Objective: Introduction of vector spaces, subspaces, and bases. Linear Algebra: Section

Size: px
Start display at page:

Download "Objective: Introduction of vector spaces, subspaces, and bases. Linear Algebra: Section"

Transcription

1 Objective: Introduction of vector spaces, subspaces, and bases.

2 Vector space Vector space Examples: R n, subsets of R n, the set of polynomials (up to degree n), the set of (continuous, differentiable) real valued functions, etc. Definition A vector space is a (non-empty) set with elements called vectors equipped with an addition of vectors u + v and a scalar multiplication of vectors by (real) scalars cu such that for any vectors u, v, w and scalars c and d: 1. u + v V. 2. u + v = v + u. 3. (u + v) + w = u + (v + w). 4. There is a zero vector 0 such that 0 + v = v. 5. For every v there is v V such that v + ( v) = cv V. 7. c(u + v) = cu + cv. 8. (c + d)v = cv + dv. 9. c(dv) = (cd)v. 10. The number 1 satifies 1v = v. Properties. For any u V and scalar c: 0u = 0, c 0 = 0, u = ( 1)u.

3 Examples R n, R m n, R 1 n, P n(t), P(t), Set of continuous function on R or on an interval, Set of differentiable function on R or on an interval. Let A be m n. The solution set of Ax = 0 in R n. Let A be m n. The set of linear combinations of the columns of A.

4 Subspaces Definition A subset H of a vector space V is a subspace if H is a vector space under the same operations. Remark One needs only check three things: (a) 0 H, (b) u + v H, and (c) cu H u, v H. Subspaces related to a matrix for any scalar c, and Let A be m n. The null space Nul A and the column space of A are: Nul A = {x R n : Ax = 0} R n and Col A = span{a 1,..., a n} = {Ax R m : x R n } R m. Kernel and Range of a Linear Transformation Suppose T : R n R m is defined by T (x) = Ax. Then the kernel of T is kernel(t ) = {x R n : T (x) = 0} = {x R n : Ax = 0}. The range space of T is range(t ) = {T (x) R m : x R n } = {Ax R m : x R n }.

5 Linearly independent sets Definition A set of vectors {v 1,..., v p} V is linearly independent if the vector equation c 1v c pv p = 0 only has trivial solution c 1 = = c p = 0. Theorem 4 Let p 2. Then the set {v 1,..., v p} V of vectors is linearly independent if and only if v j is not a linear combination of v 1,..., v j 1, for every j > 1. Proof. If v j = a 1v a pv p without the v j term on the right, then 0 = a 1v a pv p where a j = 1. So, {v 1,..., v p} is linearly dependent. If {v 1,..., v p} is linearly dependent, then 0 = a 1v a pv p with at least one j such that a j 0. Then a jv j = a 1v a pv p without the v j term on the right. Dividing both side by the scalar a j, we see that v j is a linear combination of the other vectors.

6 Bases Definition Let H be a subspace of V. A basis for H is a linearly independent subset of H that spans H. Theorem 6 The pivot columns of an m n matrix A form a basis for Col A. Proof. Let à be the submatrix of A using the pivot columns of A. Then Ax = b has solution precisely when Ãx = b has solution. Theorem 5 Suppose S = {v 1,..., v p} V that spans a subspace H. (a) If v k is a linearly combination of the other vectors in S, then H is also spanned by S {v k }. (b) If H {0}, then a subset of S forms a basis for H. Proof. (a) If v is a linear combination of S, then it is a linear combination of vectors in S {v k }. (b) The smallest spanning set chosen from S will be linearly independent and spanning. Remark Let S V. Then S is a basis if any one of the following is true. (a) S is a maximal linearly independent set. (b) S is minimal spanning set.

Vector space and subspace

Vector space and subspace Vector space and subspace Math 112, week 8 Goals: Vector space, subspace. Linear combination and span. Kernel and range (null space and column space). Suggested Textbook Readings: Sections 4.1, 4.2 Week

More information

Kevin James. MTHSC 3110 Section 4.3 Linear Independence in Vector Sp

Kevin James. MTHSC 3110 Section 4.3 Linear Independence in Vector Sp MTHSC 3 Section 4.3 Linear Independence in Vector Spaces; Bases Definition Let V be a vector space and let { v. v 2,..., v p } V. If the only solution to the equation x v + x 2 v 2 + + x p v p = is the

More information

1 Last time: inverses

1 Last time: inverses MATH Linear algebra (Fall 8) Lecture 8 Last time: inverses The following all mean the same thing for a function f : X Y : f is invertible f is one-to-one and onto 3 For each b Y there is exactly one a

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

ICS 6N Computational Linear Algebra Vector Space

ICS 6N Computational Linear Algebra Vector Space ICS 6N Computational Linear Algebra Vector Space Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 24 Vector Space Definition: A vector space is a non empty set V of

More information

Sept. 26, 2013 Math 3312 sec 003 Fall 2013

Sept. 26, 2013 Math 3312 sec 003 Fall 2013 Sept. 26, 2013 Math 3312 sec 003 Fall 2013 Section 4.1: Vector Spaces and Subspaces Definition A vector space is a nonempty set V of objects called vectors together with two operations called vector addition

More information

Math 54. Selected Solutions for Week 5

Math 54. Selected Solutions for Week 5 Math 54. Selected Solutions for Week 5 Section 4. (Page 94) 8. Consider the following two systems of equations: 5x + x 3x 3 = 5x + x 3x 3 = 9x + x + 5x 3 = 4x + x 6x 3 = 9 9x + x + 5x 3 = 5 4x + x 6x 3

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture : Null and Column Spaces Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./8 Announcements Study Guide posted HWK posted Math 9Applied

More information

Vector space and subspace

Vector space and subspace Vector space and subspace Math 112, week 8 Goals: Vector space, subspace, span. Null space, column space. Linearly independent, bases. Suggested Textbook Readings: Sections 4.1, 4.2, 4.3 Week 8: Vector

More information

Math 4377/6308 Advanced Linear Algebra

Math 4377/6308 Advanced Linear Algebra 2. Linear Transformations Math 4377/638 Advanced Linear Algebra 2. Linear Transformations, Null Spaces and Ranges Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/

More information

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer.

Chapter 3. Directions: For questions 1-11 mark each statement True or False. Justify each answer. Chapter 3 Directions: For questions 1-11 mark each statement True or False. Justify each answer. 1. (True False) Asking whether the linear system corresponding to an augmented matrix [ a 1 a 2 a 3 b ]

More information

Math Linear algebra, Spring Semester Dan Abramovich

Math Linear algebra, Spring Semester Dan Abramovich Math 52 0 - Linear algebra, Spring Semester 2012-2013 Dan Abramovich Fields. We learned to work with fields of numbers in school: Q = fractions of integers R = all real numbers, represented by infinite

More information

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true.

We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Dimension We showed that adding a vector to a basis produces a linearly dependent set of vectors; more is true. Lemma If a vector space V has a basis B containing n vectors, then any set containing more

More information

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion.

(i) [7 points] Compute the determinant of the following matrix using cofactor expansion. Question (i) 7 points] Compute the determinant of the following matrix using cofactor expansion 2 4 2 4 2 Solution: Expand down the second column, since it has the most zeros We get 2 4 determinant = +det

More information

Criteria for Determining If A Subset is a Subspace

Criteria for Determining If A Subset is a Subspace These notes closely follow the presentation of the material given in David C. Lay s textbook Linear Algebra and its Applications (3rd edition). These notes are intended primarily for in-class presentation

More information

Midterm #2 Solutions

Midterm #2 Solutions Naneh Apkarian Math F Winter Midterm # Solutions Here is a solution key for the second midterm. The solutions presented here are more complete and thorough than your responses needed to be - in order to

More information

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010

Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Review Notes for Linear Algebra True or False Last Updated: February 22, 2010 Chapter 4 [ Vector Spaces 4.1 If {v 1,v 2,,v n } and {w 1,w 2,,w n } are linearly independent, then {v 1 +w 1,v 2 +w 2,,v n

More information

Vector Spaces and Subspaces

Vector Spaces and Subspaces Vector Spaces and Subspaces Our investigation of solutions to systems of linear equations has illustrated the importance of the concept of a vector in a Euclidean space. We take time now to explore the

More information

Linear Algebra Differential Equations Math 54 Lec 005 (Dis 501) July 10, 2014

Linear Algebra Differential Equations Math 54 Lec 005 (Dis 501) July 10, 2014 Vector space R n A vector space R n is the set of all possible ordered pairs of n real numbers So, R n = {(a, a,, a n ) : a, a,, a n R} a a We abuse the notation (a, a,, a n ) instead of sometimes a n

More information

Solutions to Section 2.9 Homework Problems Problems 1 5, 7, 9, 10 15, (odd), and 38. S. F. Ellermeyer June 21, 2002

Solutions to Section 2.9 Homework Problems Problems 1 5, 7, 9, 10 15, (odd), and 38. S. F. Ellermeyer June 21, 2002 Solutions to Section 9 Homework Problems Problems 9 (odd) and 8 S F Ellermeyer June The pictured set contains the vector u but not the vector u so this set is not a subspace of The pictured set contains

More information

MATH2210 Notebook 3 Spring 2018

MATH2210 Notebook 3 Spring 2018 MATH2210 Notebook 3 Spring 2018 prepared by Professor Jenny Baglivo c Copyright 2009 2018 by Jenny A. Baglivo. All Rights Reserved. 3 MATH2210 Notebook 3 3 3.1 Vector Spaces and Subspaces.................................

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 4.3 Linearly Independent Sets; Bases Math 233 Linear Algebra 4.3 Linearly Independent Sets; Bases Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu math.uh.edu/ jiwenhe/math233

More information

Lecture 9: Vector Algebra

Lecture 9: Vector Algebra Lecture 9: Vector Algebra Linear combination of vectors Geometric interpretation Interpreting as Matrix-Vector Multiplication Span of a set of vectors Vector Spaces and Subspaces Linearly Independent/Dependent

More information

Math 54 HW 4 solutions

Math 54 HW 4 solutions Math 54 HW 4 solutions 2.2. Section 2.2 (a) False: Recall that performing a series of elementary row operations A is equivalent to multiplying A by a series of elementary matrices. Suppose that E,...,

More information

MAT 242 CHAPTER 4: SUBSPACES OF R n

MAT 242 CHAPTER 4: SUBSPACES OF R n MAT 242 CHAPTER 4: SUBSPACES OF R n JOHN QUIGG 1. Subspaces Recall that R n is the set of n 1 matrices, also called vectors, and satisfies the following properties: x + y = y + x x + (y + z) = (x + y)

More information

Math 2114 Common Final Exam May 13, 2015 Form A

Math 2114 Common Final Exam May 13, 2015 Form A Math 4 Common Final Exam May 3, 5 Form A Instructions: Using a # pencil only, write your name and your instructor s name in the blanks provided. Write your student ID number and your CRN in the blanks

More information

Vector Spaces 4.3 LINEARLY INDEPENDENT SETS; BASES Pearson Education, Inc.

Vector Spaces 4.3 LINEARLY INDEPENDENT SETS; BASES Pearson Education, Inc. 4 Vector Spaces 4.3 LINEARLY INDEPENDENT SETS; BASES LINEAR INDEPENDENT SETS; BASES An indexed set of vectors {v 1,, v p } in V is said to be linearly independent if the vector equation c c c 1 1 2 2 p

More information

Chapter 3. Vector spaces

Chapter 3. Vector spaces Chapter 3. Vector spaces Lecture notes for MA1111 P. Karageorgis pete@maths.tcd.ie 1/22 Linear combinations Suppose that v 1,v 2,...,v n and v are vectors in R m. Definition 3.1 Linear combination We say

More information

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis

Math 240, 4.3 Linear Independence; Bases A. DeCelles. 1. definitions of linear independence, linear dependence, dependence relation, basis Math 24 4.3 Linear Independence; Bases A. DeCelles Overview Main ideas:. definitions of linear independence linear dependence dependence relation basis 2. characterization of linearly dependent set using

More information

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3.

1. Determine by inspection which of the following sets of vectors is linearly independent. 3 3. 1. Determine by inspection which of the following sets of vectors is linearly independent. (a) (d) 1, 3 4, 1 { [ [,, 1 1] 3]} (b) 1, 4 5, (c) 3 6 (e) 1, 3, 4 4 3 1 4 Solution. The answer is (a): v 1 is

More information

Linear Algebra Final Exam Study Guide Solutions Fall 2012

Linear Algebra Final Exam Study Guide Solutions Fall 2012 . Let A = Given that v = 7 7 67 5 75 78 Linear Algebra Final Exam Study Guide Solutions Fall 5 explain why it is not possible to diagonalize A. is an eigenvector for A and λ = is an eigenvalue for A diagonalize

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES

LECTURES 14/15: LINEAR INDEPENDENCE AND BASES LECTURES 14/15: LINEAR INDEPENDENCE AND BASES MA1111: LINEAR ALGEBRA I, MICHAELMAS 2016 1. Linear Independence We have seen in examples of span sets of vectors that sometimes adding additional vectors

More information

Dimension. Eigenvalue and eigenvector

Dimension. Eigenvalue and eigenvector Dimension. Eigenvalue and eigenvector Math 112, week 9 Goals: Bases, dimension, rank-nullity theorem. Eigenvalue and eigenvector. Suggested Textbook Readings: Sections 4.5, 4.6, 5.1, 5.2 Week 9: Dimension,

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 4.5 The Dimension of a Vector Space Math 233 Linear Algebra 4.5 The Dimension of a Vector Space Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan

More information

Test 3, Linear Algebra

Test 3, Linear Algebra Test 3, Linear Algebra Dr. Adam Graham-Squire, Fall 2017 Name: I pledge that I have neither given nor received any unauthorized assistance on this exam. (signature) DIRECTIONS 1. Don t panic. 2. Show all

More information

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve:

MATH 2331 Linear Algebra. Section 1.1 Systems of Linear Equations. Finding the solution to a set of two equations in two variables: Example 1: Solve: MATH 2331 Linear Algebra Section 1.1 Systems of Linear Equations Finding the solution to a set of two equations in two variables: Example 1: Solve: x x = 3 1 2 2x + 4x = 12 1 2 Geometric meaning: Do these

More information

(a) only (ii) and (iv) (b) only (ii) and (iii) (c) only (i) and (ii) (d) only (iv) (e) only (i) and (iii)

(a) only (ii) and (iv) (b) only (ii) and (iii) (c) only (i) and (ii) (d) only (iv) (e) only (i) and (iii) . Which of the following are Vector Spaces? (i) V = { polynomials of the form q(t) = t 3 + at 2 + bt + c : a b c are real numbers} (ii) V = {at { 2 + b : a b are real numbers} } a (iii) V = : a 0 b is

More information

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true. 1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

More information

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

3.2 Subspace. Definition: If S is a non-empty subset of a vector space V, and S satisfies the following conditions: (i).

3.2 Subspace. Definition: If S is a non-empty subset of a vector space V, and S satisfies the following conditions: (i). . ubspace Given a vector spacev, it is possible to form another vector space by taking a subset of V and using the same operations (addition and multiplication) of V. For a set to be a vector space, it

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 6.1 Inner Product, Length & Orthogonality Math 2331 Linear Algebra 6.1 Inner Product, Length & Orthogonality Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/

More information

Linear independence, span, basis, dimension - and their connection with linear systems

Linear independence, span, basis, dimension - and their connection with linear systems Linear independence span basis dimension - and their connection with linear systems Linear independence of a set of vectors: We say the set of vectors v v..v k is linearly independent provided c v c v..c

More information

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION

MATH 1120 (LINEAR ALGEBRA 1), FINAL EXAM FALL 2011 SOLUTIONS TO PRACTICE VERSION MATH (LINEAR ALGEBRA ) FINAL EXAM FALL SOLUTIONS TO PRACTICE VERSION Problem (a) For each matrix below (i) find a basis for its column space (ii) find a basis for its row space (iii) determine whether

More information

spring, math 204 (mitchell) list of theorems 1 Linear Systems Linear Transformations Matrix Algebra

spring, math 204 (mitchell) list of theorems 1 Linear Systems Linear Transformations Matrix Algebra spring, 2016. math 204 (mitchell) list of theorems 1 Linear Systems THEOREM 1.0.1 (Theorem 1.1). Uniqueness of Reduced Row-Echelon Form THEOREM 1.0.2 (Theorem 1.2). Existence and Uniqueness Theorem THEOREM

More information

LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET. LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information

Abstract Vector Spaces

Abstract Vector Spaces CHAPTER 1 Abstract Vector Spaces 1.1 Vector Spaces Let K be a field, i.e. a number system where you can add, subtract, multiply and divide. In this course we will take K to be R, C or Q. Definition 1.1.

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 1: Inner Products, Length, Orthogonality Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/ Motivation Not all linear systems have

More information

Solutions to Homework 5 - Math 3410

Solutions to Homework 5 - Math 3410 Solutions to Homework 5 - Math 34 (Page 57: # 489) Determine whether the following vectors in R 4 are linearly dependent or independent: (a) (, 2, 3, ), (3, 7,, 2), (, 3, 7, 4) Solution From x(, 2, 3,

More information

Math 21b: Linear Algebra Spring 2018

Math 21b: Linear Algebra Spring 2018 Math b: Linear Algebra Spring 08 Homework 8: Basis This homework is due on Wednesday, February 4, respectively on Thursday, February 5, 08. Which of the following sets are linear spaces? Check in each

More information

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a).

(b) If a multiple of one row of A is added to another row to produce B then det(b) =det(a). .(5pts) Let B = 5 5. Compute det(b). (a) (b) (c) 6 (d) (e) 6.(5pts) Determine which statement is not always true for n n matrices A and B. (a) If two rows of A are interchanged to produce B, then det(b)

More information

MATH SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. 1. We carry out row reduction. We begin with the row operations

MATH SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. 1. We carry out row reduction. We begin with the row operations MATH 2 - SOLUTIONS TO PRACTICE PROBLEMS - MIDTERM I. We carry out row reduction. We begin with the row operations yielding the matrix This is already upper triangular hence The lower triangular matrix

More information

DEF 1 Let V be a vector space and W be a nonempty subset of V. If W is a vector space w.r.t. the operations, in V, then W is called a subspace of V.

DEF 1 Let V be a vector space and W be a nonempty subset of V. If W is a vector space w.r.t. the operations, in V, then W is called a subspace of V. 6.2 SUBSPACES DEF 1 Let V be a vector space and W be a nonempty subset of V. If W is a vector space w.r.t. the operations, in V, then W is called a subspace of V. HMHsueh 1 EX 1 (Ex. 1) Every vector space

More information

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance.

( v 1 + v 2 ) + (3 v 1 ) = 4 v 1 + v 2. and ( 2 v 2 ) + ( v 1 + v 3 ) = v 1 2 v 2 + v 3, for instance. 4.2. Linear Combinations and Linear Independence If we know that the vectors v 1, v 2,..., v k are are in a subspace W, then the Subspace Test gives us more vectors which must also be in W ; for instance,

More information

What is on this week. 1 Vector spaces (continued) 1.1 Null space and Column Space of a matrix

What is on this week. 1 Vector spaces (continued) 1.1 Null space and Column Space of a matrix Professor Joana Amorim, jamorim@bu.edu What is on this week Vector spaces (continued). Null space and Column Space of a matrix............................. Null Space...........................................2

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Review for Chapter 1. Selected Topics

Review for Chapter 1. Selected Topics Review for Chapter 1 Selected Topics Linear Equations We have four equivalent ways of writing linear systems: 1 As a system of equations: 2x 1 + 3x 2 = 7 x 1 x 2 = 5 2 As an augmented matrix: ( 2 3 ) 7

More information

Linear Algebra Linearly Independent Sets; Bases

Linear Algebra Linearly Independent Sets; Bases Linear Algebra Linearly Independent Sets; Bases Dr. Bisher M. Iqelan biqelan@iugaza.edu.ps Department of Mathematics The Islamic University of Gaza 27-28, Semester 2 Dr. Bisher M. Iqelan (IUG) Sec.3.2:

More information

Mid-term Exam #2 MATH 205, Fall 2014

Mid-term Exam #2 MATH 205, Fall 2014 Mid-term Exam # MATH 05, Fall 04 Name: Instructions: Please answer as many of the following questions as possible Show all of your work and give complete explanations when requested Write your final answer

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 191 Applied Linear Algebra Lecture 16: Change of Basis Stephen Billups University of Colorado at Denver Math 191Applied Linear Algebra p.1/0 Rank The rank of A is the dimension of the column space

More information

2018 Fall 2210Q Section 013 Midterm Exam II Solution

2018 Fall 2210Q Section 013 Midterm Exam II Solution 08 Fall 0Q Section 0 Midterm Exam II Solution True or False questions points 0 0 points) ) Let A be an n n matrix. If the equation Ax b has at least one solution for each b R n, then the solution is unique

More information

Math Linear Algebra Final Exam Review Sheet

Math Linear Algebra Final Exam Review Sheet Math 15-1 Linear Algebra Final Exam Review Sheet Vector Operations Vector addition is a component-wise operation. Two vectors v and w may be added together as long as they contain the same number n of

More information

GENERAL VECTOR SPACES AND SUBSPACES [4.1]

GENERAL VECTOR SPACES AND SUBSPACES [4.1] GENERAL VECTOR SPACES AND SUBSPACES [4.1] General vector spaces So far we have seen special spaces of vectors of n dimensions denoted by R n. It is possible to define more general vector spaces A vector

More information

EXAM. Exam #2. Math 2360 Summer II, 2000 Morning Class. Nov. 15, 2000 ANSWERS

EXAM. Exam #2. Math 2360 Summer II, 2000 Morning Class. Nov. 15, 2000 ANSWERS EXAM Exam # Math 6 Summer II Morning Class Nov 5 ANSWERS i Problem Consider the matrix 6 pts A = 6 4 9 5 7 6 5 5 5 4 The RREF of A is the matrix R = A Find a basis for the nullspace of A Solve the homogeneous

More information

Vector Spaces and Dimension. Subspaces of. R n. addition and scalar mutiplication. That is, if u, v in V and alpha in R then ( u + v) Exercise: x

Vector Spaces and Dimension. Subspaces of. R n. addition and scalar mutiplication. That is, if u, v in V and alpha in R then ( u + v) Exercise: x Vector Spaces and Dimension Subspaces of Definition: A non-empty subset V is a subspace of if V is closed under addition and scalar mutiplication. That is, if u, v in V and alpha in R then ( u + v) V and

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

(a). W contains the zero vector in R n. (b). W is closed under addition. (c). W is closed under scalar multiplication.

(a). W contains the zero vector in R n. (b). W is closed under addition. (c). W is closed under scalar multiplication. . Subspaces of R n Bases and Linear Independence Definition. Subspaces of R n A subset W of R n is called a subspace of R n if it has the following properties: (a). W contains the zero vector in R n. (b).

More information

Linear Combination. v = a 1 v 1 + a 2 v a k v k

Linear Combination. v = a 1 v 1 + a 2 v a k v k Linear Combination Definition 1 Given a set of vectors {v 1, v 2,..., v k } in a vector space V, any vector of the form v = a 1 v 1 + a 2 v 2 +... + a k v k for some scalars a 1, a 2,..., a k, is called

More information

OHSX XM511 Linear Algebra: Multiple Choice Exercises for Chapter 2

OHSX XM511 Linear Algebra: Multiple Choice Exercises for Chapter 2 OHSX XM5 Linear Algebra: Multiple Choice Exercises for Chapter. In the following, a set is given together with operations of addition and scalar multiplication. Which is not a vector space under the given

More information

v = v 1 2 +v 2 2. Two successive applications of this idea give the length of the vector v R 3 :

v = v 1 2 +v 2 2. Two successive applications of this idea give the length of the vector v R 3 : Length, Angle and the Inner Product The length (or norm) of a vector v R 2 (viewed as connecting the origin to a point (v 1,v 2 )) is easily determined by the Pythagorean Theorem and is denoted v : v =

More information

Solving a system by back-substitution, checking consistency of a system (no rows of the form

Solving a system by back-substitution, checking consistency of a system (no rows of the form MATH 520 LEARNING OBJECTIVES SPRING 2017 BROWN UNIVERSITY SAMUEL S. WATSON Week 1 (23 Jan through 27 Jan) Definition of a system of linear equations, definition of a solution of a linear system, elementary

More information

MODEL ANSWERS TO THE FIRST QUIZ. 1. (18pts) (i) Give the definition of a m n matrix. A m n matrix with entries in a field F is a function

MODEL ANSWERS TO THE FIRST QUIZ. 1. (18pts) (i) Give the definition of a m n matrix. A m n matrix with entries in a field F is a function MODEL ANSWERS TO THE FIRST QUIZ 1. (18pts) (i) Give the definition of a m n matrix. A m n matrix with entries in a field F is a function A: I J F, where I is the set of integers between 1 and m and J is

More information

Chapter 1 Vector Spaces

Chapter 1 Vector Spaces Chapter 1 Vector Spaces Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 110 Linear Algebra Vector Spaces Definition A vector space V over a field

More information

Vector Spaces - Definition

Vector Spaces - Definition Vector Spaces - Definition Definition Let V be a set of vectors equipped with two operations: vector addition and scalar multiplication. Then V is called a vector space if for all vectors u,v V, the following

More information

August 23, 2017 Let us measure everything that is measurable, and make measurable everything that is not yet so. Galileo Galilei. 1.

August 23, 2017 Let us measure everything that is measurable, and make measurable everything that is not yet so. Galileo Galilei. 1. August 23, 2017 Let us measure everything that is measurable, and make measurable everything that is not yet so. Galileo Galilei 1. Vector spaces 1.1. Notations. x S denotes the fact that the element x

More information

Problems for M 10/12:

Problems for M 10/12: Math 30, Lesieutre Problem set #8 October, 05 Problems for M 0/: 4.3.3 Determine whether these vectors are a basis for R 3 by checking whether the vectors span R 3, and whether the vectors are linearly

More information

Math 4153 Exam 1 Review

Math 4153 Exam 1 Review The syllabus for Exam 1 is Chapters 1 3 in Axler. 1. You should be sure to know precise definition of the terms we have used, and you should know precise statements (including all relevant hypotheses)

More information

MATH 1553 PRACTICE FINAL EXAMINATION

MATH 1553 PRACTICE FINAL EXAMINATION MATH 553 PRACTICE FINAL EXAMINATION Name Section 2 3 4 5 6 7 8 9 0 Total Please read all instructions carefully before beginning. The final exam is cumulative, covering all sections and topics on the master

More information

Vector Spaces 4.4 Spanning and Independence

Vector Spaces 4.4 Spanning and Independence Vector Spaces 4.4 and Independence Summer 2017 Goals Discuss two important basic concepts: Define linear combination of vectors. Define Span(S) of a set S of vectors. Define linear Independence of a set

More information

Review Notes for Midterm #2

Review Notes for Midterm #2 Review Notes for Midterm #2 Joris Vankerschaver This version: Nov. 2, 200 Abstract This is a summary of the basic definitions and results that we discussed during class. Whenever a proof is provided, I

More information

Review for Exam 2 Solutions

Review for Exam 2 Solutions Review for Exam 2 Solutions Note: All vector spaces are real vector spaces. Definition 4.4 will be provided on the exam as it appears in the textbook.. Determine if the following sets V together with operations

More information

Fact: Every matrix transformation is a linear transformation, and vice versa.

Fact: Every matrix transformation is a linear transformation, and vice versa. Linear Transformations Definition: A transformation (or mapping) T is linear if: (i) T (u + v) = T (u) + T (v) for all u, v in the domain of T ; (ii) T (cu) = ct (u) for all scalars c and all u in the

More information

Math 22 Fall 2018 Midterm 2

Math 22 Fall 2018 Midterm 2 Math 22 Fall 218 Midterm 2 October 23, 218 NAME: SECTION (check one box): Section 1 (S. Allen 12:5) Section 2 (A. Babei 2:1) Instructions: 1. Write your name legibly on this page, and indicate your section

More information

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases Worksheet for Lecture 5 (due October 23) Name: Section 4.3 Linearly Independent Sets; Bases Definition An indexed set {v,..., v n } in a vector space V is linearly dependent if there is a linear relation

More information

Orthogonal Projection. Hung-yi Lee

Orthogonal Projection. Hung-yi Lee Orthogonal Projection Hung-yi Lee Reference Textbook: Chapter 7.3, 7.4 Orthogonal Projection What is Orthogonal Complement What is Orthogonal Projection How to do Orthogonal Projection Application of Orthogonal

More information

Midterm solutions. (50 points) 2 (10 points) 3 (10 points) 4 (10 points) 5 (10 points)

Midterm solutions. (50 points) 2 (10 points) 3 (10 points) 4 (10 points) 5 (10 points) Midterm solutions Advanced Linear Algebra (Math 340) Instructor: Jarod Alper April 26, 2017 Name: } {{ } Read all of the following information before starting the exam: You may not consult any outside

More information

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and

6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if. (a) v 1,, v k span V and 6.4 BASIS AND DIMENSION (Review) DEF 1 Vectors v 1, v 2,, v k in a vector space V are said to form a basis for V if (a) v 1,, v k span V and (b) v 1,, v k are linearly independent. HMHsueh 1 Natural Basis

More information

SUPPLEMENT TO CHAPTER 3

SUPPLEMENT TO CHAPTER 3 SUPPLEMENT TO CHAPTER 3 1.1 Linear combinations and spanning sets Consider the vector space R 3 with the unit vectors e 1 = (1, 0, 0), e 2 = (0, 1, 0), e 3 = (0, 0, 1). Every vector v = (a, b, c) R 3 can

More information

Solutions to Midterm 2 Practice Problems Written by Victoria Kala Last updated 11/10/2015

Solutions to Midterm 2 Practice Problems Written by Victoria Kala Last updated 11/10/2015 Solutions to Midterm 2 Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated //25 Answers This page contains answers only. Detailed solutions are on the following pages. 2 7. (a)

More information

MATH 423 Linear Algebra II Lecture 12: Review for Test 1.

MATH 423 Linear Algebra II Lecture 12: Review for Test 1. MATH 423 Linear Algebra II Lecture 12: Review for Test 1. Topics for Test 1 Vector spaces (F/I/S 1.1 1.7, 2.2, 2.4) Vector spaces: axioms and basic properties. Basic examples of vector spaces (coordinate

More information

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases

Worksheet for Lecture 15 (due October 23) Section 4.3 Linearly Independent Sets; Bases Worksheet for Lecture 5 (due October 23) Name: Section 4.3 Linearly Independent Sets; Bases Definition An indexed set {v,..., v n } in a vector space V is linearly dependent if there is a linear relation

More information

ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST

ft-uiowa-math2550 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 12/31/2014 at 10:36pm CST me me ft-uiowa-math255 Assignment OptionalFinalExamReviewMultChoiceMEDIUMlengthForm due 2/3/2 at :3pm CST. ( pt) Library/TCNJ/TCNJ LinearSystems/problem3.pg Give a geometric description of the following

More information

Third Midterm Exam Name: Practice Problems November 11, Find a basis for the subspace spanned by the following vectors.

Third Midterm Exam Name: Practice Problems November 11, Find a basis for the subspace spanned by the following vectors. Math 7 Treibergs Third Midterm Exam Name: Practice Problems November, Find a basis for the subspace spanned by the following vectors,,, We put the vectors in as columns Then row reduce and choose the pivot

More information

Math 4326 Fall Exam 2 Solutions

Math 4326 Fall Exam 2 Solutions Math 4326 Fall 218 Exam 2 Solutions 1. (2 points) Which of the following are subspaces of P 2? Justify your answers. (a) U, the set of those polynomials with constant term equal to the coefficient of t

More information

Advanced Linear Algebra Math 4377 / 6308 (Spring 2015) March 5, 2015

Advanced Linear Algebra Math 4377 / 6308 (Spring 2015) March 5, 2015 Midterm 1 Advanced Linear Algebra Math 4377 / 638 (Spring 215) March 5, 215 2 points 1. Mark each statement True or False. Justify each answer. (If true, cite appropriate facts or theorems. If false, explain

More information

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.

Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences. Instructions Please answer the five problems on your own paper. These are essay questions: you should write in complete sentences.. Recall that P 3 denotes the vector space of polynomials of degree less

More information

MATH 1553, SPRING 2018 SAMPLE MIDTERM 2 (VERSION B), 1.7 THROUGH 2.9

MATH 1553, SPRING 2018 SAMPLE MIDTERM 2 (VERSION B), 1.7 THROUGH 2.9 MATH 155, SPRING 218 SAMPLE MIDTERM 2 (VERSION B), 1.7 THROUGH 2.9 Name Section 1 2 4 5 Total Please read all instructions carefully before beginning. Each problem is worth 1 points. The maximum score

More information

Math 3108: Linear Algebra

Math 3108: Linear Algebra Math 3108: Linear Algebra Instructor: Jason Murphy Department of Mathematics and Statistics Missouri University of Science and Technology 1 / 323 Contents. Chapter 1. Slides 3 70 Chapter 2. Slides 71 118

More information

Linear Algebra Quiz 4. Problem 1 (Linear Transformations): 4 POINTS Show all Work! Consider the tranformation T : R 3 R 3 given by:

Linear Algebra Quiz 4. Problem 1 (Linear Transformations): 4 POINTS Show all Work! Consider the tranformation T : R 3 R 3 given by: Page 1 This is a 60 min Quiz. Please make sure you put your name on the top right hand corner of each sheet. Remember the Honors Code will be enforced! You may use your book. NO HELP FROM ANYONE. Problem

More information