5.2 Tests of Significance

Size: px
Start display at page:

Download "5.2 Tests of Significance"

Transcription

1 5.2 Tests of Significance Example 5.7. Diet colas use artificial sweeteners to avoid sugar. Colas with artificial sweeteners gradually lose their sweetness over time. Manufacturers therefore test new colas for loss of sweetness before marketing them. Trained tasters sip the cola along with drinks of standard sweetness and score the cola on a sweetness score of 1to 10. The cola is then stored for a month at high temperture to imitate the effect of four months storage at room temperature. After a month, each taster scores the stored cola. This is a matched pairs experiment. Our data are the differences (score before storage minus score after storage) in the tasters scores. The bigger these differences, the bigger the loss of sweetness. Here are the sweetness losses for a new cola, as measured by 10 trained tasters: Most are positive. That is, most tasters found a loss of sweetness. But the loses are small, and two tasters (the negative scores) thought the cola gained sweetness. Are these data good evidence that the cola lost sweetness in storage? The Reasoning of a Significance Test Note. The average sweetness loss for our cola is given by the sample mean, x = =

2 That s not a large loss. Ten different tasters would almost surely give a different result. Maybe it s just chance that produced this result. A test of significance asks: Does the sample result x =1.02 reflect a real loss of sweetness? OR Could we easily get the outcome x =1.02 just by chance? Note. Next, state the null hypothesis. The null hypothesis says that there is no effect or no change in the population. If the null hypothesis is not true, the sample result is just chance at work. Here, the null hypothesis says that the cola does not lose sweetness (no change). We can write that in terms of the mean sweetness loss µ in the population as H 0 : µ = 0. We write H 0, read H-nought, to indicate the null hypothesis. The effect we suspect is true, the alternative to no effect or no change, is described by the alternate hypothesis. We suspect that the cola does lose sweetness. In terms of the mean sweetness loss µ, the alternative hypothesis is H a : µ>0. Note. The reasoning of a significance test goes like this. Suppose for the sake of argument that the null hypothesis is true, that on the average there is no loss of sweetness. Is the sample outcome = 1.02 surprisingly large under that supposition? If it is, that s evidence against H 0 and in favor of H a. To answer the question, we use our knowledge of how the sample mean x would vary in repeated samples if H 0 really were true. That s the sampling distribution of x once again. 2

3 Note. From long experience we also know that the standard deviation for all individual tasters is σ = 1. (It is not realistic to suppose that we know the population standard devatiation σ. We will eliminate this assumption in the next chapter.) The sampling distribution of x from 10 tasters is then normal with mean µ = 0 and standard deviation σ/ n =1/ n =.316. We can judge whether any observed x is surprising by locating it on this distribution. Figure 5.8 (and TM-86) shows the sampling distribution with the observed values of x for two types of cola. One cola had x =.3 for a sample of 10 tasters. It is clear from Figure 5.8 (TM-86) that an average x this large could easily occur just by chance when the population mean is µ = 0. That 10 tasters find x =.3 is not evidence of a sweetness loss. The taste for our cola produced x =1.02. That s way out on the normal curve in Figure 5.8 (TM-86), so far out that an observed value this large would almost never occur just by chance if the true µ were 0. This observed value is good evidence that in fact the true µ is greater than 0, that is, that the cola lost sweetness. The manufacturer must reformulate the cola and try again. Note. Look again at Figure 5.8 (TM-86). If the alternative hypothesis is true, there is a sweetness loss and we expect the mean loss x found by the tasters to be positive. The farther out x is in the positive direction, the more convinced we are that the population mean µ is not zero but positive. We measure the strength of the evidence against H 0 by 3

4 the probability under the normal curve in Figure 5.8 (TM-86) to the right of the observed x. This probability is called the P value. It is the probability of a result at least as far out as the result we actually got. The lower this probability, the more surprising our result, and the stronger the evidence against the null hypothesis. Note. Notice: For one new cola, our 10 tasters gave x =.3. Figure 5.9 (and TM-87) shows the P value for this outcome. It is the probability to the right of 0.3. This probability is about That is, 17%. Our cola showed a larger sweetness loss, x = The probability of a result this large or larger is only Note. Small P values are evidence against H 0, because they say that the observed result is unlikely to occur just by chance. Large P values fail to give evidence against H 0.AP value of 0.05 is used as a common rule of thumb. A result with a small P value, say less than 0.05, is called statistically significant. That s just a way of saying that chance alone would rarely produce so extreme a result. Outline of a Test Note. Here is the reasoning of a significance test in outline form: 1. Describe the effect you are searching for in terms of a population 4

5 parameter like the mean µ. 2. The null hypothesis is the statement that this effect is not present in the population. 3. From the data, calculate a statistic like x that estimates the parameter. 4. The P value says how unlikely a result at least as extreme as the one we observed would be if the null hypothesis were true. Results with small P values would rarely occur if the null hypothesis were true. We call such results statistically significant. More Detail: Stating Hypotheses Definition. The statement being tested in a test of significance is called the null hypothesis. The test of significance is designed to assess the strength of the evidence against the null hypothesis. Usually the null hypothesis is a statement of no effect or no difference. Note. The first step in a test of significance is to state a claim that we will try to find evidence against. The alternative hypothesis H a is the claim about the population that we are trying to find evidence for. Note. In Example 5.7, we were seeking evidence of a loss in sweetness. The null hypothesis says no loss on the average in a large population of tasters. The alternative hypothesis says there is a loss. So the hypotheses are H 0 : µ =0andH a : µ>0. This alternative hypothesis 5

6 is one-sided because we are interested only in deviations from the null hypothesis in one direction. Definition. If no direction of difference is mentioned in a problem, and the null hypothesis is H 0 : µ = 0, then the alternative hypothesis is two sided: H a : µ 0. More Detail: P Values and Statistical Significance Note. A significance test uses data in the form of a test statistic. The test statistic is usually based on a statistic that estimates the parameter that appears in the hypothesies. Definition. The probability, computed assuming that H 0 is true, that the test statistics would take a value as extreme or more extreme than that actually observed is called the P value of the test. The smaller the P value is, the stronger is the evidence against H 0 provided by the data. Example 5.9. In Example 5.7 the observations are an SRS of size n = 10 from a normal population with σ = 1. The observed mean sweetness loss for one cola was x =.3. The P value for testing H 0 : µ =0andH a : µ>0 is therefore P (x.3) calculated assuming that H 0 is true. When H 0 is true, x has the normal distribution with mean 0 and standard deviation σ/ n =1/ 10=.316. Find the P value by a normal probability calculation. Start by drawing a picture that 6

7 shows the P value as an area under a normal curve. Figure 5.10 (and TM-88) is the picture for this example. Then standardize x to get a standard normal Z and use Table A (see TM-139, TM-140): ( x 0 P (x.3) = P ).316 = P (Z.95) = =.1711 Note. We can compare the P value with a fixed value that we regard as decisive. This amounts to announcing in advance how much evidence against H 0 we will insist on. The decisive value of P is called the significance level. We write it as α, the Greek letter alpha. If we choose α =.05, we are requiring that the data give evidence against H 0 so strong that it would happen no more than 5% of the time when H 0 is true. Definition. If the P value is as small or smaller than α, wesaythat the data are statistically significant at level α. TestsforaPopulationMean Note. We have an SRS of size n drawn from a normal population with unknown mean µ. We want to test the hypothesis that µ has a specified value. Call the specified value µ 0. The null hypothesis is H 0 : µ = µ 0. The test is based on the sample mean x. Because normal calculations require standardized variables, we will use as our 7

8 test statistic the standardized sample mean z = x µ 0 σ/ n. This z test statistic has the standard normal distribution when H 0 is true. If the alternative is one-sided on the high side H a : µ>µ 0 then the p value is the probability that a standard normal variable Z takes a value at least as large as the observed z. Thatis,P = P (Z z). Example Suppose that the z test statistic for a two-sided test is z =1.7. The two-sided P value is the probability that Z 1.7 or Z 1.7. Figure 5.11 (and TM-89) shows this probability as areas under the standard normal curve. Because the standard normal distribution is symmetric, we can calculate this probability by finding P (Z 1.7) and doubling it: P (Z 1.7 orz 1.7) = 2P (Z 1.7) = 2(1.9554) = We would make exactly the same calculation if we observed z = 1.7. It is the absolute value z that matters, not whether z is positive or negative. Definition. To test the hypothesis H 0 : µ = µ 0 basedonansrsof size n from a population with unknown mean µ and known standard deviation σ, compute the z test statistic z = x µ 0 σ/ n. in terms of a variable Z having the standard normal distribution, the P valueforatestofh 0 against H a : µ>µ 0 is P (Z z) 8

9 H a : µ<µ 0 is P (Z z) H a : µ µ 0 is P (Z z ). These p values are exact if the population distribution is normal and are approximately correct for large n in other cases. Example The National Center for Health Statistics reports that the mean systolic blood pressure for males 35 to 44 years of age is 128 and the standard deviation in this population is 15. The medical director of a large company looks at the medical records of 72 executives in this age group and finds that the mean systolic blood pressure in this sample is x = Is this evidence that the company s executives have a different mean blood pressure from the general population? As usual in this chapter, we make the unrealistic assumption that we know the population standard deviation. Assume that executives have the same σ = 15 as the general population of middle-aged males. Step 1: Hypotheses. The null hypothesis is no difference from the national mean µ 0 = 128. The alternative is two-sided, because the medical director did not have a particular direction in mind before examining the data. So H 0 : µ = 128 and H a : µ 128. Test 2: Test Statistic. The z test statistic is z = x µ 0 σ/ n = / 72 = Test 3: P Value. You should still draw a picture to help find the P value, but now you can sketch the standard normal curve with the observed value of z. Figure 5.12 (and TM-90) shows that the P value 9

10 is the probability that a standard normal variable Z takes a value at least 1.09 away from zero. From Table A (and TM-139, TM-140) we find that this probability is P =2P (Z 1.09) = 2(1.8621) = Conclusion: More than 27% of the time, an SRS of size 72 from the general male population would have a mean blood pressure at least as far from 128 as that of the executive sample. The observed x = is therefore not good evidence that executives differ from other men. Tests with Fixed Significance Level Example In Example 5.12, we examined whether the mean NAEP quantitative score of young men is less than 275. The hypotheses are H 0 : µ = 275 and H a : µ<275. The z statistic takes the value z = Is the evidence against H 0 statistically significant at the 5% level? To determine significance, we need only compare the observed z = 1.45 with the 5% critical value z =1.645 from Table C (and TM-142). Because z = 1.45 is not farther from 0 than , it is not significant at level α =.05. Definition. To test the hypothesis H 0 : µ = µ 0 basedonansrsof size n from a population with unknown mean µ and known standard deviation σ, compute the z test statistic z = x µ 0 σ/ n. 10

11 Reflect H 0 at significance level α against a one-sided alternative H a : µ>µ 0 if z z H a : µ<µ 0 if z z where z is the upper α critical value from Table C (and TM-142). Reject H 0 at significance level α against a two-sided alternative H a : µ µ 0 if z z where z is the upper α/2 critical value from Table C (TM-142). Example The analytical laboratory of Example 5.4 is asked to evaluate the claim that the concentration of the active ingredient in a specimen is 0.86%. The lab makes 3 repeated analyses of the specimen. The mean result is x = The true concentration is the mean µ of the population of all analyses of the specimen. The standard deviation of the analysis process is known to be σ = Is there significant evidence at the 1% level that µ.86? Step 1: Hypotheses. The hypotheses are H 0 : µ =.86 and H a : µ.86. Step 2: Test Statstic. The z statistic is z = / 3 = Step 3: Significance. Because the alternative is two-sided, we compare z =4.99 with the α/2 =.005 critical value from Table C (and TM-142). This critical value is Z = Figure 5.15 (and TM- 93) illustrates the values of z that are statistically significant. Because 11

12 z > 2.576, we reject the null hypothesis and conclude (at the 1% significance level) that the concentration is not as claimed. Note. The P value is the smallest level α at which the data are significant. Knowing the P value allows us to assess significance at any level. Tests from Confidence Intervals Note. A level α two-sided significance test rejects a hypothesis H 0 : µ = µ 0 exactly when the value µ 0 falls outside a level 1 α confidence interval for µ 12

4 Hypothesis testing. 4.1 Types of hypothesis and types of error 4 HYPOTHESIS TESTING 49

4 Hypothesis testing. 4.1 Types of hypothesis and types of error 4 HYPOTHESIS TESTING 49 4 HYPOTHESIS TESTING 49 4 Hypothesis testing In sections 2 and 3 we considered the problem of estimating a single parameter of interest, θ. In this section we consider the related problem of testing whether

More information

First we look at some terms to be used in this section.

First we look at some terms to be used in this section. 8 Hypothesis Testing 8.1 Introduction MATH1015 Biostatistics Week 8 In Chapter 7, we ve studied the estimation of parameters, point or interval estimates. The construction of CI relies on the sampling

More information

STAT Chapter 8: Hypothesis Tests

STAT Chapter 8: Hypothesis Tests STAT 515 -- Chapter 8: Hypothesis Tests CIs are possibly the most useful forms of inference because they give a range of reasonable values for a parameter. But sometimes we want to know whether one particular

More information

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests:

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests: One sided tests So far all of our tests have been two sided. While this may be a bit easier to understand, this is often not the best way to do a hypothesis test. One simple thing that we can do to get

More information

Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing

Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing Business Statistics: Lecture 8: Introduction to Estimation & Hypothesis Testing Agenda Introduction to Estimation Point estimation Interval estimation Introduction to Hypothesis Testing Concepts en terminology

More information

Hypothesis testing. Data to decisions

Hypothesis testing. Data to decisions Hypothesis testing Data to decisions The idea Null hypothesis: H 0 : the DGP/population has property P Under the null, a sample statistic has a known distribution If, under that that distribution, the

More information

Unit 19 Formulating Hypotheses and Making Decisions

Unit 19 Formulating Hypotheses and Making Decisions Unit 19 Formulating Hypotheses and Making Decisions Objectives: To formulate a null hypothesis and an alternative hypothesis, and to choose a significance level To identify the Type I error and the Type

More information

LECTURE 5. Introduction to Econometrics. Hypothesis testing

LECTURE 5. Introduction to Econometrics. Hypothesis testing LECTURE 5 Introduction to Econometrics Hypothesis testing October 18, 2016 1 / 26 ON TODAY S LECTURE We are going to discuss how hypotheses about coefficients can be tested in regression models We will

More information

Sampling Distribution of a Sample Proportion

Sampling Distribution of a Sample Proportion Sampling Distribution of a Sample Proportion Lecture 26 Section 8.4 Robb T. Koether Hampden-Sydney College Mon, Mar 1, 2010 Robb T. Koether (Hampden-Sydney College) Sampling Distribution of a Sample Proportion

More information

Study Guide for Sample Size and Power

Study Guide for Sample Size and Power Learning Model Principles Study Guide for Sample Size and Power Learners and teachers at BYU Idaho... 1. Exercise faith in the Lord Jesus Christ as a principle of action and power 2. Understand that true

More information

Section 10.1 (Part 2 of 2) Significance Tests: Power of a Test

Section 10.1 (Part 2 of 2) Significance Tests: Power of a Test 1 Section 10.1 (Part 2 of 2) Significance Tests: Power of a Test Learning Objectives After this section, you should be able to DESCRIBE the relationship between the significance level of a test, P(Type

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Chapter 9 Hypothesis Testing: Single Population Ch. 9-1 9.1 What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population

More information

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă HYPOTHESIS TESTING II TESTS ON MEANS Sorana D. Bolboacă OBJECTIVES Significance value vs p value Parametric vs non parametric tests Tests on means: 1 Dec 14 2 SIGNIFICANCE LEVEL VS. p VALUE Materials and

More information

Inference for Distributions Inference for the Mean of a Population. Section 7.1

Inference for Distributions Inference for the Mean of a Population. Section 7.1 Inference for Distributions Inference for the Mean of a Population Section 7.1 Statistical inference in practice Emphasis turns from statistical reasoning to statistical practice: Population standard deviation,

More information

Section 9.1 (Part 2) (pp ) Type I and Type II Errors

Section 9.1 (Part 2) (pp ) Type I and Type II Errors Section 9.1 (Part 2) (pp. 547-551) Type I and Type II Errors Because we are basing our conclusion in a significance test on sample data, there is always a chance that our conclusions will be in error.

More information

Chapter 23. Inference About Means

Chapter 23. Inference About Means Chapter 23 Inference About Means 1 /57 Homework p554 2, 4, 9, 10, 13, 15, 17, 33, 34 2 /57 Objective Students test null and alternate hypotheses about a population mean. 3 /57 Here We Go Again Now that

More information

Inference for Distributions Inference for the Mean of a Population

Inference for Distributions Inference for the Mean of a Population Inference for Distributions Inference for the Mean of a Population PBS Chapter 7.1 009 W.H Freeman and Company Objectives (PBS Chapter 7.1) Inference for the mean of a population The t distributions The

More information

Single Sample Means. SOCY601 Alan Neustadtl

Single Sample Means. SOCY601 Alan Neustadtl Single Sample Means SOCY601 Alan Neustadtl The Central Limit Theorem If we have a population measured by a variable with a mean µ and a standard deviation σ, and if all possible random samples of size

More information

Chapter 7: Hypothesis Testing - Solutions

Chapter 7: Hypothesis Testing - Solutions Chapter 7: Hypothesis Testing - Solutions 7.1 Introduction to Hypothesis Testing The problem with applying the techniques learned in Chapter 5 is that typically, the population mean (µ) and standard deviation

More information

This gives us an upper and lower bound that capture our population mean.

This gives us an upper and lower bound that capture our population mean. Confidence Intervals Critical Values Practice Problems 1 Estimation 1.1 Confidence Intervals Definition 1.1 Margin of error. The margin of error of a distribution is the amount of error we predict when

More information

PSY 305. Module 3. Page Title. Introduction to Hypothesis Testing Z-tests. Five steps in hypothesis testing

PSY 305. Module 3. Page Title. Introduction to Hypothesis Testing Z-tests. Five steps in hypothesis testing Page Title PSY 305 Module 3 Introduction to Hypothesis Testing Z-tests Five steps in hypothesis testing State the research and null hypothesis Determine characteristics of comparison distribution Five

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

Last two weeks: Sample, population and sampling distributions finished with estimation & confidence intervals

Last two weeks: Sample, population and sampling distributions finished with estimation & confidence intervals Past weeks: Measures of central tendency (mean, mode, median) Measures of dispersion (standard deviation, variance, range, etc). Working with the normal curve Last two weeks: Sample, population and sampling

More information

Lecture 26 Section 8.4. Wed, Oct 14, 2009

Lecture 26 Section 8.4. Wed, Oct 14, 2009 PDFs n = Lecture 26 Section 8.4 Hampden-Sydney College Wed, Oct 14, 2009 Outline PDFs n = 1 2 PDFs n = 3 4 5 6 Outline PDFs n = 1 2 PDFs n = 3 4 5 6 PDFs n = Exercise 8.12, page 528. Suppose that 60% of

More information

Probability and Statistics

Probability and Statistics Probability and Statistics Kristel Van Steen, PhD 2 Montefiore Institute - Systems and Modeling GIGA - Bioinformatics ULg kristel.vansteen@ulg.ac.be CHAPTER 4: IT IS ALL ABOUT DATA 4a - 1 CHAPTER 4: IT

More information

Chapter 9. Hypothesis testing. 9.1 Introduction

Chapter 9. Hypothesis testing. 9.1 Introduction Chapter 9 Hypothesis testing 9.1 Introduction Confidence intervals are one of the two most common types of statistical inference. Use them when our goal is to estimate a population parameter. The second

More information

STAT 515 fa 2016 Lec Statistical inference - hypothesis testing

STAT 515 fa 2016 Lec Statistical inference - hypothesis testing STAT 515 fa 2016 Lec 20-21 Statistical inference - hypothesis testing Karl B. Gregory Wednesday, Oct 12th Contents 1 Statistical inference 1 1.1 Forms of the null and alternate hypothesis for µ and p....................

More information

Sampling Distribution of a Sample Proportion

Sampling Distribution of a Sample Proportion Sampling Distribution of a Sample Proportion Lecture 26 Section 8.4 Robb T. Koether Hampden-Sydney College Mon, Oct 10, 2011 Robb T. Koether (Hampden-Sydney College) Sampling Distribution of a Sample Proportion

More information

CENTRAL LIMIT THEOREM (CLT)

CENTRAL LIMIT THEOREM (CLT) CENTRAL LIMIT THEOREM (CLT) A sampling distribution is the probability distribution of the sample statistic that is formed when samples of size n are repeatedly taken from a population. If the sample statistic

More information

AP Statistics Ch 12 Inference for Proportions

AP Statistics Ch 12 Inference for Proportions Ch 12.1 Inference for a Population Proportion Conditions for Inference The statistic that estimates the parameter p (population proportion) is the sample proportion p ˆ. p ˆ = Count of successes in the

More information

Introductory Econometrics. Review of statistics (Part II: Inference)

Introductory Econometrics. Review of statistics (Part II: Inference) Introductory Econometrics Review of statistics (Part II: Inference) Jun Ma School of Economics Renmin University of China October 1, 2018 1/16 Null and alternative hypotheses Usually, we have two competing

More information

Statistical Inference. Section 9.1 Significance Tests: The Basics. Significance Test. The Reasoning of Significance Tests.

Statistical Inference. Section 9.1 Significance Tests: The Basics. Significance Test. The Reasoning of Significance Tests. Section 9.1 Significance Tests: The Basics Significance Test A significance test is a formal procedure for comparing observed data with a claim (also called a hypothesis) whose truth we want to assess.

More information

Chapter 26: Comparing Counts (Chi Square)

Chapter 26: Comparing Counts (Chi Square) Chapter 6: Comparing Counts (Chi Square) We ve seen that you can turn a qualitative variable into a quantitative one (by counting the number of successes and failures), but that s a compromise it forces

More information

Mathematical Notation Math Introduction to Applied Statistics

Mathematical Notation Math Introduction to Applied Statistics Mathematical Notation Math 113 - Introduction to Applied Statistics Name : Use Word or WordPerfect to recreate the following documents. Each article is worth 10 points and should be emailed to the instructor

More information

Nicole Dalzell. July 2, 2014

Nicole Dalzell. July 2, 2014 UNIT 1: INTRODUCTION TO DATA LECTURE 3: EDA (CONT.) AND INTRODUCTION TO STATISTICAL INFERENCE VIA SIMULATION STATISTICS 101 Nicole Dalzell July 2, 2014 Teams and Announcements Team1 = Houdan Sai Cui Huanqi

More information

16.400/453J Human Factors Engineering. Design of Experiments II

16.400/453J Human Factors Engineering. Design of Experiments II J Human Factors Engineering Design of Experiments II Review Experiment Design and Descriptive Statistics Research question, independent and dependent variables, histograms, box plots, etc. Inferential

More information

Last week: Sample, population and sampling distributions finished with estimation & confidence intervals

Last week: Sample, population and sampling distributions finished with estimation & confidence intervals Past weeks: Measures of central tendency (mean, mode, median) Measures of dispersion (standard deviation, variance, range, etc). Working with the normal curve Last week: Sample, population and sampling

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 8 Fundamentals of Hypothesis Testing: One-Sample Tests

Statistics for Managers Using Microsoft Excel/SPSS Chapter 8 Fundamentals of Hypothesis Testing: One-Sample Tests Statistics for Managers Using Microsoft Excel/SPSS Chapter 8 Fundamentals of Hypothesis Testing: One-Sample Tests 1999 Prentice-Hall, Inc. Chap. 8-1 Chapter Topics Hypothesis Testing Methodology Z Test

More information

Introduction to Statistics

Introduction to Statistics MTH4106 Introduction to Statistics Notes 15 Spring 2013 Testing hypotheses about the mean Earlier, we saw how to test hypotheses about a proportion, using properties of the Binomial distribution It is

More information

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc.

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc. Hypothesis Tests and Estimation for Population Variances 11-1 Learning Outcomes Outcome 1. Formulate and carry out hypothesis tests for a single population variance. Outcome 2. Develop and interpret confidence

More information

A-LEVEL STATISTICS. SS04 Report on the Examination June Version: 1.0

A-LEVEL STATISTICS. SS04 Report on the Examination June Version: 1.0 A-LEVEL STATISTICS SS04 Report on the Examination 6380 June 2016 Version: 1.0 Further copies of this Report are available from aqa.org.uk Copyright 2016 AQA and its licensors. All rights reserved. AQA

More information

Background to Statistics

Background to Statistics FACT SHEET Background to Statistics Introduction Statistics include a broad range of methods for manipulating, presenting and interpreting data. Professional scientists of all kinds need to be proficient

More information

determine whether or not this relationship is.

determine whether or not this relationship is. Section 9-1 Correlation A correlation is a between two. The data can be represented by ordered pairs (x,y) where x is the (or ) variable and y is the (or ) variable. There are several types of correlations

More information

Statistics 251: Statistical Methods

Statistics 251: Statistical Methods Statistics 251: Statistical Methods 1-sample Hypothesis Tests Module 9 2018 Introduction We have learned about estimating parameters by point estimation and interval estimation (specifically confidence

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

ANOVA - analysis of variance - used to compare the means of several populations.

ANOVA - analysis of variance - used to compare the means of several populations. 12.1 One-Way Analysis of Variance ANOVA - analysis of variance - used to compare the means of several populations. Assumptions for One-Way ANOVA: 1. Independent samples are taken using a randomized design.

More information

Class 24. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 24. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 4 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 013 by D.B. Rowe 1 Agenda: Recap Chapter 9. and 9.3 Lecture Chapter 10.1-10.3 Review Exam 6 Problem Solving

More information

9-7: THE POWER OF A TEST

9-7: THE POWER OF A TEST CD9-1 9-7: THE POWER OF A TEST In the initial discussion of statistical hypothesis testing the two types of risks that are taken when decisions are made about population parameters based only on sample

More information

POLI 443 Applied Political Research

POLI 443 Applied Political Research POLI 443 Applied Political Research Session 4 Tests of Hypotheses The Normal Curve Lecturer: Prof. A. Essuman-Johnson, Dept. of Political Science Contact Information: aessuman-johnson@ug.edu.gh College

More information

where Female = 0 for males, = 1 for females Age is measured in years (22, 23, ) GPA is measured in units on a four-point scale (0, 1.22, 3.45, etc.

where Female = 0 for males, = 1 for females Age is measured in years (22, 23, ) GPA is measured in units on a four-point scale (0, 1.22, 3.45, etc. Notes on regression analysis 1. Basics in regression analysis key concepts (actual implementation is more complicated) A. Collect data B. Plot data on graph, draw a line through the middle of the scatter

More information

Dealing with the assumption of independence between samples - introducing the paired design.

Dealing with the assumption of independence between samples - introducing the paired design. Dealing with the assumption of independence between samples - introducing the paired design. a) Suppose you deliberately collect one sample and measure something. Then you collect another sample in such

More information

The Purpose of Hypothesis Testing

The Purpose of Hypothesis Testing Section 8 1A:! An Introduction to Hypothesis Testing The Purpose of Hypothesis Testing See s Candy states that a box of it s candy weighs 16 oz. They do not mean that every single box weights exactly 16

More information

MAT2377. Rafa l Kulik. Version 2015/November/23. Rafa l Kulik

MAT2377. Rafa l Kulik. Version 2015/November/23. Rafa l Kulik MAT2377 Rafa l Kulik Version 2015/November/23 Rafa l Kulik Rafa l Kulik 1 Rafa l Kulik 2 Rafa l Kulik 3 Rafa l Kulik 4 The Z-test Test on the mean of a normal distribution, σ known Suppose X 1,..., X n

More information

MAT 2379, Introduction to Biostatistics, Sample Calculator Questions 1. MAT 2379, Introduction to Biostatistics

MAT 2379, Introduction to Biostatistics, Sample Calculator Questions 1. MAT 2379, Introduction to Biostatistics MAT 2379, Introduction to Biostatistics, Sample Calculator Questions 1 MAT 2379, Introduction to Biostatistics Sample Calculator Problems for the Final Exam Note: The exam will also contain some problems

More information

LECTURE 12 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING

LECTURE 12 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING LECTURE 1 CONFIDENCE INTERVAL AND HYPOTHESIS TESTING INTERVAL ESTIMATION Point estimation of : The inference is a guess of a single value as the value of. No accuracy associated with it. Interval estimation

More information

Sampling Distributions

Sampling Distributions Sampling Distributions Sampling Distribution of the Mean & Hypothesis Testing Remember sampling? Sampling Part 1 of definition Selecting a subset of the population to create a sample Generally random sampling

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Lecture No. # 36 Sampling Distribution and Parameter Estimation

More information

Statistical Inference. Hypothesis Testing

Statistical Inference. Hypothesis Testing Statistical Inference Hypothesis Testing Previously, we introduced the point and interval estimation of an unknown parameter(s), say µ and σ 2. However, in practice, the problem confronting the scientist

More information

Hypothesis Testing The basic ingredients of a hypothesis test are

Hypothesis Testing The basic ingredients of a hypothesis test are Hypothesis Testing The basic ingredients of a hypothesis test are 1 the null hypothesis, denoted as H o 2 the alternative hypothesis, denoted as H a 3 the test statistic 4 the data 5 the conclusion. The

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter IV. Decision Making for a Single Sample. Chapter IV

ME3620. Theory of Engineering Experimentation. Spring Chapter IV. Decision Making for a Single Sample. Chapter IV Theory of Engineering Experimentation Chapter IV. Decision Making for a Single Sample Chapter IV 1 4 1 Statistical Inference The field of statistical inference consists of those methods used to make decisions

More information

CONTINUOUS RANDOM VARIABLES

CONTINUOUS RANDOM VARIABLES the Further Mathematics network www.fmnetwork.org.uk V 07 REVISION SHEET STATISTICS (AQA) CONTINUOUS RANDOM VARIABLES The main ideas are: Properties of Continuous Random Variables Mean, Median and Mode

More information

Hypothesis Testing and Confidence Intervals (Part 2): Cohen s d, Logic of Testing, and Confidence Intervals

Hypothesis Testing and Confidence Intervals (Part 2): Cohen s d, Logic of Testing, and Confidence Intervals Hypothesis Testing and Confidence Intervals (Part 2): Cohen s d, Logic of Testing, and Confidence Intervals Lecture 9 Justin Kern April 9, 2018 Measuring Effect Size: Cohen s d Simply finding whether a

More information

Chapter 5: HYPOTHESIS TESTING

Chapter 5: HYPOTHESIS TESTING MATH411: Applied Statistics Dr. YU, Chi Wai Chapter 5: HYPOTHESIS TESTING 1 WHAT IS HYPOTHESIS TESTING? As its name indicates, it is about a test of hypothesis. To be more precise, we would first translate

More information

Statistics for IT Managers

Statistics for IT Managers Statistics for IT Managers 95-796, Fall 2012 Module 2: Hypothesis Testing and Statistical Inference (5 lectures) Reading: Statistics for Business and Economics, Ch. 5-7 Confidence intervals Given the sample

More information

5 Basic Steps in Any Hypothesis Test

5 Basic Steps in Any Hypothesis Test 5 Basic Steps in Any Hypothesis Test Step 1: Determine hypotheses (H0 and Ha). H0: μ d = 0 (μ 1 μ 2 =0) Ha: μ d > 0 (μ 1 μ 2 >0) upper-sided Ha: : μ d 0 (μ 1 μ 2 0) two-sided Step 2: Verify necessary conditions,

More information

Exam 2 (KEY) July 20, 2009

Exam 2 (KEY) July 20, 2009 STAT 2300 Business Statistics/Summer 2009, Section 002 Exam 2 (KEY) July 20, 2009 Name: USU A#: Score: /225 Directions: This exam consists of six (6) questions, assessing material learned within Modules

More information

Hypothesis Testing. ECE 3530 Spring Antonio Paiva

Hypothesis Testing. ECE 3530 Spring Antonio Paiva Hypothesis Testing ECE 3530 Spring 2010 Antonio Paiva What is hypothesis testing? A statistical hypothesis is an assertion or conjecture concerning one or more populations. To prove that a hypothesis is

More information

6 Single Sample Methods for a Location Parameter

6 Single Sample Methods for a Location Parameter 6 Single Sample Methods for a Location Parameter If there are serious departures from parametric test assumptions (e.g., normality or symmetry), nonparametric tests on a measure of central tendency (usually

More information

Announcements. Unit 3: Foundations for inference Lecture 3: Decision errors, significance levels, sample size, and power.

Announcements. Unit 3: Foundations for inference Lecture 3: Decision errors, significance levels, sample size, and power. Announcements Announcements Unit 3: Foundations for inference Lecture 3:, significance levels, sample size, and power Statistics 101 Mine Çetinkaya-Rundel October 1, 2013 Project proposal due 5pm on Friday,

More information

CBA4 is live in practice mode this week exam mode from Saturday!

CBA4 is live in practice mode this week exam mode from Saturday! Announcements CBA4 is live in practice mode this week exam mode from Saturday! Material covered: Confidence intervals (both cases) 1 sample hypothesis tests (both cases) Hypothesis tests for 2 means as

More information

Lecture 30. DATA 8 Summer Regression Inference

Lecture 30. DATA 8 Summer Regression Inference DATA 8 Summer 2018 Lecture 30 Regression Inference Slides created by John DeNero (denero@berkeley.edu) and Ani Adhikari (adhikari@berkeley.edu) Contributions by Fahad Kamran (fhdkmrn@berkeley.edu) and

More information

23. MORE HYPOTHESIS TESTING

23. MORE HYPOTHESIS TESTING 23. MORE HYPOTHESIS TESTING The Logic Behind Hypothesis Testing For simplicity, consider testing H 0 : µ = µ 0 against the two-sided alternative H A : µ µ 0. Even if H 0 is true (so that the expectation

More information

280 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE Tests of Statistical Hypotheses

280 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE Tests of Statistical Hypotheses 280 CHAPTER 9 TESTS OF HYPOTHESES FOR A SINGLE SAMPLE 9-1.2 Tests of Statistical Hypotheses To illustrate the general concepts, consider the propellant burning rate problem introduced earlier. The null

More information

Chapter 20 Comparing Groups

Chapter 20 Comparing Groups Chapter 20 Comparing Groups Comparing Proportions Example Researchers want to test the effect of a new anti-anxiety medication. In clinical testing, 64 of 200 people taking the medicine reported symptoms

More information

8.1-4 Test of Hypotheses Based on a Single Sample

8.1-4 Test of Hypotheses Based on a Single Sample 8.1-4 Test of Hypotheses Based on a Single Sample Example 1 (Example 8.6, p. 312) A manufacturer of sprinkler systems used for fire protection in office buildings claims that the true average system-activation

More information

t-test for b Copyright 2000 Tom Malloy. All rights reserved. Regression

t-test for b Copyright 2000 Tom Malloy. All rights reserved. Regression t-test for b Copyright 2000 Tom Malloy. All rights reserved. Regression Recall, back some time ago, we used a descriptive statistic which allowed us to draw the best fit line through a scatter plot. We

More information

Week 8: Correlation and Regression

Week 8: Correlation and Regression Health Sciences M.Sc. Programme Applied Biostatistics Week 8: Correlation and Regression The correlation coefficient Correlation coefficients are used to measure the strength of the relationship or association

More information

Homework Exercises. 1. You want to conduct a test of significance for p the population proportion.

Homework Exercises. 1. You want to conduct a test of significance for p the population proportion. Homework Exercises 1. You want to conduct a test of significance for p the population proportion. The test you will run is H 0 : p = 0.4 Ha: p > 0.4, n = 80. you decide that the critical value will be

More information

Mathematical Notation Math Introduction to Applied Statistics

Mathematical Notation Math Introduction to Applied Statistics Mathematical Notation Math 113 - Introduction to Applied Statistics Name : Use Word or WordPerfect to recreate the following documents. Each article is worth 10 points and can be printed and given to the

More information

Elementary Statistics Triola, Elementary Statistics 11/e Unit 17 The Basics of Hypotheses Testing

Elementary Statistics Triola, Elementary Statistics 11/e Unit 17 The Basics of Hypotheses Testing (Section 8-2) Hypotheses testing is not all that different from confidence intervals, so let s do a quick review of the theory behind the latter. If it s our goal to estimate the mean of a population,

More information

LAB 2. HYPOTHESIS TESTING IN THE BIOLOGICAL SCIENCES- Part 2

LAB 2. HYPOTHESIS TESTING IN THE BIOLOGICAL SCIENCES- Part 2 LAB 2. HYPOTHESIS TESTING IN THE BIOLOGICAL SCIENCES- Part 2 Data Analysis: The mean egg masses (g) of the two different types of eggs may be exactly the same, in which case you may be tempted to accept

More information

Difference Between Pair Differences v. 2 Samples

Difference Between Pair Differences v. 2 Samples 1 Sectio1.1 Comparing Two Proportions Learning Objectives After this section, you should be able to DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET a confidence

More information

Statistical Inference. Why Use Statistical Inference. Point Estimates. Point Estimates. Greg C Elvers

Statistical Inference. Why Use Statistical Inference. Point Estimates. Point Estimates. Greg C Elvers Statistical Inference Greg C Elvers 1 Why Use Statistical Inference Whenever we collect data, we want our results to be true for the entire population and not just the sample that we used But our sample

More information

Statistical Testing I. De gustibus non est disputandum

Statistical Testing I. De gustibus non est disputandum Statistical Testing I De gustibus non est disputandum The Pepsi Challenge "Take the Pepsi Challenge" was the motto of a marketing campaign by the Pepsi-Cola Company in the 1980's. A total of 100 Coca-Cola

More information

PHP2510: Principles of Biostatistics & Data Analysis. Lecture X: Hypothesis testing. PHP 2510 Lec 10: Hypothesis testing 1

PHP2510: Principles of Biostatistics & Data Analysis. Lecture X: Hypothesis testing. PHP 2510 Lec 10: Hypothesis testing 1 PHP2510: Principles of Biostatistics & Data Analysis Lecture X: Hypothesis testing PHP 2510 Lec 10: Hypothesis testing 1 In previous lectures we have encountered problems of estimating an unknown population

More information

Intro to Confidence Intervals: A estimate is a single statistic based on sample data to estimate a population parameter Simplest approach But not always very precise due to variation in the sampling distribution

More information

Hypotheses and Errors

Hypotheses and Errors Hypotheses and Errors Jonathan Bagley School of Mathematics, University of Manchester Jonathan Bagley, September 23, 2005 Hypotheses & Errors - p. 1/22 Overview Today we ll develop the standard framework

More information

Hypothesis Testing. Mean (SDM)

Hypothesis Testing. Mean (SDM) Confidence Intervals and Hypothesis Testing Readings: Howell, Ch. 4, 7 The Sampling Distribution of the Mean (SDM) Derivation - See Thorne & Giesen (T&G), pp. 169-171 or online Chapter Overview for Ch.

More information

DIRECTED NUMBERS ADDING AND SUBTRACTING DIRECTED NUMBERS

DIRECTED NUMBERS ADDING AND SUBTRACTING DIRECTED NUMBERS DIRECTED NUMBERS POSITIVE NUMBERS These are numbers such as: 3 which can be written as +3 46 which can be written as +46 14.67 which can be written as +14.67 a which can be written as +a RULE Any number

More information

Business Statistics 41000: Homework # 5

Business Statistics 41000: Homework # 5 Business Statistics 41000: Homework # 5 Drew Creal Due date: Beginning of class in week # 10 Remarks: These questions cover Lectures #7, 8, and 9. Question # 1. Condence intervals and plug-in predictive

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. The product moment correlation coefficient is denoted by r and Spearman s rank correlation coefficient is denoted by r s. (a) Sketch separate scatter diagrams, with five points on each diagram, to show

More information

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests Overall Overview INFOWO Statistics lecture S3: Hypothesis testing Peter de Waal Department of Information and Computing Sciences Faculty of Science, Universiteit Utrecht 1 Descriptive statistics 2 Scores

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

Contingency Tables. Safety equipment in use Fatal Non-fatal Total. None 1, , ,128 Seat belt , ,878

Contingency Tables. Safety equipment in use Fatal Non-fatal Total. None 1, , ,128 Seat belt , ,878 Contingency Tables I. Definition & Examples. A) Contingency tables are tables where we are looking at two (or more - but we won t cover three or more way tables, it s way too complicated) factors, each

More information

Distribution-Free Procedures (Devore Chapter Fifteen)

Distribution-Free Procedures (Devore Chapter Fifteen) Distribution-Free Procedures (Devore Chapter Fifteen) MATH-5-01: Probability and Statistics II Spring 018 Contents 1 Nonparametric Hypothesis Tests 1 1.1 The Wilcoxon Rank Sum Test........... 1 1. Normal

More information

Chapter 3 Multiple Regression Complete Example

Chapter 3 Multiple Regression Complete Example Department of Quantitative Methods & Information Systems ECON 504 Chapter 3 Multiple Regression Complete Example Spring 2013 Dr. Mohammad Zainal Review Goals After completing this lecture, you should be

More information

Notes 3: Statistical Inference: Sampling, Sampling Distributions Confidence Intervals, and Hypothesis Testing

Notes 3: Statistical Inference: Sampling, Sampling Distributions Confidence Intervals, and Hypothesis Testing Notes 3: Statistical Inference: Sampling, Sampling Distributions Confidence Intervals, and Hypothesis Testing 1. Purpose of statistical inference Statistical inference provides a means of generalizing

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com 1. A researcher claims that, at a river bend, the water gradually gets deeper as the distance from the inner bank increases. He measures the distance from the inner bank, b cm, and the depth of a river,

More information

Applied Statistics for the Behavioral Sciences

Applied Statistics for the Behavioral Sciences Applied Statistics for the Behavioral Sciences Chapter 8 One-sample designs Hypothesis testing/effect size Chapter Outline Hypothesis testing null & alternative hypotheses alpha ( ), significance level,

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics MAS 713 Chapter 8 Previous lecture: 1 Bayesian Inference 2 Decision theory 3 Bayesian Vs. Frequentist 4 Loss functions 5 Conjugate priors Any questions? Mathematical Statistics

More information