynamos and their induction mechanisms Astronomy & Astrophysics manuscript no. oscillatory 1712 c ESO 2011 January 11, 2011 Oscillatory dynamos and their induction mechanisms M. Schrinner 1, L. Petitdemange 2, and E. Dormy 1 1 MAG (ENS/IPGP),

More information

ARTICLE IN PRESS Physics of the Earth and Planetary Interiors xxx (2010) xxx xxx

ARTICLE IN PRESS Physics of the Earth and Planetary Interiors xxx (2010) xxx xxx Physics of the Earth and Planetary Interiors xxx (2010) xxx xxx Contents lists available at ScienceDirect Physics of the Earth and Planetary Interiors journal homepage: www.elsevier.com/locate/pepi Geodynamo

More information

The geodynamo. Previously The Earth s magnetic field. Reading: Fowler Ch 8, p Glatzmaier et al. Nature 401,

The geodynamo. Previously The Earth s magnetic field. Reading: Fowler Ch 8, p Glatzmaier et al. Nature 401, The geodynamo Reading: Fowler Ch 8, p373-381 Glatzmaier et al. Nature 401, 885-890 1999 Previously The Earth s magnetic field TODAY: how is the Earth s field generated? 1 Generating the Earth s magnetic

More information

Geomagnetic Dynamo Theory

Geomagnetic Dynamo Theory Max Planck Institute for Solar System Research Katlenburg-Lindau, Germany International School of Space Science Geomagnetism and Ionosphere L Aquila, Italy 7-11 April 2008 Outline Introduction 1 Introduction

More information

Planetary Dynamos: A Brief Overview

Planetary Dynamos: A Brief Overview Planetary Dynamos: A Brief Overview Nick Featherstone Dept. of Applied Mathematics & Research Computing University of Colorado 04/22/15 HAO Colloquium Series 1 ( with contributions and inspiration from

More information

Theoretical Geomagnetism. Lecture 3. Core Dynamics I: Rotating Convection in Spherical Geometry

Theoretical Geomagnetism. Lecture 3. Core Dynamics I: Rotating Convection in Spherical Geometry Theoretical Geomagnetism Lecture 3 Core Dynamics I: Rotating Convection in Spherical Geometry 1 3.0 Ingredients of core dynamics Rotation places constraints on motions. Thermal (and chemical buoyancy)

More information

Physics of the Earth and Planetary Interiors

Physics of the Earth and Planetary Interiors Physics of the Earth and Planetary Interiors 246 (2015) 52 71 Contents lists available at ScienceDirect Physics of the Earth and Planetary Interiors journal homepage: www.elsevier.com/locate/pepi Invited

More information

Magnetostrophic MRI in the Earth s outer core

Magnetostrophic MRI in the Earth s outer core GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L15305, doi:10.109/008gl034395, 008 Magnetostrophic MRI in the Earth s outer core Ludovic Petitdemange, 1, Emmanuel Dormy, 1,3 and Steven A. Balbus 1, Received 18

More information

Q: Why do the Sun and planets have magnetic fields?

Q: Why do the Sun and planets have magnetic fields? Q: Why do the Sun and planets have magnetic fields? Dana Longcope Montana State University w/ liberal borrowing from Bagenal, Stanley, Christensen, Schrijver, Charbonneau, Q: Why do the Sun and planets

More information

Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn

Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn Icarus 196 (2008) 16 34 www.elsevier.com/locate/icarus Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn Ulrich R. Christensen, Johannes Wicht Max-Planck-Institut

More information

Sudden termination of Martian dynamo?: Implications from subcritical dynamo simulations

Sudden termination of Martian dynamo?: Implications from subcritical dynamo simulations GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L14204, doi:10.1029/2008gl034183, 2008 Sudden termination of Martian dynamo?: Implications from subcritical dynamo simulations W. Kuang, 1 W. Jiang, 2 and T. Wang

More information

Asymptotic theory for torsional convection in rotating fluid spheres

Asymptotic theory for torsional convection in rotating fluid spheres Under consideration for publication in J. Fluid Mech. 1 Asymptotic theory for torsional convection in rotating fluid spheres By KEKE Z H A N G 1, KAMENG L A M A N D DALI K O N G 3 1,3 College of Engineering,

More information

On dynamo action produced by boundary thermal coupling

On dynamo action produced by boundary thermal coupling On dynamo action produced by boundary thermal coupling Binod Sreenivasan To cite this version: Binod Sreenivasan. On dynamo action produced by boundary thermal coupling. Physics of the Earth and Planetary

More information

Turbulence in geodynamo simulations

Turbulence in geodynamo simulations Turbulence in geodynamo simulations Nathanaël Schaeffer, A. Fournier, D. Jault, J. Aubert, H-C. Nataf,... ISTerre / CNRS / Université Grenoble Alpes Journée des utilisateurs CIMENT, Grenoble, 23 June 2016

More information

Fluctuation dynamo amplified by intermittent shear bursts

Fluctuation dynamo amplified by intermittent shear bursts by intermittent Thanks to my collaborators: A. Busse (U. Glasgow), W.-C. Müller (TU Berlin) Dynamics Days Europe 8-12 September 2014 Mini-symposium on Nonlinear Problems in Plasma Astrophysics Introduction

More information

arxiv: v1 [astro-ph.sr] 13 Nov 2013 Accepted for publication in MNRAS, 8 November 2013

arxiv: v1 [astro-ph.sr] 13 Nov 2013 Accepted for publication in MNRAS, 8 November 2013 Mon. Not. R. Astron. Soc. 000, 1 5 (2013) Printed 14 November 2013 (MN LATEX style file v2.2) From solar-like to anti-solar differential rotation in cool stars T. Gastine 1, R. K. Yadav 1,2, J. Morin 2,3,

More information

From solar-like to antisolar differential rotation in cool stars

From solar-like to antisolar differential rotation in cool stars MNRASL 438, L76 L80 (2014) Advance Access publication 2013 December 9 doi:10.1093/mnrasl/slt162 From solar-like to antisolar differential rotation in cool stars T. Gastine, 1 R. K. Yadav, 1,2 J. Morin,

More information

On the Generation of Core Dynamo Action

On the Generation of Core Dynamo Action On the Generation of Core Dynamo Action CIDER Meeting, KITP 7/7/16 Jonathan Aurnou UCLA Earth & Space Sciences aurnou@ucla.edu Beyond record players? Treat core dynamics as a rotating magnetoconvection

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12574 1 Parameter space exploration and rationale for parameter choices Here we give a detailed account of the parameter space exploration (Extended Data Table 1) carried out in support

More information

Powering Ganymede s dynamo

Powering Ganymede s dynamo JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012je004052, 2012 Powering Ganymede s dynamo X. Zhan 1 and G. Schubert 1 Received 12 January 2012; revised 3 July 2012; accepted 6 July 2012; published

More information

Gravity variations induced by core flows

Gravity variations induced by core flows Geophys. J. Int. (2010) 180, 635 650 doi: 10.1111/j.1365-246X.2009.04437.x Gravity variations induced by core flows Mathieu Dumberry Department of Physics, University of Alberta, Edmonton, Canada T6G 2G7.

More information

Anisotropic turbulence in rotating magnetoconvection

Anisotropic turbulence in rotating magnetoconvection Anisotropic turbulence in rotating magnetoconvection André Giesecke Astrophysikalisches Institut Potsdam An der Sternwarte 16 14482 Potsdam MHD-Group seminar, 2006 André Giesecke (AIP) Anisotropic turbulence

More information

A numerical dynamo benchmark

A numerical dynamo benchmark Physics of the Earth and Planetary Interiors 128 (2001) 25 34 A numerical dynamo benchmark U.R. Christensen a,, J. Aubert b, P. Cardin b, E. Dormy c, S. Gibbons d, G.A. Glatzmaier e, E. Grote f, Y. Honkura

More information

An Investigation of Planetary Convection: The Role of Boundary Layers

An Investigation of Planetary Convection: The Role of Boundary Layers University of California Los Angeles An Investigation of Planetary Convection: The Role of Boundary Layers A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of

More information

The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow

The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow Geophys. J. Int. (2002) 151, 809 823 The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow Peter Olson 1 and U. R. Christensen 2 1 Department of Earth and Planetary

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figure 1 Nondimensional magnetic and kinetic energy densities averaged in the fluid core plotted as functions of time. Black and red lines show results of the UHFM

More information

A hemispherical dynamo model : Implications for the Martian crustal magnetization

A hemispherical dynamo model : Implications for the Martian crustal magnetization A hemispherical dynamo model : Implications for the Martian crustal magnetization Wieland Dietrich 1,2 & Johannes Wicht 2 2 Max-Planck-Institut für Sonnensystemforschung, arxiv:1402.0337v1 [astro-ph.ep]

More information

FDEPS Kyoto: Bibliography for the lecture notes. Planetary interiors: Magnetic fields, Convection and Dynamo Theory

FDEPS Kyoto: Bibliography for the lecture notes. Planetary interiors: Magnetic fields, Convection and Dynamo Theory FDEPS Kyoto: Bibliography for the lecture notes Planetary interiors: Magnetic fields, Convection and Dynamo Theory Chris Jones, University of Leeds, UK November 2017 1. Observational background to planetary

More information

Large-scale field and small scale dynamo

Large-scale field and small scale dynamo Large-scale field and small scale dynamo Franck Plunian & Yannick Ponty Université de Grenoble, LGIT Observatoire de la Côte d'azur Large scale magnetic fields are ubiquitous in planetary and stellar objects

More information

arxiv: v1 [astro-ph.sr] 8 Dec 2017

arxiv: v1 [astro-ph.sr] 8 Dec 2017 Astronomy & Astrophysics manuscript no. 3729_corr_final c ESO 208 July 22, 208 Gravity darkening in late-type stars. The Coriolis effect. R. Raynaud, M. Rieutord 2, 3, L. Petitdemange, T. Gastine 5, and

More information

Numerical modeling of the geodynamo' of field generation and equilibration

Numerical modeling of the geodynamo' of field generation and equilibration JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. B5, PAGES 10,383-10,404, MAY 10, 1999 Numerical modeling of the geodynamo' of field generation and equilibration Mechanisms Peter Olson Department of Earth

More information

arxiv: v1 [astro-ph] 7 Jan 2009

arxiv: v1 [astro-ph] 7 Jan 2009 Universal Heliophysical Processes Proceedings IAU Symposium No. 257, 2009 N. Gopalswamy et al. c 2009 International Astronomical Union DOI: 00.0000/X000000000000000X Solar and planetary dynamos: comparison

More information

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD)

Vortex Dynamos. Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) Vortex Dynamos Steve Tobias (University of Leeds) Stefan Llewellyn Smith (UCSD) An introduction to vortices Vortices are ubiquitous in geophysical and astrophysical fluid mechanics (stratification & rotation).

More information

Rotating thermal convection in liquid gallium: multi-modal flow, absent steady columns

Rotating thermal convection in liquid gallium: multi-modal flow, absent steady columns J. Fluid Mech. (2018), vol. 846, pp. 846 876. c Cambridge University Press 2018 doi:10.1017/jfm.2018.292 846 Rotating thermal convection in liquid gallium: multi-modal flow, absent steady columns Jonathan

More information

Geophysical Journal International

Geophysical Journal International Geophysical Journal International Geophys. J. Int. (2012) doi: 10.1111/j.1365-246X.2012.05415.x The effects of boundary topography on convection in Earth s core Michael A. Calkins, 1,2 Jérôme Noir, 3 Jeff

More information

Analysis of Turbulent Free Convection in a Rectangular Rayleigh-Bénard Cell

Analysis of Turbulent Free Convection in a Rectangular Rayleigh-Bénard Cell Proceedings of the 8 th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows Lyon, July 2007 Paper reference : ISAIF8-00130 Analysis of Turbulent Free Convection

More information

This is a repository copy of Hysteresis of dynamos in rotating spherical shell convection.

This is a repository copy of Hysteresis of dynamos in rotating spherical shell convection. This is a repository copy of Hysteresis of dynamos in rotating spherical shell convection. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/115356/ Version: Accepted Version

More information

Instability of Ekman Hartmann boundary layers, with application to the fluid flow near the core mantle boundary

Instability of Ekman Hartmann boundary layers, with application to the fluid flow near the core mantle boundary Physics of the Earth and Planetary Interiors 124 (2001) 283 294 Instability of Ekman Hartmann boundary layers, with application to the fluid flow near the core mantle boundary Benoît Desjardins a, Emmanuel

More information

Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell

Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell PHYSICS OF PLASMAS VOLUME 11, NUMBER 11 NOVEMBER 2004 Reynolds-averaged turbulence model for magnetohydrodynamic dynamo in a rotating spherical shell Fujihiro Hamba a) Institute of Industrial Science,

More information

Exploring the physics of the Earth s core with numerical simulations

Exploring the physics of the Earth s core with numerical simulations Exploring the physics of the Earth s core with numerical simulations Nathanaël Schaeffer To cite this version: Nathanaël Schaeffer. Exploring the physics of the Earth s core with numerical simulations.

More information

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

(This is a sample cover image for this issue. The actual cover is not yet available at this time.) (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author

More information

MS 130: Volume 8 - Core Dynamics: Thermal and Compositional Convection in the Outer Core

MS 130: Volume 8 - Core Dynamics: Thermal and Compositional Convection in the Outer Core MS 130: Volume 8 - Core Dynamics: Thermal and Compositional Convection in the Outer Core C. A. Jones Department of Applied Mathematics, University of Leeds, Leeds, LS2 9JT, UK August 29, 2006 Contents

More information

MYcsvtu Notes HEAT TRANSFER BY CONVECTION

MYcsvtu Notes HEAT TRANSFER BY CONVECTION www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in

More information

arxiv: v2 [astro-ph.sr] 20 Nov 2014

arxiv: v2 [astro-ph.sr] 20 Nov 2014 Astronomy & Astrophysics manuscript no. paper c ESO 2018 April 4, 2018 Formation of starspots in self-consistent global dynamo models: Polar spots on cool stars Rakesh K. Yadav 1,2, Thomas Gastine 1, Ulrich

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

Liquid metal dynamo experiments

Liquid metal dynamo experiments Liquid metal dynamo experiments Sébastien Aumaître CEA-Saclay and VKS team Dynamics and turbulent transport in plasmas and conducting fluids Les Houche-2011 Bibliography H. K. Moffatt : Magnetic field

More information

Magnetic field reversals in turbulent dynamos

Magnetic field reversals in turbulent dynamos Magnetic field reversals in turbulent dynamos Stéphan Fauve LPS-ENS-Paris APS, San Antonio, november 23, 2008 Cosmic magnetic fields Earth 0.5 G Sun 1 G (Hale, 1908) 10 3 G Neutrons stars 10 10-10 13 G

More information

Bistability between a stationary and an oscillatory dynamo in a turbulent flow of liquid sodium

Bistability between a stationary and an oscillatory dynamo in a turbulent flow of liquid sodium J. Fluid Mech. (29), vol. 641, pp. 217 226. c Cambridge University Press 29 doi:1.117/s221129991996 217 Bistability between a stationary and an oscillatory dynamo in a turbulent flow of liquid sodium M.

More information

Azimuthal flows in the Earth s core and changes in length of day at millennial timescales

Azimuthal flows in the Earth s core and changes in length of day at millennial timescales Geophys. J. Int. (6) 165, 3 46 doi: 1.1111/j.1365-46X.6.93.x GJI Geomagnetism, rock magnetism and palaeomagnetism Azimuthal flows in the Earth s core and changes in length of day at millennial timescales

More information

Geodynamo α-effect derived from box simulations of rotating magnetoconvection

Geodynamo α-effect derived from box simulations of rotating magnetoconvection Physics of the Earth and Planetary Interiors 152 (2005) 90 102 Geodynamo α-effect derived from box simulations of rotating magnetoconvection A. Giesecke, U. Ziegler, G. Rüdiger Astrophysikalisches Institut

More information

Long term evolution of the deep Earth as a window on its initial state

Long term evolution of the deep Earth as a window on its initial state Long term evolution of the deep Earth as a window on its initial state Stéphane Labrosse École Normale Supérieure de Lyon Universtité Claude Bernard Lyon-1 Point Reyes May 2016 Stéphane Labrosse (Lyon)

More information