Study the Numerical Methods for Solving System of Equation

Size: px
Start display at page:

Download "Study the Numerical Methods for Solving System of Equation"

Transcription

1 Study the Numerical Methods for Solving System of Equation Ravi Kumar 1, Mr. Raj Kumar Duhan 2 1 M. Tech. (M.E), 4 th Semester, UIET MDU Rohtak 2 Assistant Professor, Dept. of Mechanical Engg., UIET MDU Rohtak ABSTRACT This Paper concentrates on numerical methods for solving ordinary differential equa-tions. Firstly, we discuss the concept of system of equations using Jacobi and Gauss Seidal method. we also discuss the method for solving the ordinary differential equation using Euler and Runge Kutta 4 th order method. The given ordinary differential equation is analyzed on Euler and Runge-Kutta method to find the approximated solution with the given initial conditions. Then, the stability of each method.we also focus on numerical methods for systems. After investigating the numerical methods, we gave advantages and disadvantages of Euler method and Fourth Order Runge-Kutta method. The approximated solutions with different step-size and analytical solutions of methods are computed in c language. The computation of approximated solution so methods are compared with analytical solutions. -Kutta method is more accurate than the Explicit Euler method. Keywords: Ordinary Differential Equations,Numerical solutions, Euler s method, Runge-Kutta method, Jacobi Method, Gauss -Seidal Method. INTRODUCTION The first order differential equation that we ll be looking at is exact differential equations. Before we get into the full details behind solving exact differential equations it s probably best to work an example that will help to show us just what an exact differential equation is. It will also show some of the behind the scenes details that we usually don t bother with in the solution process. The vast majority of the following example will not be done in any of the remaining examples and the work that we will put into the remaining examples will not be shown in this example. The whole point behind this example is to show you just what an exact differential equation is, how we use this fact to arrive at a solution and why the process works as it does. The majority of the actual solution details will be shown in a later example. Okay, so what did we learn from the last example? Let s look at things a little more generally. Suppose that we have the following differential equation (1) (2) Note that it s important that it be in this form! There must be an = 0 on one side and the sign separating the two terms must be a +. Now, if there is a function somewhere out there in the world,ψ(x,y), so that, then we call the differential equation exact. In these cases we can write the differential equation. 21

2 LITERATURE REVIEW Runge-Kutta formula is among the oldest and best understood schemes in numerical analysis. Owing to the evolution of a vast and comprehensive body of knowledge, Runge-Kutta still continues to be a source of active research. The most suitable way of solving most initial value problems for a system of ordinary differential equations are mostly provided by Runge-Kutta methods sometimes referred to as RK methods. This is based on some reasons; Firstly, Runge-Kutta methods are convergent given that the approximate solution approaches the exact solution. Secondly, they are accurate due to the closeness between the approximate solution and the exact solution. Adesola O. Anidu, Samson A. Arekete, Ayomide O. Adedayo and Adekunle O. Adekoya Department of Computer Science ( 2015 ) J.C. Butcher. General linear methods, Acta Numerica 15 (2006), Cambridge University Press. (2006 ) L. Jay. Specialized Runge-Kutta methods for index 2 differential-algebraic equations, Mathematics of Computation 75 (2006) A. Hindmarsh, P. Brown, K. Grant, S. Lee, R. Serban, D. Shumaker, and C. Woodward. SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers, ACM Transactions on Mathematical Software 31 (2005) K. Atkinson and W. Han. Elementary Numerical Analysis, 3rd ed., John Wiley, New York, (2004) H. Brunner. Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge Univ. Press, ( 2004). E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration illustrated by the St ormer-verlet method, Acta Numerica 12 (2003), Cambridge University Press. (2003 )W. Boyce and R. DiPrima. Elementary Differential Equations, 7th edition, John Wiley & Sons, (2003).W. Kelley and A. Peterson. Difference Equations, 2nd ed., Academic Press, Burlington, Massachusetts, R. Kress. Numerical (2001 ) OBJECTIVE OF THE WORK From the literature review it is found that the iterative method such as Jacobi and Gauss Seidal are very important method for solving the system of equation. but as we know that gauss Seidal method converges faster as compared to Jacobi iterative method. On the other hand Runge Kutta 4 th order method for solving ordinary differential equation gives better accuracy. These numerical methods for solving system of equation and ordinary differential equation are useful in c language program, Matlab program and also c++ program. It is very difficult to find the answer when there is mistake of some value in the steps of solution. Jacobi Iterative Method NUMERICAL METHODS DISCUSSION Perhaps the simplest iterative method for solving Ax = b is.jacobi method Note that the simplicity of this method is both good and bad: good, because it is relatively easy to understand and thus is a good first taste of iterative methods; bad, because it is not typically used in practice (although its potential usefulness has been reconsidered with the advent of parallel computing). Still, it is a good starting point for learning about more useful, but more complicated, iterative methods. Given a current approximation x (k) = (x 1 (k), x 2 (k), x 3 (k),, x n (k) ) for x, the strategy of Jacobi's Method is to use the first equation and the current values of x 2 (k), x 3 (k),, x n (k) to find a new value x 1 (k+1), and similarly to find a new value x i (k) using the i th equation and the old values of the other variables. That is, given current values x (k) = (x 1 (k), x 2 (k),, x n (k) ), find new values by solving for 22

3 x (k+1) = (x 1 (k+1), x 2 (k+1),, x n (k+1) ) in Gauss Seidal Method Let us take Jacobi s Method one step further. Where the true solution is x = (x 1, x 2,, x n ), ifx 1 (k+1) is a better approximation to the true value of x 1 than x 1 (k) is, then it would make sense that once we have found the new value x 1 (k+1) to use it (rather than the old value x 1 (k) ) in finding x 2 (k+1),, x n (k+1).so x 1 (k+1) is found as in Jacobi's Method, but in finding x 2 (k+1), instead of using the old value of x 1 (k) and the old values x 3 (k),, x n (k), we now use the new value x 1 (k+1) and the old values x 3 (k),, x n (k), and similarly for findingx 3 (k+1),, x n (k+1). Let's apply the Gauss-Seidel Method to the system from Example 1: At each step, given the current values x 1 (k), x 2 (k), x 3 (k), we solve for x 1 (k+1), x 2 (k+1), x 3 (k+1) in. To compare our results from the two methods, we again choose x (0) = (0, 0, 0). We then find x (1) = (x 1 (1), x 2 (1), x 3 (1) )by solving. Let us be clear about how we solve this system. We first solve for x 1 (1) in the first equation and find that x 1 (1) = 3/4 = We then solve for x 2 (1) in the second equation, using the new value of x 1 (1) = 0.750, and find that x 2 (1) = [9 + 2(0.750)] / 6 = Finally, we solve for x 3 (1) in the third equation, using the new values of x 1 (1) = and x 2 (1) = 1.750, and find thatx 3 (1) = [ ] / 7 = The result of this first iteration of the Gauss-Seidel Method isx (1) = (x 1 (1), x 2 (1), x 3 (1) ) = (0.750, 1.750, 1.000)We iterate this process to generate a sequence of increasingly better approximations x (0), x (1), x (2), 23

4 EULER METHOD Since we're after a set of points which lie along the true solution, as stated above, we must now derive a way of generating more solution points in addition to the solitary initial condition point shown in red in the picture. How could we get more points? Well, look back at the original initial value problem at the top of the page! So far we have only used the initial condition, which gave us our single point. Maybe we should consider the possibility of utilizing the other part of the initial value problem the differential equation itself:y = f(x, y)remember that one interpretation of the quantity y appearing in this expression is as the slope of the tangent line to the function y. But, the function y is exactly what we are seeking as a solution to the problem. This means that we not only know a point which lies on our elusive solution, but we also know a formula for its slope: slope of the solution = f(x, y)all we have to do now is think of a way of using this slope to get those "other points" that we've been after! Well, look at the right hand side of the last formula. It looks like you can get the slope by substituting values for x and y into the function f. These values should, of course, be the coordinates of a point lying on the solution's graph they can't just be the coordinates of any point anywhere in the plane. Do we know of any such points points lying on the solution curve? Of course we do! The initial condition point that we already sketched is exactly such a point! We could use it to find the slope of the solution at the initial condition. We would get:slope of the solution at (x o, y o ) = f(x o, y o ) Remembering that this gives us the slope of the function's tangent line at the initial point we could put this together with the initial point itself to build the tangent line at the initial point, like this: Once again, let's remind ourselves of our goal of finding more points which lie on the true solution's Runge Kutta 4th Order Method Fig 1: Euler Method By using a similar strategy to the trapezoidal rule to find a better approximation to an IVP in Heun's method, consider now Simpson's rule, where not only the end points, but also the interior points of the interval are sampled. The 4th-order Runge Kutta method is similar to Simpson's rule: a sample of the slope is made at the mid-point on the interval, as well as the end points, and a weighted average is taken, placing more weight on the slope at the mid point. It should be noted that Runge-Kutta refers to an entire class of IVP solvers, which includes Euler's method and Heun's method. We are looking at one particularly effective, yet simple, case. Given the IVP y (1) (t) = f( t, y(t) y(t 0 ) = y 0 if we want to estimate y(t 1 ), we set h = t 1 t 0. Remember that f( t, y ) gives the slope at the point (t, y). Thus, we can find the slope at (t 0, y 0 ): K 0 = f( t 0, y 0 ) Next, we use this slope to estimate y(t 0 + h/2) y 0 + ½ hk 0 and sample the slope at this intermediate point: K 1 = f( t 0 + ½h, y 0 + ½h K 0 ) Using this new slope, we estimate y(t 0 + h/2) y 0 + ½ hk 1 and sample the slope at this new point: K 2 = f( t 0 + ½h, y 0 + ½h K 1 ) Finally, we use this last approximation of the slope to estimate y(t 1 ) = y(t 0 + h) y 0 + hk 2 and sample the slope at this point: K 3 = f( t 0 + h, y 0 + h K 2 ) All four of these slopes, K 0, K 1, K 2, and K 3 approximate the slope of the solution on the interval [t 0, t 1 ], and therefore we take the following weighted average: Therefore, we approximate y(t 1 ) by 24

5 Advantage and Disadvantage of Euler Method Advantage 1. Euler s method is simple and direct. 2. Can be used for nonlinear initial value problem. Disadvantage 1. It is less accurate and numerically unstable. 2. Approximation error is proportional to step size h. Hence good approximation obtained with very small value of h. This require large number of time Advantage and Disadvantage of Simple runge kutta method Advantage 1. They are easy to implement. 2. They are stable. Disadvantage 1. They require relatively large computer time. 2. Error estimation are not easy to be done. 3. The simple Runge Kutta method do not work for stiff differential equation (linear differential equation with widely used eigen value. CONCLUSION In this Paper, we have discussed the numerical methods for solving system of equation and ordinary differential equation. Some necessary condition and definition are given to examine the numerical method. After that, considering these definition Jacobi iteration method, Gauss Seidal method, Euler method and Runge Kutta 4 th order method developed and their basic feature discussed Jacobi and gauss Seidal method used for system of equation in three or four variable. Euler s method and Runge Kutta 4 th order method used for ordinary differential equation we also see that in Euler s method excessively small steps size use therefore largenumber of computation is needed. In contrast Runge Kutta gives better result and it converge faster to analytical solution and has less iteration to get accuracy solution. REFERENCES [1]. Adesola O. Anidu, Samson A. Arekete, Ayomide O. Adedayo and Adekunle O. Adekoya Department of Computer Science ( 2015 ) [2]. J.C. Butcher. General linear methods, Acta Numerica 15 (2006), Cambridge University Press. (2006 ) [3]. L. Jay. Specialized Runge-Kutta methods for index 2 differential-algebraic equations, Mathematics of Computation 75 (2006). [4]. Hindmarsh, P. Brown, K. Grant, S. Lee, R. Serban, D. Shumaker, and C. Woodward. SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers, ACM Transactions on Mathematical Software 31 (2005) [5]. K. Atkinson and W. Han. Elementary Numerical Analysis, 3rd ed., John Wiley, New York, (2004) [6]. H. Brunner. Collocation Methods for Volterra Integral and Related Functional Equations, Cambridge Univ. Press, ( 2004). [7]. E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration illustrated by the St ormer-verlet method, Acta Numerica 12 (2003), Cambridge University Press. (2003 ) [8]. W. Boyce and R. DiPrima. Elementary Differential Equations, 7th edition, John Wiley & Sons, (2003). [9]. W. Kelley and A. Peterson. Difference Equations, 2nd ed., Academic Press, Burlington, Massachusetts, R. Kress. Numerical (2001 ) [10]. A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics, Springer-Verlag, New York, (2000). [11]. E. Platen. An introduction to numerical methods for stochastic differential equations, Acta Numerica 8 (1999), Cambridge University Press (1999 ) [12]. R. Kress. Numerical Analysis, Springer-Verlag, New York, (1998). 25

6 [13]. L. Petzold, L. Jay, and J. Yen. Numerical solution of highly oscillatory ordinary differential equations,acta Numerica 6 (1997), Cambridge University Press. (1997 ) [14]. L. Jay. Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems, SIAM Journal on Numerical Analysis 33 (1996), [15]. L. Jay. Convergence of Runge-Kutta methods for differential-algebraic systems of index 3, Applied Numerical Mathematics 17 (1995), [16]. P.N. Brown, A.C. Hindmarsh, and L.R. Petzold. Using Krylov methods in the solution of large-scale differentialalgebraic systems, SIAM J. Scientific Computing 15 (1994) [17]. J. Sanz-Serna. Symplectic integrators for Hamiltonian problems: an overview, Acta Numerica 1992, Cambridge University Press, (1992). [18]. J. Cash. On the numerical integration of nonlinear two-point boundary value problems using iterated deferred corrections. II. The development and analysis of highly stable deferred correction formulae, SIAM J. Numer. Anal. 25 (1988) [19]. P. L otstedt and L. Petzold. Numerical solution of nonlinear differential equations with algebraic constraints. I. Convergence results for backward differentiation formulas, Mathematics of Computation (1986). [20]. C.W. Gear, B. Leimkuhler, and G.K. Gupta. Automatic integration of Euler Lagrange equations with constraints, in Proceedings of the International Conference on Computational and Applied Mathematics (Leuven ), Vol. 12/13 (1985). [21]. R. Aiken (editor). Stiff Computation, Oxford University Press, Oxford, (1985). [22]. I. Gladwell and D. Sayers. Computational Techniques for Ordinary Differential Equations, Academ Press, New York, (1980). [23]. J. Dormand and P. Prince. A family of embedded Runge-Kutta formulae, J. Comp. Appl. Math. 6 (1980). 26

Numerical Integration of Equations of Motion

Numerical Integration of Equations of Motion GraSMech course 2009-2010 Computer-aided analysis of rigid and flexible multibody systems Numerical Integration of Equations of Motion Prof. Olivier Verlinden (FPMs) Olivier.Verlinden@fpms.ac.be Prof.

More information

Geometric Numerical Integration

Geometric Numerical Integration Geometric Numerical Integration (Ernst Hairer, TU München, winter 2009/10) Development of numerical ordinary differential equations Nonstiff differential equations (since about 1850), see [4, 2, 1] Adams

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit V Solution of

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit V Solution of Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit V Solution of Differential Equations Part 1 Dianne P. O Leary c 2008 1 The

More information

Initial value problems for ordinary differential equations

Initial value problems for ordinary differential equations AMSC/CMSC 660 Scientific Computing I Fall 2008 UNIT 5: Numerical Solution of Ordinary Differential Equations Part 1 Dianne P. O Leary c 2008 The Plan Initial value problems (ivps) for ordinary differential

More information

Unit I (Testing of Hypothesis)

Unit I (Testing of Hypothesis) SUBJECT NAME : Statistics and Numerical Methods SUBJECT CODE : MA645 MATERIAL NAME : Part A questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) Unit I (Testing of Hypothesis). State level

More information

Mathematics for chemical engineers. Numerical solution of ordinary differential equations

Mathematics for chemical engineers. Numerical solution of ordinary differential equations Mathematics for chemical engineers Drahoslava Janovská Numerical solution of ordinary differential equations Initial value problem Winter Semester 2015-2016 Outline 1 Introduction 2 One step methods Euler

More information

Efficiency of Runge-Kutta Methods in Solving Simple Harmonic Oscillators

Efficiency of Runge-Kutta Methods in Solving Simple Harmonic Oscillators MATEMATIKA, 8, Volume 3, Number, c Penerbit UTM Press. All rights reserved Efficiency of Runge-Kutta Methods in Solving Simple Harmonic Oscillators Annie Gorgey and Nor Azian Aini Mat Department of Mathematics,

More information

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

A SYMBOLIC-NUMERIC APPROACH TO THE SOLUTION OF THE BUTCHER EQUATIONS

A SYMBOLIC-NUMERIC APPROACH TO THE SOLUTION OF THE BUTCHER EQUATIONS CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 17, Number 3, Fall 2009 A SYMBOLIC-NUMERIC APPROACH TO THE SOLUTION OF THE BUTCHER EQUATIONS SERGEY KHASHIN ABSTRACT. A new approach based on the use of new

More information

NUMERICAL SOLUTION OF ODE IVPs. Overview

NUMERICAL SOLUTION OF ODE IVPs. Overview NUMERICAL SOLUTION OF ODE IVPs 1 Quick review of direction fields Overview 2 A reminder about and 3 Important test: Is the ODE initial value problem? 4 Fundamental concepts: Euler s Method 5 Fundamental

More information

Accuracy Enhancement Using Spectral Postprocessing for Differential Equations and Integral Equations

Accuracy Enhancement Using Spectral Postprocessing for Differential Equations and Integral Equations COMMUICATIOS I COMPUTATIOAL PHYSICS Vol. 5, o. -4, pp. 779-79 Commun. Comput. Phys. February 009 Accuracy Enhancement Using Spectral Postprocessing for Differential Equations and Integral Equations Tao

More information

arxiv: v1 [math.na] 31 Oct 2016

arxiv: v1 [math.na] 31 Oct 2016 RKFD Methods - a short review Maciej Jaromin November, 206 arxiv:60.09739v [math.na] 3 Oct 206 Abstract In this paper, a recently published method [Hussain, Ismail, Senua, Solving directly special fourthorder

More information

GEOMETRIC INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS ON MANIFOLDS

GEOMETRIC INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS ON MANIFOLDS BIT 0006-3835/01/4105-0996 $16.00 2001, Vol. 41, No. 5, pp. 996 1007 c Swets & Zeitlinger GEOMETRIC INTEGRATION OF ORDINARY DIFFERENTIAL EQUATIONS ON MANIFOLDS E. HAIRER Section de mathématiques, Université

More information

Four Point Gauss Quadrature Runge Kuta Method Of Order 8 For Ordinary Differential Equations

Four Point Gauss Quadrature Runge Kuta Method Of Order 8 For Ordinary Differential Equations International journal of scientific and technical research in engineering (IJSTRE) www.ijstre.com Volume Issue ǁ July 206. Four Point Gauss Quadrature Runge Kuta Method Of Order 8 For Ordinary Differential

More information

The family of Runge Kutta methods with two intermediate evaluations is defined by

The family of Runge Kutta methods with two intermediate evaluations is defined by AM 205: lecture 13 Last time: Numerical solution of ordinary differential equations Today: Additional ODE methods, boundary value problems Thursday s lecture will be given by Thomas Fai Assignment 3 will

More information

The Plan. Initial value problems (ivps) for ordinary differential equations (odes) Review of basic methods You are here: Hamiltonian systems

The Plan. Initial value problems (ivps) for ordinary differential equations (odes) Review of basic methods You are here: Hamiltonian systems Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit V Solution of Differential Equations Part 2 Dianne P. O Leary c 2008 The Plan

More information

Semi-implicit Krylov Deferred Correction Methods for Ordinary Differential Equations

Semi-implicit Krylov Deferred Correction Methods for Ordinary Differential Equations Semi-implicit Krylov Deferred Correction Methods for Ordinary Differential Equations Sunyoung Bu University of North Carolina Department of Mathematics CB # 325, Chapel Hill USA agatha@email.unc.edu Jingfang

More information

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions For each question, there is a model solution (showing you the level of detail I expect on the exam) and then below

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 9 Initial Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0 Math 2250 Lab 4 Name/Unid: 1. (25 points) A man bails out of an airplane at the altitute of 12,000 ft, falls freely for 20 s, then opens his parachute. Assuming linear air resistance ρv ft/s 2, taking

More information

1 Ordinary differential equations

1 Ordinary differential equations Numerical Analysis Seminar Frühjahrssemester 08 Lecturers: Prof. M. Torrilhon, Prof. D. Kressner The Störmer-Verlet method F. Crivelli (flcrivel@student.ethz.ch May 8, 2008 Introduction During this talk

More information

Study of Numerical Accuracy of Runge-Kutta Second, Third and Fourth Order Method

Study of Numerical Accuracy of Runge-Kutta Second, Third and Fourth Order Method Study of Numerical Accuracy of Runge-Kutta Second, Third and Fourth Order Method Najmuddin Ahmad, Shiv Charan,Vimal Partap Singh Department of Mathematics, Integral University, Lucknow Abstract : We have

More information

Syllabus (Session )

Syllabus (Session ) Syllabus (Session 2016-17) Department of Mathematics nstitute of Applied Sciences & Humanities AHM-1101: ENGNEERNG MATHEMATCS Course Objective: To make the students understand the concepts of Calculus,

More information

Validated Explicit and Implicit Runge-Kutta Methods

Validated Explicit and Implicit Runge-Kutta Methods Validated Explicit and Implicit Runge-Kutta Methods Alexandre Chapoutot joint work with Julien Alexandre dit Sandretto and Olivier Mullier U2IS, ENSTA ParisTech 8th Small Workshop on Interval Methods,

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 9 Initial Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

Exam in TMA4215 December 7th 2012

Exam in TMA4215 December 7th 2012 Norwegian University of Science and Technology Department of Mathematical Sciences Page of 9 Contact during the exam: Elena Celledoni, tlf. 7359354, cell phone 48238584 Exam in TMA425 December 7th 22 Allowed

More information

Southern Methodist University.

Southern Methodist University. Title: Continuous extensions Name: Lawrence F. Shampine 1, Laurent O. Jay 2 Affil./Addr. 1: Department of Mathematics Southern Methodist University Dallas, TX 75275 USA Phone: +1 (972) 690-8439 E-mail:

More information

SYMMETRIC PROJECTION METHODS FOR DIFFERENTIAL EQUATIONS ON MANIFOLDS

SYMMETRIC PROJECTION METHODS FOR DIFFERENTIAL EQUATIONS ON MANIFOLDS BIT 0006-3835/00/4004-0726 $15.00 2000, Vol. 40, No. 4, pp. 726 734 c Swets & Zeitlinger SYMMETRIC PROJECTION METHODS FOR DIFFERENTIAL EQUATIONS ON MANIFOLDS E. HAIRER Section de mathématiques, Université

More information

Solving scalar IVP s : Runge-Kutta Methods

Solving scalar IVP s : Runge-Kutta Methods Solving scalar IVP s : Runge-Kutta Methods Josh Engwer Texas Tech University March 7, NOTATION: h step size x n xt) t n+ t + h x n+ xt n+ ) xt + h) dx = ft, x) SCALAR IVP ASSUMED THROUGHOUT: dt xt ) =

More information

A CLASS OF CONTINUOUS HYBRID LINEAR MULTISTEP METHODS FOR STIFF IVPs IN ODEs

A CLASS OF CONTINUOUS HYBRID LINEAR MULTISTEP METHODS FOR STIFF IVPs IN ODEs ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I. CUZA DIN IAŞI (S.N.) MATEMATICĂ, Tomul LVIII, 0, f. A CLASS OF CONTINUOUS HYBRID LINEAR MULTISTEP METHODS FOR STIFF IVPs IN ODEs BY R.I. OKUONGHAE Abstract.

More information

Fourth-order symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: a review

Fourth-order symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: a review Fourth-order symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: a review G. Vanden Berghe and M. Van Daele Vakgroep Toegepaste Wiskunde en Informatica, Universiteit Gent, Krijgslaan

More information

NAG Library Chapter Introduction d02 Ordinary Differential Equations

NAG Library Chapter Introduction d02 Ordinary Differential Equations NAG Library Chapter Introduction d02 Ordinary Differential Equations Contents 1 Scope of the Chapter.... 2 2 Background to the Problems... 2 2.1 Initial Value Problems... 3 2.2 Boundary Value Problems...

More information

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0

Solution: (a) Before opening the parachute, the differential equation is given by: dv dt. = v. v(0) = 0 Math 2250 Lab 4 Name/Unid: 1. (35 points) Leslie Leroy Irvin bails out of an airplane at the altitude of 16,000 ft, falls freely for 20 s, then opens his parachute. Assuming linear air resistance ρv ft/s

More information

Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations

Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations MATEMATIKA, 2011, Volume 27, Number 2, 199 208 c Department of Mathematical Sciences, UTM Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations 1 E. Aruchunan

More information

Chapter 6 - Ordinary Differential Equations

Chapter 6 - Ordinary Differential Equations Chapter 6 - Ordinary Differential Equations 7.1 Solving Initial-Value Problems In this chapter, we will be interested in the solution of ordinary differential equations. Ordinary differential equations

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK KINGS COLLEGE OF ENGINEERING MA5-NUMERICAL METHODS DEPARTMENT OF MATHEMATICS ACADEMIC YEAR 00-0 / EVEN SEMESTER QUESTION BANK SUBJECT NAME: NUMERICAL METHODS YEAR/SEM: II / IV UNIT - I SOLUTION OF EQUATIONS

More information

Differential Equations

Differential Equations Differential Equations Definitions Finite Differences Taylor Series based Methods: Euler Method Runge-Kutta Methods Improved Euler, Midpoint methods Runge Kutta (2nd, 4th order) methods Predictor-Corrector

More information

Investigation on the Most Efficient Ways to Solve the Implicit Equations for Gauss Methods in the Constant Stepsize Setting

Investigation on the Most Efficient Ways to Solve the Implicit Equations for Gauss Methods in the Constant Stepsize Setting Applied Mathematical Sciences, Vol. 12, 2018, no. 2, 93-103 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.711340 Investigation on the Most Efficient Ways to Solve the Implicit Equations

More information

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li

Numerical Methods for ODEs. Lectures for PSU Summer Programs Xiantao Li Numerical Methods for ODEs Lectures for PSU Summer Programs Xiantao Li Outline Introduction Some Challenges Numerical methods for ODEs Stiff ODEs Accuracy Constrained dynamics Stability Coarse-graining

More information

The Milne error estimator for stiff problems

The Milne error estimator for stiff problems 13 R. Tshelametse / SAJPAM. Volume 4 (2009) 13-28 The Milne error estimator for stiff problems Ronald Tshelametse Department of Mathematics University of Botswana Private Bag 0022 Gaborone, Botswana. E-mail

More information

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 18. HW 7 is posted, and will be due in class on 4/25.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 18. HW 7 is posted, and will be due in class on 4/25. Logistics Week 12: Monday, Apr 18 HW 6 is due at 11:59 tonight. HW 7 is posted, and will be due in class on 4/25. The prelim is graded. An analysis and rubric are on CMS. Problem du jour For implicit methods

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 6 Chapter 20 Initial-Value Problems PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

INTRODUCTION TO COMPUTER METHODS FOR O.D.E.

INTRODUCTION TO COMPUTER METHODS FOR O.D.E. INTRODUCTION TO COMPUTER METHODS FOR O.D.E. 0. Introduction. The goal of this handout is to introduce some of the ideas behind the basic computer algorithms to approximate solutions to differential equations.

More information

Development of a New One-Step Scheme for the Solution of Initial Value Problem (IVP) in Ordinary Differential Equations

Development of a New One-Step Scheme for the Solution of Initial Value Problem (IVP) in Ordinary Differential Equations International Journal of Theoretical and Applied Mathematics 2017; 3(2): 58-63 http://www.sciencepublishinggroup.com/j/ijtam doi: 10.11648/j.ijtam.20170302.12 Development of a New One-Step Scheme for the

More information

Partitioned Methods for Multifield Problems

Partitioned Methods for Multifield Problems Partitioned Methods for Multifield Problems Joachim Rang, 10.5.2017 10.5.2017 Joachim Rang Partitioned Methods for Multifield Problems Seite 1 Contents Blockform of linear iteration schemes Examples 10.5.2017

More information

Modified Milne Simpson Method for Solving Differential Equations

Modified Milne Simpson Method for Solving Differential Equations Modified Milne Simpson Method for Solving Differential Equations R. K. Devkate 1, R. M. Dhaigude 2 Research Student, Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad,

More information

Delay Differential Equations with Constant Lags

Delay Differential Equations with Constant Lags Delay Differential Equations with Constant Lags L.F. Shampine Mathematics Department Southern Methodist University Dallas, TX 75275 shampine@smu.edu S. Thompson Department of Mathematics & Statistics Radford

More information

COMPOSITION CONSTANTS FOR RAISING THE ORDERS OF UNCONVENTIONAL SCHEMES FOR ORDINARY DIFFERENTIAL EQUATIONS

COMPOSITION CONSTANTS FOR RAISING THE ORDERS OF UNCONVENTIONAL SCHEMES FOR ORDINARY DIFFERENTIAL EQUATIONS MATHEMATICS OF COMPUTATION Volume 66, Number 219, July 1997, Pages 1089 1099 S 0025-5718(97)00873-9 COMPOSITION CONSTANTS FOR RAISING THE ORDERS OF UNCONVENTIONAL SCHEMES FOR ORDINARY DIFFERENTIAL EQUATIONS

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations CHAPTER 5 Numerical Methods for Differential Equations In this chapter we will discuss a few of the many numerical methods which can be used to solve initial value problems and one-dimensional boundary

More information

Solving Orthogonal Matrix Differential Systems in Mathematica

Solving Orthogonal Matrix Differential Systems in Mathematica Solving Orthogonal Matrix Differential Systems in Mathematica Mark Sofroniou 1 and Giulia Spaletta 2 1 Wolfram Research, Champaign, Illinois, USA. marks@wolfram.com 2 Mathematics Department, Bologna University,

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations Professor Dr. E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro September 19, 2014 1 / 55 Motivation

More information

MAE 305 Engineering Mathematics I

MAE 305 Engineering Mathematics I MAE 305 Engineering Mathematics I Princeton University Assignment # 3 September 26, 1997 Due on Friday, 2PM, October 3, 1997 1. Where we are. We have learned how to deal with a single first order ODE for

More information

Backward error analysis

Backward error analysis Backward error analysis Brynjulf Owren July 28, 2015 Introduction. The main source for these notes is the monograph by Hairer, Lubich and Wanner [2]. Consider ODEs in R d of the form ẏ = f(y), y(0) = y

More information

GEOMETRIC INTEGRATION METHODS THAT PRESERVE LYAPUNOV FUNCTIONS

GEOMETRIC INTEGRATION METHODS THAT PRESERVE LYAPUNOV FUNCTIONS BIT Numerical Mathematics 25, Vol. 45, No., pp. 79 723 c Springer GEOMETRIC INTEGRATION METHODS THAT PRESERVE LYAPUNOV FUNCTIONS V. GRIMM and G.R.W. QUISPEL Department of Mathematics, and Centre for Mathematics

More information

THEWAY in which time evolution acts on observables may be rephrased in

THEWAY in which time evolution acts on observables may be rephrased in Appendix F Implementing evolution F.1 Koopmania THEWAY in which time evolution acts on observables may be rephrased in the language of functional analysis, by introducing the Koopman operator, whose action

More information

Symplectic integration with Runge-Kutta methods, AARMS summer school 2015

Symplectic integration with Runge-Kutta methods, AARMS summer school 2015 Symplectic integration with Runge-Kutta methods, AARMS summer school 2015 Elena Celledoni July 13, 2015 1 Hamiltonian systems and their properties We consider a Hamiltonian system in the form ẏ = J H(y)

More information

Differential Equations

Differential Equations Differential Equations Overview of differential equation! Initial value problem! Explicit numeric methods! Implicit numeric methods! Modular implementation Physics-based simulation An algorithm that

More information

Mathematical Methods for Numerical Analysis and Optimization

Mathematical Methods for Numerical Analysis and Optimization Biyani's Think Tank Concept based notes Mathematical Methods for Numerical Analysis and Optimization (MCA) Varsha Gupta Poonam Fatehpuria M.Sc. (Maths) Lecturer Deptt. of Information Technology Biyani

More information

THE Hamilton equations of motion constitute a system

THE Hamilton equations of motion constitute a system Proceedings of the World Congress on Engineering 0 Vol I WCE 0, July 4-6, 0, London, U.K. Systematic Improvement of Splitting Methods for the Hamilton Equations Asif Mushtaq, Anne Kværnø, and Kåre Olaussen

More information

Exact and Approximate Numbers:

Exact and Approximate Numbers: Eact and Approimate Numbers: The numbers that arise in technical applications are better described as eact numbers because there is not the sort of uncertainty in their values that was described above.

More information

CHAPTER 10: Numerical Methods for DAEs

CHAPTER 10: Numerical Methods for DAEs CHAPTER 10: Numerical Methods for DAEs Numerical approaches for the solution of DAEs divide roughly into two classes: 1. direct discretization 2. reformulation (index reduction) plus discretization Direct

More information

PRECONDITIONING AND PARALLEL IMPLEMENTATION OF IMPLICIT RUNGE-KUTTA METHODS.

PRECONDITIONING AND PARALLEL IMPLEMENTATION OF IMPLICIT RUNGE-KUTTA METHODS. PRECONDITIONING AND PARALLEL IMPLEMENTATION OF IMPLICIT RUNGE-KUTTA METHODS. LAURENT O. JAY Abstract. A major problem in obtaining an efficient implementation of fully implicit Runge- Kutta IRK methods

More information

Computational Techniques Prof. Dr. Niket Kaisare Department of Chemical Engineering Indian Institute of Technology, Madras

Computational Techniques Prof. Dr. Niket Kaisare Department of Chemical Engineering Indian Institute of Technology, Madras Computational Techniques Prof. Dr. Niket Kaisare Department of Chemical Engineering Indian Institute of Technology, Madras Module No. # 07 Lecture No. # 05 Ordinary Differential Equations (Refer Slide

More information

Research Article Diagonally Implicit Block Backward Differentiation Formulas for Solving Ordinary Differential Equations

Research Article Diagonally Implicit Block Backward Differentiation Formulas for Solving Ordinary Differential Equations International Mathematics and Mathematical Sciences Volume 212, Article ID 767328, 8 pages doi:1.1155/212/767328 Research Article Diagonally Implicit Block Backward Differentiation Formulas for Solving

More information

SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY DEPARTMENT OF SCIENCE & HUMANITIES STATISTICS & NUMERICAL METHODS TWO MARKS

SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY DEPARTMENT OF SCIENCE & HUMANITIES STATISTICS & NUMERICAL METHODS TWO MARKS SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY DEPARTMENT OF SCIENCE & HUMANITIES STATISTICS & NUMERICAL METHODS TWO MARKS UNIT-I HYPOTHESIS TESTING 1. What are the applications of distributions? * Test the hypothesis

More information

Numerical Algorithms as Dynamical Systems

Numerical Algorithms as Dynamical Systems A Study on Numerical Algorithms as Dynamical Systems Moody Chu North Carolina State University What This Study Is About? To recast many numerical algorithms as special dynamical systems, whence to derive

More information

Section 7.4 Runge-Kutta Methods

Section 7.4 Runge-Kutta Methods Section 7.4 Runge-Kutta Methods Key terms: Taylor methods Taylor series Runge-Kutta; methods linear combinations of function values at intermediate points Alternatives to second order Taylor methods Fourth

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Chapter 2: Runge Kutta and Multistep Methods Gustaf Söderlind Numerical Analysis, Lund University Contents V4.16 1. Runge Kutta methods 2. Embedded RK methods

More information

A NOTE ON EXPLICIT THREE-DERIVATIVE RUNGE-KUTTA METHODS (ThDRK)

A NOTE ON EXPLICIT THREE-DERIVATIVE RUNGE-KUTTA METHODS (ThDRK) BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN 303-4874 (p), ISSN (o) 303-4955 www.imvibl.org / JOURNALS / BULLETIN Vol. 5(015), 65-7 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 33 Almost Done! Last

More information

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn

Review. Numerical Methods Lecture 22. Prof. Jinbo Bi CSE, UConn Review Taylor Series and Error Analysis Roots of Equations Linear Algebraic Equations Optimization Numerical Differentiation and Integration Ordinary Differential Equations Partial Differential Equations

More information

NUMERICAL METHODS FOR ENGINEERING APPLICATION

NUMERICAL METHODS FOR ENGINEERING APPLICATION NUMERICAL METHODS FOR ENGINEERING APPLICATION Second Edition JOEL H. FERZIGER A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

More information

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9

TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1. Chapter Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 TABLE OF CONTENTS INTRODUCTION, APPROXIMATION & ERRORS 1 Chapter 01.01 Introduction to numerical methods 1 Multiple-choice test 7 Problem set 9 Chapter 01.02 Measuring errors 11 True error 11 Relative

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 017/018 DR. ANTHONY BROWN. Lines and Their Equations.1. Slope of a Line and its y-intercept. In Euclidean geometry (where

More information

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations Outline ODEs and initial conditions. Explicit and implicit Euler methods. Runge-Kutta methods. Multistep

More information

Butcher tableau Can summarize an s + 1 stage Runge Kutta method using a triangular grid of coefficients

Butcher tableau Can summarize an s + 1 stage Runge Kutta method using a triangular grid of coefficients AM 205: lecture 13 Last time: ODE convergence and stability, Runge Kutta methods Today: the Butcher tableau, multi-step methods, boundary value problems Butcher tableau Can summarize an s + 1 stage Runge

More information

Numerical Solution of Differential Equations

Numerical Solution of Differential Equations 1 Numerical Solution of Differential Equations A differential equation (or "DE") contains derivatives or differentials. In a differential equation the unknown is a function, and the differential equation

More information

Numerical Integration Schemes for Unequal Data Spacing

Numerical Integration Schemes for Unequal Data Spacing American Journal of Applied Mathematics 017; () 48- http//www.sciencepublishinggroup.com/j/ajam doi 10.1148/j.ajam.01700.1 ISSN 330-0043 (Print); ISSN 330-00X (Online) Numerical Integration Schemes for

More information

ENERGY PRESERVING METHODS FOR VOLTERRA LATTICE EQUATION

ENERGY PRESERVING METHODS FOR VOLTERRA LATTICE EQUATION TWMS J. App. Eng. Math. V., N.,, pp. 9- ENERGY PRESERVING METHODS FOR VOLTERRA LATTICE EQUATION B. KARASÖZEN, Ö. ERDEM, Abstract. We investigate linear energy preserving methods for the Volterra lattice

More information

The collocation method for ODEs: an introduction

The collocation method for ODEs: an introduction 058065 - Collocation Methods for Volterra Integral Related Functional Differential The collocation method for ODEs: an introduction A collocation solution u h to a functional equation for example an ordinary

More information

SOME PROPERTIES OF SYMPLECTIC RUNGE-KUTTA METHODS

SOME PROPERTIES OF SYMPLECTIC RUNGE-KUTTA METHODS SOME PROPERTIES OF SYMPLECTIC RUNGE-KUTTA METHODS ERNST HAIRER AND PIERRE LEONE Abstract. We prove that to every rational function R(z) satisfying R( z)r(z) = 1, there exists a symplectic Runge-Kutta method

More information

Derivation of Euler's Method - Numerical Methods for Solving Differential Equations

Derivation of Euler's Method - Numerical Methods for Solving Differential Equations Derivation of Euler's Method - Numerical Methods for Solving Differential Equations Let s start with a general first order Initial Value Problem dx = f(x, y) y(x 0) = y 0 (1) where f(x, y) is a known function

More information

NUMERICAL METHODS. lor CHEMICAL ENGINEERS. Using Excel', VBA, and MATLAB* VICTOR J. LAW. CRC Press. Taylor & Francis Group

NUMERICAL METHODS. lor CHEMICAL ENGINEERS. Using Excel', VBA, and MATLAB* VICTOR J. LAW. CRC Press. Taylor & Francis Group NUMERICAL METHODS lor CHEMICAL ENGINEERS Using Excel', VBA, and MATLAB* VICTOR J. LAW CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup,

More information

Energy-Preserving Runge-Kutta methods

Energy-Preserving Runge-Kutta methods Energy-Preserving Runge-Kutta methods Fasma Diele, Brigida Pace Istituto per le Applicazioni del Calcolo M. Picone, CNR, Via Amendola 122, 70126 Bari, Italy f.diele@ba.iac.cnr.it b.pace@ba.iac.cnr.it SDS2010,

More information

THE θ-methods IN THE NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS. Karel J. in t Hout, Marc N. Spijker Leiden, The Netherlands

THE θ-methods IN THE NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS. Karel J. in t Hout, Marc N. Spijker Leiden, The Netherlands THE θ-methods IN THE NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS Karel J. in t Hout, Marc N. Spijker Leiden, The Netherlands 1. Introduction This paper deals with initial value problems for delay

More information

Numerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by

Numerical Analysis. A Comprehensive Introduction. H. R. Schwarz University of Zürich Switzerland. with a contribution by Numerical Analysis A Comprehensive Introduction H. R. Schwarz University of Zürich Switzerland with a contribution by J. Waldvogel Swiss Federal Institute of Technology, Zürich JOHN WILEY & SONS Chichester

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad Course Title Course Code INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 CIVIL ENGINEERING COURSE DESCRIPTION MATHEMATICS-II A30006 Course Structure Lectures Tutorials

More information

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique Int. Journal of Math. Analysis, Vol. 7, 3, no. 53, 65-636 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ijma.3.3894 A Study on Linear and Nonlinear Stiff Problems Using Single-Term Haar Wavelet Series

More information

Graded Project #1. Part 1. Explicit Runge Kutta methods. Goals Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo

Graded Project #1. Part 1. Explicit Runge Kutta methods. Goals Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo 2008-11-07 Graded Project #1 Differential Equations FMN130 Gustaf Söderlind and Carmen Arévalo This homework is due to be handed in on Wednesday 12 November 2008 before 13:00 in the post box of the numerical

More information

Quadratic SDIRK pair for treating chemical reaction problems.

Quadratic SDIRK pair for treating chemical reaction problems. Quadratic SDIRK pair for treating chemical reaction problems. Ch. Tsitouras TEI of Chalkis, Dept. of Applied Sciences, GR 34400 Psahna, Greece. I. Th. Famelis TEI of Athens, Dept. of Mathematics, GR 12210

More information

Numerical Methods for Initial Value Problems; Harmonic Oscillators

Numerical Methods for Initial Value Problems; Harmonic Oscillators Lab 1 Numerical Methods for Initial Value Problems; Harmonic Oscillators Lab Objective: Implement several basic numerical methods for initial value problems (IVPs), and use them to study harmonic oscillators.

More information

Optimal Preconditioners for Interval Gauss Seidel Methods

Optimal Preconditioners for Interval Gauss Seidel Methods Optimal Preconditioners for Interval Gauss Seidel Methods R B Kearfott and Xiaofa Shi Introduction Consider the following nonlinear system f 1 x 1, x 2,, x n ) F X) f n x 1, x 2,, x n ) where bounds x

More information

Part 1: Overview of Ordinary Dierential Equations 1 Chapter 1 Basic Concepts and Problems 1.1 Problems Leading to Ordinary Dierential Equations Many scientic and engineering problems are modeled by systems

More information

What we ll do: Lecture 21. Ordinary Differential Equations (ODEs) Differential Equations. Ordinary Differential Equations

What we ll do: Lecture 21. Ordinary Differential Equations (ODEs) Differential Equations. Ordinary Differential Equations What we ll do: Lecture Ordinary Differential Equations J. Chaudhry Department of Mathematics and Statistics University of New Mexico Review ODEs Single Step Methods Euler s method (st order accurate) Runge-Kutta

More information

Math 266: Ordinary Differential Equations

Math 266: Ordinary Differential Equations Math 266: Ordinary Differential Equations Long Jin Purdue University, Spring 2018 Basic information Lectures: MWF 8:30-9:20(111)/9:30-10:20(121), UNIV 103 Instructor: Long Jin (long249@purdue.edu) Office

More information

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation

High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation High Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation Faheem Ahmed, Fareed Ahmed, Yongheng Guo, Yong Yang Abstract This paper deals with

More information

Computational Methods

Computational Methods Numerical Computational Methods Revised Edition P. B. Patil U. P. Verma Alpha Science International Ltd. Oxford, U.K. CONTENTS Preface List ofprograms v vii 1. NUMER1CAL METHOD, ERROR AND ALGORITHM 1 1.1

More information

Stability regions of Runge-Kutta methods. Stephan Houben Eindhoven University of Technology

Stability regions of Runge-Kutta methods. Stephan Houben Eindhoven University of Technology Stability regions of Runge-Kutta methods Stephan Houben Eindhoven University of Technology February 19, 2002 1 Overview of the talk 1. Quick review of some concepts 2. Stability regions 3. L-stability

More information

A Zero-Stable Block Method for the Solution of Third Order Ordinary Differential Equations.

A Zero-Stable Block Method for the Solution of Third Order Ordinary Differential Equations. A Zero-Stable Block Method for the Solution of Third Order Ordinary Differential Equations. K. Rauf, Ph.D. 1 ; S.A. Aniki (Ph.D. in view) 2* ; S. Ibrahim (Ph.D. in view) 2 ; and J.O. Omolehin, Ph.D. 3

More information

Symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: revisited

Symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: revisited Symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: revisited G. Vanden Berghe and M. Van Daele Vakgroep Toegepaste Wiskunde en Informatica, Universiteit Gent, Krijgslaan 8

More information