Data Fusion of Dual Foot-Mounted Zero Velocity Update (ZUPT) Aided Inertial Navigation Systems (INSs) using Centroid Method

Size: px
Start display at page:

Download "Data Fusion of Dual Foot-Mounted Zero Velocity Update (ZUPT) Aided Inertial Navigation Systems (INSs) using Centroid Method"

Transcription

1 February 02, 2013 Data Fusion of Dual Foot-Mounted Zero Velocity Update (ZUPT) Aided Inertial Navigation Systems (INSs) using Centroid Method Girisha Under the guidance of Prof. K.V.S. Hari

2 Notations Define the navigation state vector of right foot INS at time instant N + [ ] ˆx (R) = ˆp (R) ˆθ (R) T (R) ˆp ˆv (R) ˆθ(R) ˆv (R) R 3 is the position estimate of right foot INS R 3 is the velocity estimate of right foot INS R 3 is the attitude estimate of right foot INS

3 Notations Define the navigation state vector of right foot INS at time instant N + [ ] ˆx (R) = ˆp (R) ˆθ (R) T (R) ˆp ˆv (R) ˆθ(R) ˆv (R) R 3 is the position estimate of right foot INS R 3 is the velocity estimate of right foot INS R 3 is the attitude estimate of right foot INS Define the navigation state vector of left foot INS at time instant N + [ ] ˆx (L) T = ˆp (L) ˆθ (L) (L) ˆp ˆv (L) ˆθ(L) ˆv (L) R 3 is the position estimate of left foot INS R 3 is the velocity estimate of left foot INS R 3 is the attitude estimate of left foot INS

4 Range Constraint Algorithm ZUPT Aided INS (Right Foot) ZUPT Aided INS (Left Foot) [ [ ] ˆx (R) ] ˆx (L) Range Constraint Algorithm [ [ ] ˆx (R) ] ˆx (L) At any instant of time N +, the distance between position estimates of right and left foot INS cannot be greater than a parameter nown as foot-to-foot maximum separation (γ). Based on this range constraint, we develop Centroid Method to fuse the navigation information of right and left foot-mounted ZUPT aided INS.

5 Centroid Method - Problem Formulation Define the unconstrained joint position estimate vector at time instant N + ˆ [ = ˆp (R) ] T ˆp (L) (R) ˆp ˆp (L) R 3 is the position estimate of right foot INS R 3 is the position estimate of left foot INS

6 Centroid Method - Problem Formulation Define the unconstrained joint position estimate vector at time instant N + ˆ [ = ˆp (R) ] T ˆp (L) (R) ˆp ˆp (L) R 3 is the position estimate of right foot INS R 3 is the position estimate of left foot INS Define the matrix L = [ I 3 I 3 ] where I q is the identity matrix of size q.

7 Centroid Method - Problem Formulation At any instant of time N +, following condition must hold: Lˆ 2 ˆp = (R) ˆp (L) γ2 where γ R + is the foot-to-foot maximum separation

8 Centroid Method - Problem Formulation At any instant of time N +, following condition must hold: Lˆ 2 ˆp = (R) ˆp (L) γ2 where γ R + is the foot-to-foot maximum separation Hence, we can formulate the problem in constrained least squares framewor as: ( ) (joint) = argmin ˆp p 2 subject to L 2 p R γ2 (1) where [ = p (R) ] T p (L) is the range constrained joint position estimate vector at time instant N +

9 Centroid Method - Solution In Lagrangian formulation with Lagrange multiplier λ C : ( ) ( = (joint) J,λ C ˆp + λ C Ψ 2 2 ) where ( Ψ ) = L 2 2 γ2

10 Centroid Method - Solution In Lagrangian formulation with Lagrange multiplier λ C : ( ) ( = (joint) J,λ C ˆp + λ C Ψ 2 2 ) where ( Ψ ) = L 2 2 γ2 Lagrange condition (normal equations): ( ) J,λ C J (,λ C ) = 0 = ( I 6 + λ C L T L ) λ C = 0 = L = ˆ (2) 2 = 2 γ2 (3)

11 Centroid Method - Solution The solution of equation (2) is = ( I 6 + λ C L T L ) 1 ˆp (joint) (4)

12 Centroid Method - Solution The solution of equation (2) is = ( I 6 + λ C L T L ) 1 ˆp (joint) (4) Solve for λ C : First note that (I 6 + λ C L T L) 1 = 1 1+2λ C [ (1+λC ) I 3 λ C I 3 λ C I 3 (1+λ C ) I 3 ] (5) provided λ C 0.5

13 Centroid Method - Solution The solution of equation (2) is = ( I 6 + λ C L T L ) 1 ˆp (joint) (4) Solve for λ C : First note that (I 6 + λ C L T L) 1 = 1 1+2λ C [ (1+λC ) I 3 λ C I 3 λ C I 3 (1+λ C ) I 3 ] (5) provided λ C 0.5 Substitute Eq. (4) in Eq. (3) = L ( I 6 + λ C L T L ) 1 (joint) ˆp 2 = 2 γ2

14 Centroid Method - Solution Substitute Eq. (5) and simplifying: ( ) ˆd λ C = 0.5 γ 1 where ˆd = ˆp (R) ˆp (L) is the distance between the unconstrained position estimates of right and left foot INS. 2 (6)

15 Centroid Method - Solution Substitute Eq. (5) and simplifying: ( ) ˆd λ C = 0.5 γ 1 where ˆd = ˆp (R) ˆp (L) is the distance between the unconstrained position estimates of right and left foot INS. Substitute Eq. (5), Eq. (6) in Eq. (4) and simplifying: p (R) = p (L) = (ˆd + γ) (ˆd + γ) ˆp (R) + ˆp (L) + 2 (ˆd γ) ˆp (L) (6) 2 ˆd (7) (ˆd γ) ˆp (R) 2 ˆd (8)

16 Graphical Representation ˆp (R) p (R) Sphere of diameter γ and centre at p 0 p 0 Figure: Graphical representation of unconstrained and constrained position estimates p (L) ˆp (L)

17 Alternate Problem Formulation In the figure, the centre of the sphere Hence, by substituting p 0 = p(r) p (L) + p (L) 2 (9) = 2p 0 p (R) (10) an alternate formulation of (1) is written as ( ) p (R) (joint) = argmin ˆp L T p p R 3 2 subject to p (R) 2 p 0 γ2 2 4 where 0 = [ ] T 0 p 0

18 Alternate Problem Formulation Solution in Lagrangian framewor is found to be: p (R) = γ ˆp(R) γ ˆp (L) + 2 ˆd p 0 2 ˆd (11) Substitute Eq. (11) in Eq. (10) p (L) = γ ˆp(L) γ ˆp (R) + 2 ˆd p 0 2 ˆd (12) If we define the centroid ˆp (R) p 0 = + ˆp (L) 2 solution given by Eq. (11) and (12) reduces to the solution given by Eq. (7) and Eq. (8) respectively. (13)

19 Weighted Centroid Method Instead of defining the centroid as the midpoint of right and left foot INS position estimates as in Eq. (13), we can mae use of the entries of error covariance matrix P, to define the weighted centroid. Range constrained right and left foot position estimates given by Eq. (11) and (12) is used as the pseudo-measurement in complementary feedbac Kalman Filter.

20 Centroid Method - Algorithm Description If ˆd > γ, then execute the following steps. Calculate the pseudo-measurement for the position given by Eq. (11) and Eq. (12), where p 0 is given by Eq. (13) or as explained in weighted centroid method.

21 Centroid Method - Algorithm Description If ˆd > γ, then execute the following steps. Calculate the pseudo-measurement for the position given by Eq. (11) and Eq. (12), where p 0 is given by Eq. (13) or as explained in weighted centroid method. Kalman filter position pseudo-measurement update for right foot INS: 1. Compute the Kalman gain: K (R) = P (R) ( H (R) (pos) ) T [ H (R) (pos) P(R) ( ) ] T 1 H (R) (R) (pos) + R (pos) 2. Correct the navigation state vector using the position pseudo-measurement: [ ] ˆx (R) = ˆx (R) + K (R) p (R) H (R) (pos) ˆx(R) 3. Correct the state covariance matrix: P (R) = ( ) I K (R) H (R) (pos) P (R)

22 Centroid Method - Algorithm Description Kalman filter position pseudo-measurement update for left foot INS: 1. Compute the Kalman gain: K (L) = P (L) ( H (L) (pos) ) [ T H (L) (pos) P(L) ( ) ] T 1 H (L) (L) (pos) + R (pos) where H (L) (pos) = [ ] I is the position pseudo-measurement observation matrix of left foot INS and is the position pseudo-measurement noise covariance matrix of left foot INS. 2. Correct the navigation state vector using the position pseudo-measurement: R (L) (pos) ˆx (L) = ˆx (L) + K (L) 3. Correct the state covariance matrix: P (L) = [ p (L) ( ) I K (L) H (L) (pos) ] H (L) (pos) ˆx(L) P (L)

23 Than You

A Novel Kalman Filter with State Constraint Approach for the Integration of Multiple Pedestrian Navigation Systems

A Novel Kalman Filter with State Constraint Approach for the Integration of Multiple Pedestrian Navigation Systems Micromachines 21, 6, 926-92; doi:1.339/mi67926 Article OPEN ACCESS micromachines ISSN 272-666X www.mdpi.com/journal/micromachines A Novel Kalman Filter with State Constraint Approach for the Integration

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation Aided INS Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder Electrical and Computer

More information

Lecture. Aided INS EE 570: Location and Navigation. 1 Overview. 1.1 ECEF as and Example. 1.2 Inertial Measurements

Lecture. Aided INS EE 570: Location and Navigation. 1 Overview. 1.1 ECEF as and Example. 1.2 Inertial Measurements Lecture Aided EE 570: Location and Navigation Lecture Notes Update on April 13, 2016 Aly El-Osery and Kevin Wedeward, Electrical Engineering Dept., New Mexico Tech In collaoration with Stephen Bruder,

More information

Vision-Aided Navigation Based on Three-View Geometry

Vision-Aided Navigation Based on Three-View Geometry Vision-Aided Navigation Based on hree-view Geometry Vadim Indelman, Pini Gurfil Distributed Space Systems Lab, Aerospace Engineering, echnion Ehud Rivlin Computer Science, echnion Hector Rotstein RAFAEL

More information

Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter

Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter Article Multi-Sensor Fusion with Interaction Multiple Model and Chi-Square Test Tolerant Filter Chun Yang,, Arash Mohammadi 2, *,, and Qing-Wei Chen College of Automation, Nanjing University of Science

More information

Continuous Preintegration Theory for Graph-based Visual-Inertial Navigation

Continuous Preintegration Theory for Graph-based Visual-Inertial Navigation Continuous Preintegration Theory for Graph-based Visual-Inertial Navigation Kevin Ecenhoff - ec@udel.edu Patric Geneva - pgeneva@udel.edu Guoquan Huang - ghuang@udel.edu Department of Mechanical Engineering

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

with Application to Autonomous Vehicles

with Application to Autonomous Vehicles Nonlinear with Application to Autonomous Vehicles (Ph.D. Candidate) C. Silvestre (Supervisor) P. Oliveira (Co-supervisor) Institute for s and Robotics Instituto Superior Técnico Portugal January 2010 Presentation

More information

TSRT14: Sensor Fusion Lecture 9

TSRT14: Sensor Fusion Lecture 9 TSRT14: Sensor Fusion Lecture 9 Simultaneous localization and mapping (SLAM) Gustaf Hendeby gustaf.hendeby@liu.se TSRT14 Lecture 9 Gustaf Hendeby Spring 2018 1 / 28 Le 9: simultaneous localization and

More information

UAV Navigation: Airborne Inertial SLAM

UAV Navigation: Airborne Inertial SLAM Introduction UAV Navigation: Airborne Inertial SLAM Jonghyuk Kim Faculty of Engineering and Information Technology Australian National University, Australia Salah Sukkarieh ARC Centre of Excellence in

More information

Multiplicative vs. Additive Filtering for Spacecraft Attitude Determination

Multiplicative vs. Additive Filtering for Spacecraft Attitude Determination Multiplicative vs. Additive Filtering for Spacecraft Attitude Determination F. Landis Markley, NASA s Goddard Space Flight Center, Greenbelt, MD, USA Abstract The absence of a globally nonsingular three-parameter

More information

EE 565: Position, Navigation, and Timing

EE 565: Position, Navigation, and Timing EE 565: Position, Navigation, and Timing Kalman Filtering Example Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA In Collaboration with Stephen Bruder

More information

Predictive Control of Gyroscopic-Force Actuators for Mechanical Vibration Damping

Predictive Control of Gyroscopic-Force Actuators for Mechanical Vibration Damping ARC Centre of Excellence for Complex Dynamic Systems and Control, pp 1 15 Predictive Control of Gyroscopic-Force Actuators for Mechanical Vibration Damping Tristan Perez 1, 2 Joris B Termaat 3 1 School

More information

Partitioned Covariance Intersection

Partitioned Covariance Intersection Partitioned Covariance Intersection Arne Petersen Christian Albrechts University Kiel, Germany E-Mail: apetersen@mip.informati.uni-iel.de Phone: +49 ()431 88 1418 Marc-André Beyer Raytheon Anschütz GmbH

More information

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University Kalman Filter 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Examples up to now have been discrete (binary) random variables Kalman filtering can be seen as a special case of a temporal

More information

CONSTRAINT KALMAN FILTER FOR INDOOR BLUETOOTH LOCALIZATION

CONSTRAINT KALMAN FILTER FOR INDOOR BLUETOOTH LOCALIZATION CONSTRAINT KALMAN FILTER FOR INDOOR BLUETOOTH LOCALIZATION Liang Chen, Heidi Kuusniemi, Yuwei Chen, Jingbin Liu, Ling Pei, Laura Ruotsalainen, and Ruizhi Chen NLS Finnish Geospatial Research Institute

More information

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents

Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Navtech Part #s Volume 1 #1277 Volume 2 #1278 Volume 3 #1279 3 Volume Set #1280 Stochastic Models, Estimation and Control Peter S. Maybeck Volumes 1, 2 & 3 Tables of Contents Volume 1 Preface Contents

More information

1 EM algorithm: updating the mixing proportions {π k } ik are the posterior probabilities at the qth iteration of EM.

1 EM algorithm: updating the mixing proportions {π k } ik are the posterior probabilities at the qth iteration of EM. Université du Sud Toulon - Var Master Informatique Probabilistic Learning and Data Analysis TD: Model-based clustering by Faicel CHAMROUKHI Solution The aim of this practical wor is to show how the Classification

More information

Multiple Autonomous Robotic Systems Laboratory Technical Report Number

Multiple Autonomous Robotic Systems Laboratory Technical Report Number Observability-constrained EKF Implementation of the IMU-RGBD Camera Navigation using Point and Plane Features Chao X. Guo and Stergios I. Roumeliotis Multiple Autonomous Robotic Systems Laboratory Technical

More information

Investigation of the Attitude Error Vector Reference Frame in the INS EKF

Investigation of the Attitude Error Vector Reference Frame in the INS EKF Investigation of the Attitude Error Vector Reference Frame in the INS EKF Stephen Steffes, Jan Philipp Steinbach, and Stephan Theil Abstract The Extended Kalman Filter is used extensively for inertial

More information

Design of Adaptive Filtering Algorithm for Relative Navigation

Design of Adaptive Filtering Algorithm for Relative Navigation Design of Adaptive Filtering Algorithm for Relative Navigation Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sung Jin Kang, Sebum Chun, and Hyung Keun Lee Abstract Recently, relative navigation

More information

TIGHT GNSS/INS INTEGRATION AS A CONSTRAINED LEAST-SQUARES PROBLEM. David Bernal, Pau Closas, Eduard Calvo, Juan A. Fernández Rubio

TIGHT GNSS/INS INTEGRATION AS A CONSTRAINED LEAST-SQUARES PROBLEM. David Bernal, Pau Closas, Eduard Calvo, Juan A. Fernández Rubio 17th European Signal Processing Conference EUSIPCO 2009) Glasgow, Scotland, August 24-28, 2009 IGH GNSS/INS INEGRAION AS A CONSRAINED LEAS-SQUARES PROBLEM David Bernal, Pau Closas, Eduard Calvo, Juan A

More information

Ch6-Normalized Least Mean-Square Adaptive Filtering

Ch6-Normalized Least Mean-Square Adaptive Filtering Ch6-Normalized Least Mean-Square Adaptive Filtering LMS Filtering The update equation for the LMS algorithm is wˆ wˆ u ( n 1) ( n) ( n) e ( n) Step size Filter input which is derived from SD as an approximation

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche

More information

Homework: Ball Predictor for Robot Soccer

Homework: Ball Predictor for Robot Soccer Homework: Ball Predictor for Robot Soccer ECEn 483 November 17, 2004 1 Introduction The objective of this homework is to prepare you to implement a ball predictor in the lab An extended Kalman filter will

More information

Sigma-Point Kalman Filters for Integrated Navigation

Sigma-Point Kalman Filters for Integrated Navigation Sigma-Point Kalman Filters for Integrated Navigation Rudolph van der Merwe and Eric A. Wan Adaptive Systems Lab, OGI School of Science & Engineering, Oregon Health & Science University BIOGRAPHY Rudolph

More information

SIMULTANEOUS STATE AND PARAMETER ESTIMATION USING KALMAN FILTERS

SIMULTANEOUS STATE AND PARAMETER ESTIMATION USING KALMAN FILTERS ECE5550: Applied Kalman Filtering 9 1 SIMULTANEOUS STATE AND PARAMETER ESTIMATION USING KALMAN FILTERS 9.1: Parameters versus states Until now, we have assumed that the state-space model of the system

More information

Lagrange Relaxation and Duality

Lagrange Relaxation and Duality Lagrange Relaxation and Duality As we have already known, constrained optimization problems are harder to solve than unconstrained problems. By relaxation we can solve a more difficult problem by a simpler

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 2950-P, Spring 2013 Prof. Erik Sudderth Lecture 12: Gaussian Belief Propagation, State Space Models and Kalman Filters Guest Kalman Filter Lecture by

More information

Velocity (Kalman Filter) Velocity (knots) Time (sec) Kalman Filter Accelerations 2.5. Acceleration (m/s2)

Velocity (Kalman Filter) Velocity (knots) Time (sec) Kalman Filter Accelerations 2.5. Acceleration (m/s2) KALMAN FILERING 1 50 Velocity (Kalman Filter) 45 40 35 Velocity (nots) 30 25 20 15 10 5 0 0 10 20 30 40 50 60 70 80 90 100 ime (sec) 3 Kalman Filter Accelerations 2.5 Acceleration (m/s2) 2 1.5 1 0.5 0

More information

COS Lecture 16 Autonomous Robot Navigation

COS Lecture 16 Autonomous Robot Navigation COS 495 - Lecture 16 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers

Shiqian Ma, MAT-258A: Numerical Optimization 1. Chapter 9. Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 1 Chapter 9 Alternating Direction Method of Multipliers Shiqian Ma, MAT-258A: Numerical Optimization 2 Separable convex optimization a special case is min f(x)

More information

A COMPARISON OF JPDA AND BELIEF PROPAGATION FOR DATA ASSOCIATION IN SSA

A COMPARISON OF JPDA AND BELIEF PROPAGATION FOR DATA ASSOCIATION IN SSA A COMPARISON OF JPDA AND BELIEF PROPAGATION FOR DATA ASSOCIATION IN SSA Mar Rutten, Jason Willams, and Neil Gordon, NSID, Defence Science and Technology Organisation, Australia School of EEE, The University

More information

IN recent years, the problems of sparse signal recovery

IN recent years, the problems of sparse signal recovery IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 1, NO. 2, APRIL 2014 149 Distributed Sparse Signal Estimation in Sensor Networs Using H -Consensus Filtering Haiyang Yu Yisha Liu Wei Wang Abstract This paper

More information

Kalman Filters with Uncompensated Biases

Kalman Filters with Uncompensated Biases Kalman Filters with Uncompensated Biases Renato Zanetti he Charles Stark Draper Laboratory, Houston, exas, 77058 Robert H. Bishop Marquette University, Milwaukee, WI 53201 I. INRODUCION An underlying assumption

More information

Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor-Fusion - Applications to Integrated Navigation - Rudolph van der Merwe and Eric A.

Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor-Fusion - Applications to Integrated Navigation - Rudolph van der Merwe and Eric A. Sigma-Point Kalman Filters for Nonlinear Estimation and Sensor-Fusion - Applications to Integrated Navigation - Rudolph van der Merwe and Eric A. Wan OGI School of Science & Engineering, Oregon Health

More information

For final project discussion every afternoon Mark and I will be available

For final project discussion every afternoon Mark and I will be available Worshop report 1. Daniels report is on website 2. Don t expect to write it based on listening to one project (we had 6 only 2 was sufficient quality) 3. I suggest writing it on one presentation. 4. Include

More information

Extended Version of Expectation propagation for approximate inference in dynamic Bayesian networks

Extended Version of Expectation propagation for approximate inference in dynamic Bayesian networks Extended Version of Expectation propagation for approximate inference in dynamic Bayesian networks Tom Heskes & Onno Zoeter SNN, University of Nijmegen Geert Grooteplein 21, 6525 EZ, Nijmegen, The Netherlands

More information

Long-Term Inertial Navigation Aided by Dynamics of Flow Field Features

Long-Term Inertial Navigation Aided by Dynamics of Flow Field Features ACCEPTED FOR PUBLICATION IN IEEE JOURNAL OF OCEANIC ENGINEERING 1 Long-Term Inertial Navigation Aided by Dynamics of Flow Field Features Zhuoyuan Song, Student Member, IEEE, Kamran Mohseni, Senior Member,

More information

Filtering and Fusion based Reconstruction of Angle of Attack

Filtering and Fusion based Reconstruction of Angle of Attack Filtering and Fusion based Reconstruction of Angle of Attack N Shantha Kuar Scientist, FMC Division NAL, Bangalore 7 E-ail: nskuar@css.nal.res.in Girija G Scientist, FMC Division NAL, Bangalore 7 E-ail:

More information

Multiple-Model Adaptive Estimation for Star Identification with Two Stars

Multiple-Model Adaptive Estimation for Star Identification with Two Stars Multiple-Model Adaptive Estimation for Star Identification with Two Stars Steven A. Szlany and John L. Crassidis University at Buffalo, State University of New Yor, Amherst, NY, 460-4400 In this paper

More information

Adaptive State Estimation Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2018

Adaptive State Estimation Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2018 Adaptive State Estimation Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 218! Nonlinearity of adaptation! Parameter-adaptive filtering! Test for whiteness of the residual!

More information

Evaluation of different wind estimation methods in flight tests with a fixed-wing UAV

Evaluation of different wind estimation methods in flight tests with a fixed-wing UAV Evaluation of different wind estimation methods in flight tests with a fixed-wing UAV Julian Sören Lorenz February 5, 2018 Contents 1 Glossary 2 2 Introduction 3 3 Tested algorithms 3 3.1 Unfiltered Method

More information

Application of state observers in attitude estimation using low-cost sensors

Application of state observers in attitude estimation using low-cost sensors Application of state observers in attitude estimation using low-cost sensors Martin Řezáč Czech Technical University in Prague, Czech Republic March 26, 212 Introduction motivation for inertial estimation

More information

Fundamentals of High Accuracy Inertial Navigation Averil B. Chatfield Table of Contents

Fundamentals of High Accuracy Inertial Navigation Averil B. Chatfield Table of Contents Navtech Part #2440 Preface Fundamentals of High Accuracy Inertial Navigation Averil B. Chatfield Table of Contents Chapter 1. Introduction...... 1 I. Forces Producing Motion.... 1 A. Gravitation......

More information

Information, Covariance and Square-Root Filtering in the Presence of Unknown Inputs 1

Information, Covariance and Square-Root Filtering in the Presence of Unknown Inputs 1 Katholiee Universiteit Leuven Departement Eletrotechnie ESAT-SISTA/TR 06-156 Information, Covariance and Square-Root Filtering in the Presence of Unnown Inputs 1 Steven Gillijns and Bart De Moor 2 October

More information

A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization

A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization A Comparison of the EKF, SPKF, and the Bayes Filter for Landmark-Based Localization and Timothy D. Barfoot CRV 2 Outline Background Objective Experimental Setup Results Discussion Conclusion 2 Outline

More information

Delayed Fusion of Relative State Measurements by Extending Stochastic Cloning via Direct Kalman Filtering

Delayed Fusion of Relative State Measurements by Extending Stochastic Cloning via Direct Kalman Filtering Delayed Fusion of Relative State Measurements by Extending Stochastic Cloning via Direct Kalman Filtering Ehsan Asadi and Carlo L Bottasso Department of Aerospace Science and echnology Politecnico di Milano,

More information

ORBIT DETERMINATION AND DATA FUSION IN GEO

ORBIT DETERMINATION AND DATA FUSION IN GEO ORBIT DETERMINATION AND DATA FUSION IN GEO Joshua T. Horwood, Aubrey B. Poore Numerica Corporation, 4850 Hahns Pea Drive, Suite 200, Loveland CO, 80538 Kyle T. Alfriend Department of Aerospace Engineering,

More information

9 Multi-Model State Estimation

9 Multi-Model State Estimation Technion Israel Institute of Technology, Department of Electrical Engineering Estimation and Identification in Dynamical Systems (048825) Lecture Notes, Fall 2009, Prof. N. Shimkin 9 Multi-Model State

More information

Cross entropy-based importance sampling using Gaussian densities revisited

Cross entropy-based importance sampling using Gaussian densities revisited Cross entropy-based importance sampling using Gaussian densities revisited Sebastian Geyer a,, Iason Papaioannou a, Daniel Straub a a Engineering Ris Analysis Group, Technische Universität München, Arcisstraße

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

CSE 483: Mobile Robotics. Extended Kalman filter for localization(worked out example)

CSE 483: Mobile Robotics. Extended Kalman filter for localization(worked out example) DRAFT a final version will be posted shortly CSE 483: Mobile Robotics Lecture by: Prof. K. Madhava Krishna Lecture # 4 Scribe: Dhaivat Bhatt, Isha Dua Date: 14th November, 216 (Monday) Extended Kalman

More information

Distributed MAP probability estimation of dynamic systems with wireless sensor networks

Distributed MAP probability estimation of dynamic systems with wireless sensor networks Distributed MAP probability estimation of dynamic systems with wireless sensor networks Felicia Jakubiec, Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania https://fling.seas.upenn.edu/~life/wiki/

More information

Gaussian Process Approximations of Stochastic Differential Equations

Gaussian Process Approximations of Stochastic Differential Equations Gaussian Process Approximations of Stochastic Differential Equations Cédric Archambeau Centre for Computational Statistics and Machine Learning University College London c.archambeau@cs.ucl.ac.uk CSML

More information

Kalman Filter Enhancement for UAV Navigation

Kalman Filter Enhancement for UAV Navigation Kalman Filter Enhancement for UAV Navigation Roger Johnson* Jerzy Sasiade** Janusz Zalewsi* *University of Central Florida Orlando, FL 86-2450, USA **Carleton University Ottawa, Ont. KS 5B6, Canada Keywords

More information

Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer

Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer Automated Tuning of the Nonlinear Complementary Filter for an Attitude Heading Reference Observer Oscar De Silva, George K.I. Mann and Raymond G. Gosine Faculty of Engineering and Applied Sciences, Memorial

More information

Lecture 13: Constrained optimization

Lecture 13: Constrained optimization 2010-12-03 Basic ideas A nonlinearly constrained problem must somehow be converted relaxed into a problem which we can solve (a linear/quadratic or unconstrained problem) We solve a sequence of such problems

More information

IEEE JOURNAL OF OCEANIC ENGINEERING 1. Zhuoyuan Song, Student Member, IEEE, and Kamran Mohseni, Senior Member, IEEE

IEEE JOURNAL OF OCEANIC ENGINEERING 1. Zhuoyuan Song, Student Member, IEEE, and Kamran Mohseni, Senior Member, IEEE IEEE JOURNAL OF OCEANIC ENGINEERING 1 Long-Term Inertial Navigation Aided by Dynamics of Flow Field Features Zhuoyuan Song, Student Member, IEEE, and Kamran Mohseni, Senior Member, IEEE Abstract A current-aided

More information

arxiv: v1 [math.oc] 18 Sep 2007

arxiv: v1 [math.oc] 18 Sep 2007 Report no. 07/18 arxiv:0709.2791v1 math.oc 18 Sep 2007 Kalman Filtering with Equality and Inequality State Constraints Nachi Gupta Raphael Hauser Oxford University Computing Laboratory, Numerical Analysis

More information

CS281 Section 4: Factor Analysis and PCA

CS281 Section 4: Factor Analysis and PCA CS81 Section 4: Factor Analysis and PCA Scott Linderman At this point we have seen a variety of machine learning models, with a particular emphasis on models for supervised learning. In particular, we

More information

1 Introduction ISSN

1 Introduction ISSN Techset Composition Ltd, Salisbury Doc: {IEE}CTA/Articles/Pagination/CTA58454.3d www.ietdl.org Published in IET Control Theory and Applications Received on 15th January 2009 Revised on 18th May 2009 ISSN

More information

Linear-Optimal State Estimation

Linear-Optimal State Estimation Linear-Optimal State Estimation Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 218 Linear-optimal Gaussian estimator for discrete-time system (Kalman filter) 2 nd -order example

More information

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III)

Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Chapter 4: Constrained estimators and tests in the multiple linear regression model (Part III) Florian Pelgrin HEC September-December 2010 Florian Pelgrin (HEC) Constrained estimators September-December

More information

THERE is an increasing interest in multi-robot systems.

THERE is an increasing interest in multi-robot systems. 1 Distributed Consensus on Robot Networs for Dynamically Merging Feature-Based Maps Rosario Aragues, Student Member, IEEE, Jorge Cortes, Senior Member, IEEE, Carlos Sagues, Senior Member, IEEE Abstract

More information

Sensor Fusion, 2014 Lecture 1: 1 Lectures

Sensor Fusion, 2014 Lecture 1: 1 Lectures Sensor Fusion, 2014 Lecture 1: 1 Lectures Lecture Content 1 Course overview. Estimation theory for linear models. 2 Estimation theory for nonlinear models 3 Sensor networks and detection theory 4 Nonlinear

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm The Expectation-Maximization Algorithm Francisco S. Melo In these notes, we provide a brief overview of the formal aspects concerning -means, EM and their relation. We closely follow the presentation in

More information

Kalman Filters. Derivation of Kalman Filter equations

Kalman Filters. Derivation of Kalman Filter equations Kalman Filters Derivation of Kalman Filter equations Mar Fiala CRV 10 Tutorial Day May 29/2010 Kalman Filters Predict x ˆ + = F xˆ 1 1 1 B u P F + 1 = F P 1 1 T Q Update S H + K ~ y P = H P 1 T T 1 = P

More information

CSCI : Optimization and Control of Networks. Review on Convex Optimization

CSCI : Optimization and Control of Networks. Review on Convex Optimization CSCI7000-016: Optimization and Control of Networks Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one

More information

Aided Inertial Navigation With Geometric Features: Observability Analysis

Aided Inertial Navigation With Geometric Features: Observability Analysis Aided Inertial Navigation With Geometric Features: Observability Analysis Yulin Yang - yuyang@udel.edu Guoquan Huang - ghuang@udel.edu Department of Mechanical Engineering University of Delaware, Delaware,

More information

MULTI-RESOLUTION SIGNAL DECOMPOSITION WITH TIME-DOMAIN SPECTROGRAM FACTORIZATION. Hirokazu Kameoka

MULTI-RESOLUTION SIGNAL DECOMPOSITION WITH TIME-DOMAIN SPECTROGRAM FACTORIZATION. Hirokazu Kameoka MULTI-RESOLUTION SIGNAL DECOMPOSITION WITH TIME-DOMAIN SPECTROGRAM FACTORIZATION Hiroazu Kameoa The University of Toyo / Nippon Telegraph and Telephone Corporation ABSTRACT This paper proposes a novel

More information

Inertial Odometry on Handheld Smartphones

Inertial Odometry on Handheld Smartphones Inertial Odometry on Handheld Smartphones Arno Solin 1 Santiago Cortés 1 Esa Rahtu 2 Juho Kannala 1 1 Aalto University 2 Tampere University of Technology 21st International Conference on Information Fusion

More information

A Brief Review on Convex Optimization

A Brief Review on Convex Optimization A Brief Review on Convex Optimization 1 Convex set S R n is convex if x,y S, λ,µ 0, λ+µ = 1 λx+µy S geometrically: x,y S line segment through x,y S examples (one convex, two nonconvex sets): A Brief Review

More information

SIMULATION OF TURNING RATES IN TRAFFIC SYSTEMS

SIMULATION OF TURNING RATES IN TRAFFIC SYSTEMS SIMULATION OF TURNING RATES IN TRAFFIC SYSTEMS Balázs KULCSÁR István VARGA Department of Transport Automation, Budapest University of Technology and Economics Budapest, H-, Bertalan L. u. 2., Hungary e-mail:

More information

Baro-INS Integration with Kalman Filter

Baro-INS Integration with Kalman Filter Baro-INS Integration with Kalman Filter Vivek Dadu c,b.venugopal Reddy a, Brajnish Sitara a, R.S.Chandrasekhar a & G.Satheesh Reddy a c Hindustan Aeronautics Ltd, Korwa, India. a Research Centre Imarat,

More information

Moving Horizon Estimation with Decimated Observations

Moving Horizon Estimation with Decimated Observations Moving Horizon Estimation with Decimated Observations Rui F. Barreiro A. Pedro Aguiar João M. Lemos Institute for Systems and Robotics (ISR) Instituto Superior Tecnico (IST), Lisbon, Portugal INESC-ID/IST,

More information

Autonomous Mid-Course Navigation for Lunar Return

Autonomous Mid-Course Navigation for Lunar Return Autonomous Mid-Course Navigation for Lunar Return Renato Zanetti The Charles Stark Draper Laboratory, Houston, Texas 77058 Autonomous navigation systems provide the vehicle with estimates of its states

More information

Kalman Filter. Man-Wai MAK

Kalman Filter. Man-Wai MAK Kalman Filter Man-Wai MAK Dept. of Electronic and Information Engineering, The Hong Kong Polytechnic University enmwmak@polyu.edu.hk http://www.eie.polyu.edu.hk/ mwmak References: S. Gannot and A. Yeredor,

More information

Estimating the Shape of Targets with a PHD Filter

Estimating the Shape of Targets with a PHD Filter Estimating the Shape of Targets with a PHD Filter Christian Lundquist, Karl Granström, Umut Orguner Department of Electrical Engineering Linöping University 583 33 Linöping, Sweden Email: {lundquist, arl,

More information

Influence Analysis of Star Sensors Sampling Frequency on Attitude Determination Accuracy

Influence Analysis of Star Sensors Sampling Frequency on Attitude Determination Accuracy Sensors & ransducers Vol. Special Issue June pp. -8 Sensors & ransducers by IFSA http://www.sensorsportal.com Influence Analysis of Star Sensors Sampling Frequency on Attitude Determination Accuracy Yuanyuan

More information

Sensors Fusion for Mobile Robotics localization. M. De Cecco - Robotics Perception and Action

Sensors Fusion for Mobile Robotics localization. M. De Cecco - Robotics Perception and Action Sensors Fusion for Mobile Robotics localization 1 Until now we ve presented the main principles and features of incremental and absolute (environment referred localization systems) could you summarize

More information

OPTIMAL ESTIMATION of DYNAMIC SYSTEMS

OPTIMAL ESTIMATION of DYNAMIC SYSTEMS CHAPMAN & HALL/CRC APPLIED MATHEMATICS -. AND NONLINEAR SCIENCE SERIES OPTIMAL ESTIMATION of DYNAMIC SYSTEMS John L Crassidis and John L. Junkins CHAPMAN & HALL/CRC A CRC Press Company Boca Raton London

More information

Interpolating Accuracy without underlying f (x)

Interpolating Accuracy without underlying f (x) Example: Tabulated Data The following table x 1.0 1.3 1.6 1.9 2.2 f (x) 0.7651977 0.6200860 0.4554022 0.2818186 0.1103623 lists values of a function f at various points. The approximations to f (1.5) obtained

More information

SMO Algorithms for Support Vector Machines without Bias Term

SMO Algorithms for Support Vector Machines without Bias Term Institute of Automatic Control Laboratory for Control Systems and Process Automation Prof. Dr.-Ing. Dr. h. c. Rolf Isermann SMO Algorithms for Support Vector Machines without Bias Term Michael Vogt, 18-Jul-2002

More information

TSRT14: Sensor Fusion Lecture 8

TSRT14: Sensor Fusion Lecture 8 TSRT14: Sensor Fusion Lecture 8 Particle filter theory Marginalized particle filter Gustaf Hendeby gustaf.hendeby@liu.se TSRT14 Lecture 8 Gustaf Hendeby Spring 2018 1 / 25 Le 8: particle filter theory,

More information

Optimization Methods: Optimization using Calculus - Equality constraints 1. Module 2 Lecture Notes 4

Optimization Methods: Optimization using Calculus - Equality constraints 1. Module 2 Lecture Notes 4 Optimization Methods: Optimization using Calculus - Equality constraints Module Lecture Notes 4 Optimization of Functions of Multiple Variables subect to Equality Constraints Introduction In the previous

More information

DECENTRALIZED ATTITUDE ESTIMATION USING A QUATERNION COVARIANCE INTERSECTION APPROACH

DECENTRALIZED ATTITUDE ESTIMATION USING A QUATERNION COVARIANCE INTERSECTION APPROACH DECENTRALIZED ATTITUDE ESTIMATION USING A QUATERNION COVARIANCE INTERSECTION APPROACH John L. Crassidis, Yang Cheng, Christopher K. Nebelecky, and Adam M. Fosbury ABSTRACT This paper derives an approach

More information

Linear and Combinatorial Optimization

Linear and Combinatorial Optimization Linear and Combinatorial Optimization The dual of an LP-problem. Connections between primal and dual. Duality theorems and complementary slack. Philipp Birken (Ctr. for the Math. Sc.) Lecture 3: Duality

More information

Stochastic Cloning: A generalized framework for processing relative state measurements

Stochastic Cloning: A generalized framework for processing relative state measurements Stochastic Cloning: A generalized framework for processing relative state measurements Stergios I. Roumeliotis and Joel W. Burdick Division of Engineering and Applied Science California Institute of Technology,

More information

Optimal path planning using Cross-Entropy method

Optimal path planning using Cross-Entropy method Optimal path planning using Cross-Entropy method F Celeste, FDambreville CEP/Dept of Geomatics Imagery Perception 9 Arcueil France {francisceleste, fredericdambreville}@etcafr J-P Le Cadre IRISA/CNRS Campus

More information

Minimum Necessary Data Rates for Accurate Track Fusion

Minimum Necessary Data Rates for Accurate Track Fusion Proceedings of the 44th IEEE Conference on Decision Control, the European Control Conference 005 Seville, Spain, December -5, 005 ThIA0.4 Minimum Necessary Data Rates for Accurate Trac Fusion Barbara F.

More information

Adaptive Unscented Kalman Filter with Multiple Fading Factors for Pico Satellite Attitude Estimation

Adaptive Unscented Kalman Filter with Multiple Fading Factors for Pico Satellite Attitude Estimation Adaptive Unscented Kalman Filter with Multiple Fading Factors for Pico Satellite Attitude Estimation Halil Ersin Söken and Chingiz Hajiyev Aeronautics and Astronautics Faculty Istanbul Technical University

More information

1 Kalman Filter Introduction

1 Kalman Filter Introduction 1 Kalman Filter Introduction You should first read Chapter 1 of Stochastic models, estimation, and control: Volume 1 by Peter S. Maybec (available here). 1.1 Explanation of Equations (1-3) and (1-4) Equation

More information

Introduction to Probabilistic Graphical Models: Exercises

Introduction to Probabilistic Graphical Models: Exercises Introduction to Probabilistic Graphical Models: Exercises Cédric Archambeau Xerox Research Centre Europe cedric.archambeau@xrce.xerox.com Pascal Bootcamp Marseille, France, July 2010 Exercise 1: basics

More information

The SPHERES Navigation System: from Early Development to On-Orbit Testing

The SPHERES Navigation System: from Early Development to On-Orbit Testing The SPHERES Navigation System: from Early Development to On-Orbit Testing Simon Nolet MIT Space Systems Laboratory, Cambridge, MA 2139 The MIT Space Systems Laboratory has developed the Synchronized Position

More information

A Stochastic Observability Test for Discrete-Time Kalman Filters

A Stochastic Observability Test for Discrete-Time Kalman Filters A Stochastic Observability Test for Discrete-Time Kalman Filters Vibhor L. Bageshwar 1, Demoz Gebre-Egziabher 2, William L. Garrard 3, and Tryphon T. Georgiou 4 University of Minnesota Minneapolis, MN

More information

ECE531 Lecture 10b: Dynamic Parameter Estimation: System Model

ECE531 Lecture 10b: Dynamic Parameter Estimation: System Model ECE531 Lecture 10b: Dynamic Parameter Estimation: System Model D. Richard Brown III Worcester Polytechnic Institute 02-Apr-2009 Worcester Polytechnic Institute D. Richard Brown III 02-Apr-2009 1 / 14 Introduction

More information

Chapter 4 State Estimation

Chapter 4 State Estimation Chapter 4 State Estimation Navigation of an unmanned vehicle, always depends on a good estimation of the vehicle states. Especially if no external sensors or marers are available, more or less complex

More information

UNSCENTED KALMAN FILTERING FOR SPACECRAFT ATTITUDE STATE AND PARAMETER ESTIMATION

UNSCENTED KALMAN FILTERING FOR SPACECRAFT ATTITUDE STATE AND PARAMETER ESTIMATION AAS-04-115 UNSCENTED KALMAN FILTERING FOR SPACECRAFT ATTITUDE STATE AND PARAMETER ESTIMATION Matthew C. VanDyke, Jana L. Schwartz, Christopher D. Hall An Unscented Kalman Filter (UKF) is derived in an

More information