Acceptably inaccurate. Probabilistic data structures

Size: px
Start display at page:

Download "Acceptably inaccurate. Probabilistic data structures"

Transcription

1 Acceptably inaccurate Probabilistic data structures

2 Hello

3 Today's talk Motivation Bloom filters Count-Min Sketch HyperLogLog

4 Motivation

5 Tape HDD SSD Memory

6 Tape HDD SSD Memory Speed

7 Tape HDD SSD Memory Cost

8 Tape HDD SSD Memory Ease of use (as a developer)

9 Tape HDD SSD Memory Set<String>

10 HDD SSD Memory Storage per node

11 HDD SSD Memory How can we do more here?

12 Probabilistic data structures

13 I, as a developer, accept a predictable level of inaccuracy.

14 Bloom filters

15 Bloom filters are for set membership

16 Set<String> visitors = new HashSet<>(); visitors.add(" "); visitors.add(" "); visitors.add(" "); visitors.contains(" "); // true visitors.contains(" "); // false

17 Number of UUIDs JVM heap used (MB) 10 < < 2 1, , , ,000,

18 What is a Bloom filter? Space/time trade-offs in hash coding with allowable errors (Bloom, 1970)

19 A bit array of size n

20 k hash functions h1() h2()

21 Adding an element " " h1() h2()

22 Checking for the presence of an element " " h1() h2() No!

23 Checking for the presence of an element " " h1() h2() Maybe!

24 <dependency> <groupid>com.google.guava</groupid> <artifactid>guava</artifactid> <version>19.0</version> </dependency>

25 private BloomFilter<String> visitors = BloomFilter.create( Funnels.stringFunnel(Charset.forName("UTF-8")), 10000); visitors.add(" "); visitors.add(" "); visitors.add(" "); visitors.maycontain(" "); // true visitors.maycontain(" "); // false

26 Number of UUIDs Set JVM heap used (MB) Bloom filter JVM heap used (MB) 10 < < , , , ,000,

27 Suggested size of Bloom filter Bit count , , , ,000,

28 3% false positive probability by default.

29 private BloomFilter<String> visitors = BloomFilter.create( Funnels.stringFunnel(Charset.forName("UTF-8")), 10000, 0.005);

30 Suggested FPP of Bloom filter Hash functions 3% 5 1% 7 0.1% % % % 20

31 Use cases "One hit wonders" Avoiding lookups (HBase, Cassandra) Real-time matching Algorithmic nuggets in content delivery (Maggs, 2015)

32 Count-min sketch

33 Count-min sketch for count tracking

34 Multiset<String> hits = HashMultiset.create(); hits.add(" "); hits.add(" "); hits.add(" "); hits.add(" "); hits.count(" "); // 2 hits.count(" "); // 0

35 Number of UUIDs JVM heap used (MB) 10 < < 2 1, , , ,000,

36 What is a Count-Min Sketch? Approximating data with the count-min data structure (Cormode, Muthukrishnan, 2012)

37 depth (d) An array of counters width (w) h1() h2() h3() h4() h5()

38 Adding an element " " h1() h2() h3()

39 Adding the same element again " " h1() h2() h3()

40 Adding a different element " " h1() h2() h3()

41 Getting the count of the first element " " min(2, 3, 2) = h1() h2() h3()

42 Getting the count of the second element " " min(1, 3, 1) = h1() h2() h3()

43 Initialising a sketch Epsilon: accepted error added to counts with each item Delta: probability that estimate is outside accepted error this.width = (int) Math.ceil(2 / epsilon); this.depth = (int) Math.ceil(-Math.log(1 - delta) / Math.log(2))

44 <dependency> <groupid>com.clearspring.analytics</groupid> <artifactid>stream</artifactid> <version>2.9.2</version> </dependency>

45 private CountMinSketch cms = new CountMinSketch(0.001, 0.99, 1); cms.add(" ", 1); cms.add(" ", 1); cms.add(" ", 2); cms.estimatecount(" "); // 2 cms.estimatecount(" "); // 0

46 Number of UUIDs Multiset JVM heap used (MB) CMS JVM heap used (MB) 10 < 2 N/A 100 < 2 N/A 1,000 3 N/A 10,000 9 N/A 100, N/A 1,000, N/A

47 Epsi lon Delt a Widt h Dept h CMS JVM heap used (MB)

48 Use cases Any kind of frequency tracking! NLP Extension: Heavy-hitters Extension: Range-query

49 HyperLogLog

50 HyperLogLog is for cardinality

51 Set<String> visitors = new HashSet<>(); visitors.add(" "); visitors.add(" "); visitors.add(" "); visitors.add(" "); visitors.add(" "); visitors.size(); // 3

52 Number of UUIDs JVM heap used (MB) 10 < < 2 1, , , ,000,

53 A gentle walk into HyperLogLog

54 Linear counting A linear-time probabilistic counting algorithm for database applications (Whang, 1990)

55 A bit array of size m

56 Adding an element " " hash()

57 Adding another element " " hash()

58 Estimating cardinality Cardinality (estimate) = -m * ln(m-w/m) =

59 LogLog LogLog counting of large cardinalities (Durand, Flajolet, 2003)

60 Flipping coins

61 Doing it with hashing " "

62 Doing it with hashing " " " "

63 Doing it with hashing " " " " " "

64 Doing it with hashing " " " " " " ⁿ = 2¹ = 2

65 Improving it

66 Stochastic averaging 0 " " " " " " Bucket ID

67 2 (sum(max_zeros) / buckets) * buckets * ESTIMATION_FACTOR

68 Average error = 1.3/sqrt(buckets)

69 1.3/sqrt(1024) = 0.04

70 5 bits per bucket = 5.12K!

71 HyperLogLog HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm (Flajolet, Fusy, Gandouet, 2007)

72 Average error = 1.05/sqrt(buckets)

73 1.05/sqrt(1024) = 0.032

74 1.04/sqrt(1024) = 0.03

75 <dependency> <groupid>com.clearspring.analytics</groupid> <artifactid>stream</artifactid> <version>2.9.2</version> </dependency>

76 HyperLogLog visitors = new HyperLogLog(0.03); visitors.offer(" "); visitors.offer(" "); visitors.offer(" "); visitors.offer(" "); visitors.offer(" "); visitors.cardinality(); // 3

77 Number of UUIDs Set JVM heap used (MB) HyperLo glog JVM heap used (MB) 10 < < , , , ,000,

78 Use cases Anywhere you need cardinality in O(n)! Unique site visitors Estimates of massive tables Streams of data

79 That's it!

80 We learned about Bloom filters Count-Min Sketch HyperLogLog (and some of the story)

How Philippe Flipped Coins to Count Data

How Philippe Flipped Coins to Count Data 1/18 How Philippe Flipped Coins to Count Data Jérémie Lumbroso LIP6 / INRIA Rocquencourt December 16th, 2011 0. DATA STREAMING ALGORITHMS Stream: a (very large) sequence S over (also very large) domain

More information

Data-Intensive Distributed Computing

Data-Intensive Distributed Computing Data-Intensive Distributed Computing CS 451/651 431/631 (Winter 2018) Part 9: Real-Time Data Analytics (2/2) March 29, 2018 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

More information

Lecture 2. Frequency problems

Lecture 2. Frequency problems 1 / 43 Lecture 2. Frequency problems Ricard Gavaldà MIRI Seminar on Data Streams, Spring 2015 Contents 2 / 43 1 Frequency problems in data streams 2 Approximating inner product 3 Computing frequency moments

More information

12 Count-Min Sketch and Apriori Algorithm (and Bloom Filters)

12 Count-Min Sketch and Apriori Algorithm (and Bloom Filters) 12 Count-Min Sketch and Apriori Algorithm (and Bloom Filters) Many streaming algorithms use random hashing functions to compress data. They basically randomly map some data items on top of each other.

More information

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2016)

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2016) Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2016) Week 12: Real-Time Data Analytics (2/2) March 31, 2016 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

More information

1 Probability Review. CS 124 Section #8 Hashing, Skip Lists 3/20/17. Expectation (weighted average): the expectation of a random quantity X is:

1 Probability Review. CS 124 Section #8 Hashing, Skip Lists 3/20/17. Expectation (weighted average): the expectation of a random quantity X is: CS 24 Section #8 Hashing, Skip Lists 3/20/7 Probability Review Expectation (weighted average): the expectation of a random quantity X is: x= x P (X = x) For each value x that X can take on, we look at

More information

Part 1: Hashing and Its Many Applications

Part 1: Hashing and Its Many Applications 1 Part 1: Hashing and Its Many Applications Sid C-K Chau Chi-Kin.Chau@cl.cam.ac.u http://www.cl.cam.ac.u/~cc25/teaching Why Randomized Algorithms? 2 Randomized Algorithms are algorithms that mae random

More information

4/26/2017. More algorithms for streams: Each element of data stream is a tuple Given a list of keys S Determine which tuples of stream are in S

4/26/2017. More algorithms for streams: Each element of data stream is a tuple Given a list of keys S Determine which tuples of stream are in S Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

A General-Purpose Counting Filter: Making Every Bit Count. Prashant Pandey, Michael A. Bender, Rob Johnson, Rob Patro Stony Brook University, NY

A General-Purpose Counting Filter: Making Every Bit Count. Prashant Pandey, Michael A. Bender, Rob Johnson, Rob Patro Stony Brook University, NY A General-Purpose Counting Filter: Making Every Bit Count Prashant Pandey, Michael A. Bender, Rob Johnson, Rob Patro Stony Brook University, NY Approximate Membership Query (AMQ) insert(x) ismember(x)

More information

Introduction to Randomized Algorithms III

Introduction to Randomized Algorithms III Introduction to Randomized Algorithms III Joaquim Madeira Version 0.1 November 2017 U. Aveiro, November 2017 1 Overview Probabilistic counters Counting with probability 1 / 2 Counting with probability

More information

Count-Min Tree Sketch: Approximate counting for NLP

Count-Min Tree Sketch: Approximate counting for NLP Count-Min Tree Sketch: Approximate counting for NLP Guillaume Pitel, Geoffroy Fouquier, Emmanuel Marchand and Abdul Mouhamadsultane exensa firstname.lastname@exensa.com arxiv:64.5492v [cs.ir] 9 Apr 26

More information

Lecture 3 Sept. 4, 2014

Lecture 3 Sept. 4, 2014 CS 395T: Sublinear Algorithms Fall 2014 Prof. Eric Price Lecture 3 Sept. 4, 2014 Scribe: Zhao Song In today s lecture, we will discuss the following problems: 1. Distinct elements 2. Turnstile model 3.

More information

Cardinality Estimation

Cardinality Estimation Cardinality Estimation Robert Sedgewick Princeton University with special thanks to Jérémie Lumbroso Philippe Flajolet, mathematician and computer scientist extraordinaire Philippe Flajolet 1948-2011 Don

More information

CSCB63 Winter Week 11 Bloom Filters. Anna Bretscher. March 30, / 13

CSCB63 Winter Week 11 Bloom Filters. Anna Bretscher. March 30, / 13 CSCB63 Winter 2019 Week 11 Bloom Filters Anna Bretscher March 30, 2019 1 / 13 Today Bloom Filters Definition Expected Complexity Applications 2 / 13 Bloom Filters (Specification) A bloom filter is a probabilistic

More information

Algorithms for Data Science

Algorithms for Data Science Algorithms for Data Science CSOR W4246 Eleni Drinea Computer Science Department Columbia University Tuesday, December 1, 2015 Outline 1 Recap Balls and bins 2 On randomized algorithms 3 Saving space: hashing-based

More information

An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems

An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems Arnab Bhattacharyya, Palash Dey, and David P. Woodruff Indian Institute of Science, Bangalore {arnabb,palash}@csa.iisc.ernet.in

More information

Big Data. Big data arises in many forms: Common themes:

Big Data. Big data arises in many forms: Common themes: Big Data Big data arises in many forms: Physical Measurements: from science (physics, astronomy) Medical data: genetic sequences, detailed time series Activity data: GPS location, social network activity

More information

15-451/651: Design & Analysis of Algorithms September 13, 2018 Lecture #6: Streaming Algorithms last changed: August 30, 2018

15-451/651: Design & Analysis of Algorithms September 13, 2018 Lecture #6: Streaming Algorithms last changed: August 30, 2018 15-451/651: Design & Analysis of Algorithms September 13, 2018 Lecture #6: Streaming Algorithms last changed: August 30, 2018 Today we ll talk about a topic that is both very old (as far as computer science

More information

Streaming - 2. Bloom Filters, Distinct Item counting, Computing moments. credits:www.mmds.org.

Streaming - 2. Bloom Filters, Distinct Item counting, Computing moments. credits:www.mmds.org. Streaming - 2 Bloom Filters, Distinct Item counting, Computing moments credits:www.mmds.org http://www.mmds.org Outline More algorithms for streams: 2 Outline More algorithms for streams: (1) Filtering

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/26/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2 More algorithms

More information

6 Filtering and Streaming

6 Filtering and Streaming Casus ubique valet; semper tibi pendeat hamus: Quo minime credas gurgite, piscis erit. [Luck affects everything. Let your hook always be cast. Where you least expect it, there will be a fish.] Publius

More information

Lecture 24: Bloom Filters. Wednesday, June 2, 2010

Lecture 24: Bloom Filters. Wednesday, June 2, 2010 Lecture 24: Bloom Filters Wednesday, June 2, 2010 1 Topics for the Final SQL Conceptual Design (BCNF) Transactions Indexes Query execution and optimization Cardinality Estimation Parallel Databases 2 Lecture

More information

Analysis of Algorithms. Analytic Combinatorics.

Analysis of Algorithms. Analytic Combinatorics. Analysis of Algorithms Original MOOC title: ANALYTIC COMBINATORICS, PART ONE Analytic Combinatorics Original MOOC title: ANALYTIC COMBINATORICS, PART TWO http://aofa.cs.princeton.edu http://ac.cs.princeton.edu

More information

Lecture and notes by: Alessio Guerrieri and Wei Jin Bloom filters and Hashing

Lecture and notes by: Alessio Guerrieri and Wei Jin Bloom filters and Hashing Bloom filters and Hashing 1 Introduction The Bloom filter, conceived by Burton H. Bloom in 1970, is a space-efficient probabilistic data structure that is used to test whether an element is a member of

More information

Heavy Hitters. Piotr Indyk MIT. Lecture 4

Heavy Hitters. Piotr Indyk MIT. Lecture 4 Heavy Hitters Piotr Indyk MIT Last Few Lectures Recap (last few lectures) Update a vector x Maintain a linear sketch Can compute L p norm of x (in zillion different ways) Questions: Can we do anything

More information

md5bloom: Forensic Filesystem Hashing Revisited

md5bloom: Forensic Filesystem Hashing Revisited DIGITAL FORENSIC RESEARCH CONFERENCE md5bloom: Forensic Filesystem Hashing Revisited By Vassil Roussev, Timothy Bourg, Yixin Chen, Golden Richard Presented At The Digital Forensic Research Conference DFRWS

More information

A Statistical Analysis of Probabilistic Counting Algorithms

A Statistical Analysis of Probabilistic Counting Algorithms Probabilistic counting algorithms 1 A Statistical Analysis of Probabilistic Counting Algorithms PETER CLIFFORD Department of Statistics, University of Oxford arxiv:0801.3552v3 [stat.co] 7 Nov 2010 IOANA

More information

CS341 info session is on Thu 3/1 5pm in Gates415. CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS341 info session is on Thu 3/1 5pm in Gates415. CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS341 info session is on Thu 3/1 5pm in Gates415 CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/28/18 Jure Leskovec, Stanford CS246: Mining Massive Datasets,

More information

LogLog-Beta and More: A New Algorithm for Cardinality Estimation Based on LogLog Counting

LogLog-Beta and More: A New Algorithm for Cardinality Estimation Based on LogLog Counting LogLog-Beta and More: A New Algorith for Cardinality Estiation Based on LogLog Counting Jason Qin, Denys Ki, Yuei Tung The AOLP Core Data Service, AOL, 22000 AOL Way Dulles, VA 20163 E-ail: jasonqin@teaaolco

More information

Bloom Filter Redux. CS 270 Combinatorial Algorithms and Data Structures. UC Berkeley, Spring 2011

Bloom Filter Redux. CS 270 Combinatorial Algorithms and Data Structures. UC Berkeley, Spring 2011 Bloom Filter Redux Matthias Vallentin Gene Pang CS 270 Combinatorial Algorithms and Data Structures UC Berkeley, Spring 2011 Inspiration Our background: network security, databases We deal with massive

More information

An Integrated Efficient Solution for Computing Frequent and Top-k Elements in Data Streams

An Integrated Efficient Solution for Computing Frequent and Top-k Elements in Data Streams An Integrated Efficient Solution for Computing Frequent and Top-k Elements in Data Streams AHMED METWALLY, DIVYAKANT AGRAWAL, and AMR EL ABBADI University of California, Santa Barbara We propose an approximate

More information

1 Estimating Frequency Moments in Streams

1 Estimating Frequency Moments in Streams CS 598CSC: Algorithms for Big Data Lecture date: August 28, 2014 Instructor: Chandra Chekuri Scribe: Chandra Chekuri 1 Estimating Frequency Moments in Streams A significant fraction of streaming literature

More information

Classic Network Measurements meets Software Defined Networking

Classic Network Measurements meets Software Defined Networking Classic Network s meets Software Defined Networking Ran Ben Basat, Technion, Israel Joint work with Gil Einziger and Erez Waisbard (Nokia Bell Labs) Roy Friedman (Technion) and Marcello Luzieli (UFGRS)

More information

Bloom Filters, general theory and variants

Bloom Filters, general theory and variants Bloom Filters: general theory and variants G. Caravagna caravagn@cli.di.unipi.it Information Retrieval Wherever a list or set is used, and space is a consideration, a Bloom Filter should be considered.

More information

Data Stream Methods. Graham Cormode S. Muthukrishnan

Data Stream Methods. Graham Cormode S. Muthukrishnan Data Stream Methods Graham Cormode graham@dimacs.rutgers.edu S. Muthukrishnan muthu@cs.rutgers.edu Plan of attack Frequent Items / Heavy Hitters Counting Distinct Elements Clustering items in Streams Motivating

More information

Lecture Note 2. 1 Bonferroni Principle. 1.1 Idea. 1.2 Want. Material covered today is from Chapter 1 and chapter 4

Lecture Note 2. 1 Bonferroni Principle. 1.1 Idea. 1.2 Want. Material covered today is from Chapter 1 and chapter 4 Lecture Note 2 Material covere toay is from Chapter an chapter 4 Bonferroni Principle. Iea Get an iea the frequency of events when things are ranom billion = 0 9 Each person has a % chance to stay in a

More information

B669 Sublinear Algorithms for Big Data

B669 Sublinear Algorithms for Big Data B669 Sublinear Algorithms for Big Data Qin Zhang 1-1 2-1 Part 1: Sublinear in Space The model and challenge The data stream model (Alon, Matias and Szegedy 1996) a n a 2 a 1 RAM CPU Why hard? Cannot store

More information

Approximate counting: count-min data structure. Problem definition

Approximate counting: count-min data structure. Problem definition Approximate counting: count-min data structure G. Cormode and S. Muthukrishhan: An improved data stream summary: the count-min sketch and its applications. Journal of Algorithms 55 (2005) 58-75. Problem

More information

Advanced Implementations of Tables: Balanced Search Trees and Hashing

Advanced Implementations of Tables: Balanced Search Trees and Hashing Advanced Implementations of Tables: Balanced Search Trees and Hashing Balanced Search Trees Binary search tree operations such as insert, delete, retrieve, etc. depend on the length of the path to the

More information

Succinct Approximate Counting of Skewed Data

Succinct Approximate Counting of Skewed Data Succinct Approximate Counting of Skewed Data David Talbot Google Inc., Mountain View, CA, USA talbot@google.com Abstract Practical data analysis relies on the ability to count observations of objects succinctly

More information

Data Streams & Communication Complexity

Data Streams & Communication Complexity Data Streams & Communication Complexity Lecture 1: Simple Stream Statistics in Small Space Andrew McGregor, UMass Amherst 1/25 Data Stream Model Stream: m elements from universe of size n, e.g., x 1, x

More information

CS246 Final Exam. March 16, :30AM - 11:30AM

CS246 Final Exam. March 16, :30AM - 11:30AM CS246 Final Exam March 16, 2016 8:30AM - 11:30AM Name : SUID : I acknowledge and accept the Stanford Honor Code. I have neither given nor received unpermitted help on this examination. (signed) Directions

More information

Linear Sketches A Useful Tool in Streaming and Compressive Sensing

Linear Sketches A Useful Tool in Streaming and Compressive Sensing Linear Sketches A Useful Tool in Streaming and Compressive Sensing Qin Zhang 1-1 Linear sketch Random linear projection M : R n R k that preserves properties of any v R n with high prob. where k n. M =

More information

Estimating Frequencies and Finding Heavy Hitters Jonas Nicolai Hovmand, Morten Houmøller Nygaard,

Estimating Frequencies and Finding Heavy Hitters Jonas Nicolai Hovmand, Morten Houmøller Nygaard, Estimating Frequencies and Finding Heavy Hitters Jonas Nicolai Hovmand, 2011 3884 Morten Houmøller Nygaard, 2011 4582 Master s Thesis, Computer Science June 2016 Main Supervisor: Gerth Stølting Brodal

More information

Ad Placement Strategies

Ad Placement Strategies Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox 2014 Emily Fox January

More information

Course Announcements. Bacon is due next Monday. Next lab is about drawing UIs. Today s lecture will help thinking about your DB interface.

Course Announcements. Bacon is due next Monday. Next lab is about drawing UIs. Today s lecture will help thinking about your DB interface. Course Announcements Bacon is due next Monday. Today s lecture will help thinking about your DB interface. Next lab is about drawing UIs. John Jannotti (cs32) ORMs Mar 9, 2017 1 / 24 ORMs John Jannotti

More information

25.2 Last Time: Matrix Multiplication in Streaming Model

25.2 Last Time: Matrix Multiplication in Streaming Model EE 381V: Large Scale Learning Fall 01 Lecture 5 April 18 Lecturer: Caramanis & Sanghavi Scribe: Kai-Yang Chiang 5.1 Review of Streaming Model Streaming model is a new model for presenting massive data.

More information

Foundations of Data Mining

Foundations of Data Mining Foundations of Data Mining http://www.cohenwang.com/edith/dataminingclass2017 Instructors: Haim Kaplan Amos Fiat Lecture 1 1 Course logistics Tuesdays 16:00-19:00, Sherman 002 Slides for (most or all)

More information

Probabilistic Counting with Randomized Storage

Probabilistic Counting with Randomized Storage Probabilistic Counting with Randomized Storage Benjamin Van Durme University of Rochester Rochester, NY 14627, USA Ashwin Lall Georgia Institute of Technology Atlanta, GA 30332, USA Abstract Previous work

More information

New cardinality estimation algorithms for HyperLogLog sketches

New cardinality estimation algorithms for HyperLogLog sketches New cardinality estimation algorithms for HyperLogLog sketches Otmar Ertl otmar.ertl@gmail.com April 3, 2017 This paper presents new methods to estimate the cardinalities of data sets recorded by HyperLogLog

More information

CBFM cutted Bloom filter matrix for multi-dimensional membership query

CBFM cutted Bloom filter matrix for multi-dimensional membership query 37 3 Vol.37 No.3 2016 3 Journal on Communications March 2016 doi:10.11959/j.issn.1000-436x.2016061 CBFM 1 1,2 1 1 1. 100093 2. 100029 CBFM(cutted Bloom filter matrix) BFM(Bloom filter matrix) CBFM CBFM

More information

Computing the Entropy of a Stream

Computing the Entropy of a Stream Computing the Entropy of a Stream To appear in SODA 2007 Graham Cormode graham@research.att.com Amit Chakrabarti Dartmouth College Andrew McGregor U. Penn / UCSD Outline Introduction Entropy Upper Bound

More information

RAPPOR: Randomized Aggregatable Privacy- Preserving Ordinal Response

RAPPOR: Randomized Aggregatable Privacy- Preserving Ordinal Response RAPPOR: Randomized Aggregatable Privacy- Preserving Ordinal Response Úlfar Erlingsson, Vasyl Pihur, Aleksandra Korolova Google & USC Presented By: Pat Pannuto RAPPOR, What is is good for? (Absolutely something!)

More information

Electrical & Computer Engineering University of Waterloo Canada February 6, 2007

Electrical & Computer Engineering University of Waterloo Canada February 6, 2007 Lecture 9: Lecture 9: Electrical & Computer Engineering University of Waterloo Canada February 6, 2007 Hash tables Lecture 9: Recall that a hash table consists of m slots into which we are placing items;

More information

Lecture 4 Thursday Sep 11, 2014

Lecture 4 Thursday Sep 11, 2014 CS 224: Advanced Algorithms Fall 2014 Lecture 4 Thursday Sep 11, 2014 Prof. Jelani Nelson Scribe: Marco Gentili 1 Overview Today we re going to talk about: 1. linear probing (show with 5-wise independence)

More information

Leveraging Big Data: Lecture 13

Leveraging Big Data: Lecture 13 Leveraging Big Data: Lecture 13 http://www.cohenwang.com/edith/bigdataclass2013 Instructors: Edith Cohen Amos Fiat Haim Kaplan Tova Milo What are Linear Sketches? Linear Transformations of the input vector

More information

Some notes on streaming algorithms continued

Some notes on streaming algorithms continued U.C. Berkeley CS170: Algorithms Handout LN-11-9 Christos Papadimitriou & Luca Trevisan November 9, 016 Some notes on streaming algorithms continued Today we complete our quick review of streaming algorithms.

More information

Dictionary: an abstract data type

Dictionary: an abstract data type 2-3 Trees 1 Dictionary: an abstract data type A container that maps keys to values Dictionary operations Insert Search Delete Several possible implementations Balanced search trees Hash tables 2 2-3 trees

More information

Lecture 3 Frequency Moments, Heavy Hitters

Lecture 3 Frequency Moments, Heavy Hitters COMS E6998-9: Algorithmic Techniques for Massive Data Sep 15, 2015 Lecture 3 Frequency Moments, Heavy Hitters Instructor: Alex Andoni Scribes: Daniel Alabi, Wangda Zhang 1 Introduction This lecture is

More information

1. HyperLogLog algorithm

1. HyperLogLog algorithm SUPPLEMENTARY INFORMATION FOR KRAKENHLL (BREITWIESER AND SALZBERG, 2018) 1. HyperLogLog algorithm... 1 2. Database building and reanalysis of the patient data (Salzberg, et al., 2016)... 7 3. Enabling

More information

The Count-Min-Sketch and its Applications

The Count-Min-Sketch and its Applications The Count-Min-Sketch and its Applications Jannik Sundermeier Abstract In this thesis, we want to reveal how to get rid of a huge amount of data which is at least dicult or even impossible to store in local

More information

What s New: Finding Significant Differences in Network Data Streams

What s New: Finding Significant Differences in Network Data Streams What s New: Finding Significant Differences in Network Data Streams Graham Cormode S. Muthukrishnan Abstract Monitoring and analyzing network traffic usage patterns is vital for managing IP Networks. An

More information

Embedded probabilistic programming

Embedded probabilistic programming Embedded probabilistic programming Oleg Kiselyov FNMOC oleg@pobox.com Chung-chieh Shan Rutgers University ccshan@cs.rutgers.edu 17 July 2009 Probabilistic inference Model (what) Pr(Reality) Pr(Obs j Reality)

More information

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #15: Mining Streams 2

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #15: Mining Streams 2 CS 5614: (Big) Data Management Systems B. Aditya Prakash Lecture #15: Mining Streams 2 Today s Lecture More algorithms for streams: (1) Filtering a data stream: Bloom filters Select elements with property

More information

Multiple-Site Distributed Spatial Query Optimization using Spatial Semijoins

Multiple-Site Distributed Spatial Query Optimization using Spatial Semijoins 11 Multiple-Site Distributed Spatial Query Optimization using Spatial Semijoins Wendy OSBORN a, 1 and Saad ZAAMOUT a a Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge,

More information

Algorithms for NLP. Language Modeling III. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Language Modeling III. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Language Modeling III Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Announcements Office hours on website but no OH for Taylor until next week. Efficient Hashing Closed address

More information

Block Heavy Hitters Alexandr Andoni, Khanh Do Ba, and Piotr Indyk

Block Heavy Hitters Alexandr Andoni, Khanh Do Ba, and Piotr Indyk Computer Science and Artificial Intelligence Laboratory Technical Report -CSAIL-TR-2008-024 May 2, 2008 Block Heavy Hitters Alexandr Andoni, Khanh Do Ba, and Piotr Indyk massachusetts institute of technology,

More information

PAPER Adaptive Bloom Filter : A Space-Efficient Counting Algorithm for Unpredictable Network Traffic

PAPER Adaptive Bloom Filter : A Space-Efficient Counting Algorithm for Unpredictable Network Traffic IEICE TRANS.??, VOL.Exx??, NO.xx XXXX x PAPER Adaptive Bloom Filter : A Space-Efficient Counting Algorithm for Unpredictable Network Traffic Yoshihide MATSUMOTO a), Hiroaki HAZEYAMA b), and Youki KADOBAYASHI

More information

Lecture 10. Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1

Lecture 10. Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1 Lecture 10 Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1 Recap Sublinear time algorithms Deterministic + exact: binary search Deterministic + inexact: estimating diameter in a

More information

Identifying and Estimating Persistent Items in Data Streams

Identifying and Estimating Persistent Items in Data Streams 1 Identifying and Estimating Persistent Items in Data Streams Haipeng Dai Muhammad Shahzad Alex X. Liu Meng Li Yuankun Zhong Guihai Chen Abstract This paper addresses the fundamental problem of finding

More information

CS 125 Section #12 (More) Probability and Randomized Algorithms 11/24/14. For random numbers X which only take on nonnegative integer values, E(X) =

CS 125 Section #12 (More) Probability and Randomized Algorithms 11/24/14. For random numbers X which only take on nonnegative integer values, E(X) = CS 125 Section #12 (More) Probability and Randomized Algorithms 11/24/14 1 Probability First, recall a couple useful facts from last time about probability: Linearity of expectation: E(aX + by ) = ae(x)

More information

arxiv: v1 [cs.ds] 3 Feb 2018

arxiv: v1 [cs.ds] 3 Feb 2018 A Model for Learned Bloom Filters and Related Structures Michael Mitzenmacher 1 arxiv:1802.00884v1 [cs.ds] 3 Feb 2018 Abstract Recent work has suggested enhancing Bloom filters by using a pre-filter, based

More information

Probabilistic Near-Duplicate. Detection Using Simhash

Probabilistic Near-Duplicate. Detection Using Simhash Probabilistic Near-Duplicate Detection Using Simhash Sadhan Sood, Dmitri Loguinov Presented by Matt Smith Internet Research Lab Department of Computer Science and Engineering Texas A&M University 27 October

More information

Lecture 4: Hashing and Streaming Algorithms

Lecture 4: Hashing and Streaming Algorithms CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 4: Hashing and Streaming Algorithms Lecturer: Shayan Oveis Gharan 01/18/2017 Scribe: Yuqing Ai Disclaimer: These notes have not been subjected

More information

Title: Count-Min Sketch Name: Graham Cormode 1 Affil./Addr. Department of Computer Science, University of Warwick,

Title: Count-Min Sketch Name: Graham Cormode 1 Affil./Addr. Department of Computer Science, University of Warwick, Title: Count-Min Sketch Name: Graham Cormode 1 Affil./Addr. Department of Computer Science, University of Warwick, Coventry, UK Keywords: streaming algorithms; frequent items; approximate counting, sketch

More information

The Bloom Paradox: When not to Use a Bloom Filter

The Bloom Paradox: When not to Use a Bloom Filter 1 The Bloom Paradox: When not to Use a Bloom Filter Ori Rottenstreich and Isaac Keslassy Abstract In this paper, we uncover the Bloom paradox in Bloom filters: sometimes, the Bloom filter is harmful and

More information

Distinct-Value Synopses for Multiset Operations

Distinct-Value Synopses for Multiset Operations Distinct-Value Synopses for Multiset Operations Kevin Beyer Rainer Gemulla Peter J. Haas Berthold Reinwald Yannis Sismanis IBM Almaden Research Center San Jose, CA, USA {kbeyer,rgemull,phaas,reinwald,syannis}@us.ibm.com

More information

Complete Faceting. code4lib, Feb Toke Eskildsen Mikkel Kamstrup Erlandsen

Complete Faceting. code4lib, Feb Toke Eskildsen Mikkel Kamstrup Erlandsen Complete Faceting code4lib, Feb. 2009 Toke Eskildsen te@statsbiblioteket.dk Mikkel Kamstrup Erlandsen mke@statsbiblioteket.dk Battle Plan Terminology (geek level: 1) History (geek level: 3) Data Structures

More information

CS 598CSC: Algorithms for Big Data Lecture date: Sept 11, 2014

CS 598CSC: Algorithms for Big Data Lecture date: Sept 11, 2014 CS 598CSC: Algorithms for Big Data Lecture date: Sept 11, 2014 Instructor: Chandra Cheuri Scribe: Chandra Cheuri The Misra-Greis deterministic counting guarantees that all items with frequency > F 1 /

More information

Cold Filter: A Meta-Framework for Faster and More Accurate Stream Processing

Cold Filter: A Meta-Framework for Faster and More Accurate Stream Processing Cold Filter: A Meta-Framework for Faster and More Accurate Stream Processing Yang Zhou, Tong Yang,, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li, Steve Uhlig Peking University. Harvard University. Queen

More information

11 Heavy Hitters Streaming Majority

11 Heavy Hitters Streaming Majority 11 Heavy Hitters A core mining problem is to find items that occur more than one would expect. These may be called outliers, anomalies, or other terms. Statistical models can be layered on top of or underneath

More information

A Simple and Efficient Estimation Method for Stream Expression Cardinalities

A Simple and Efficient Estimation Method for Stream Expression Cardinalities A Simple and Efficient Estimation Method for Stream Expression Cardinalities Aiyou Chen, Jin Cao and Tian Bu Bell Labs, Alcatel-Lucent (aychen,jincao,tbu)@research.bell-labs.com ABSTRACT Estimating the

More information

To Randomize or Not To

To Randomize or Not To To Randomize or Not To Randomize: Space Optimal Summaries for Hyperlink Analysis Tamás Sarlós, Eötvös University and Computer and Automation Institute, Hungarian Academy of Sciences Joint work with András

More information

Beyond Distinct Counting: LogLog Composable Sketches of frequency statistics

Beyond Distinct Counting: LogLog Composable Sketches of frequency statistics Beyond Distinct Counting: LogLog Composable Sketches of frequency statistics Edith Cohen Google Research Tel Aviv University TOCA-SV 5/12/2017 8 Un-aggregated data 3 Data element e D has key and value

More information

Finding Frequent Items in Probabilistic Data

Finding Frequent Items in Probabilistic Data Finding Frequent Items in Probabilistic Data Qin Zhang, Hong Kong University of Science & Technology Feifei Li, Florida State University Ke Yi, Hong Kong University of Science & Technology SIGMOD 2008

More information

Hierarchical Heavy Hitters with the Space Saving Algorithm

Hierarchical Heavy Hitters with the Space Saving Algorithm Hierarchical Heavy Hitters with the Space Saving Algorithm Michael Mitzenmacher Thomas Steinke Justin Thaler School of Engineering and Applied Sciences Harvard University, Cambridge, MA 02138 Email: {jthaler,

More information

2 How many distinct elements are in a stream?

2 How many distinct elements are in a stream? Dealing with Massive Data January 31, 2011 Lecture 2: Distinct Element Counting Lecturer: Sergei Vassilvitskii Scribe:Ido Rosen & Yoonji Shin 1 Introduction We begin by defining the stream formally. Definition

More information

CS5112: Algorithms and Data Structures for Applications

CS5112: Algorithms and Data Structures for Applications CS5112: Algorithms and Data Structures for Applications Lecture 14: Exponential decay; convolution Ramin Zabih Some content from: Piotr Indyk; Wikipedia/Google image search; J. Leskovec, A. Rajaraman,

More information

Streaming Graph Computations with a Helpful Advisor. Justin Thaler Graham Cormode and Michael Mitzenmacher

Streaming Graph Computations with a Helpful Advisor. Justin Thaler Graham Cormode and Michael Mitzenmacher Streaming Graph Computations with a Helpful Advisor Justin Thaler Graham Cormode and Michael Mitzenmacher Thanks to Andrew McGregor A few slides borrowed from IITK Workshop on Algorithms for Processing

More information

Data Streams as Random Permutations: the Distinct Element Problem

Data Streams as Random Permutations: the Distinct Element Problem Data Streams as Random Permutations: the Distinct Element Problem Ahmed Helmi, Jérémie Lumbroso, Conrado Martínez, Alfredo Viola To cite this version: Ahmed Helmi, Jérémie Lumbroso, Conrado Martínez, Alfredo

More information

COMPUTING SIMILARITY BETWEEN DOCUMENTS (OR ITEMS) This part is to a large extent based on slides obtained from

COMPUTING SIMILARITY BETWEEN DOCUMENTS (OR ITEMS) This part is to a large extent based on slides obtained from COMPUTING SIMILARITY BETWEEN DOCUMENTS (OR ITEMS) This part is to a large extent based on slides obtained from http://www.mmds.org Distance Measures For finding similar documents, we consider the Jaccard

More information

1 Approximate Quantiles and Summaries

1 Approximate Quantiles and Summaries CS 598CSC: Algorithms for Big Data Lecture date: Sept 25, 2014 Instructor: Chandra Chekuri Scribe: Chandra Chekuri Suppose we have a stream a 1, a 2,..., a n of objects from an ordered universe. For simplicity

More information

Bloom Filters, Minhashes, and Other Random Stuff

Bloom Filters, Minhashes, and Other Random Stuff Bloom Filters, Minhashes, and Other Random Stuff Brian Brubach University of Maryland, College Park StringBio 2018, University of Central Florida What? Probabilistic Space-efficient Fast Not exact Why?

More information

Frequency Estimators

Frequency Estimators Frequency Estimators Outline for Today Randomized Data Structures Our next approach to improving performance. Count-Min Sketches A simple and powerful data structure for estimating frequencies. Count Sketches

More information

A Model for Learned Bloom Filters, and Optimizing by Sandwiching

A Model for Learned Bloom Filters, and Optimizing by Sandwiching A Model for Learned Bloom Filters, and Optimizing by Sandwiching Michael Mitzenmacher School of Engineering and Applied Sciences Harvard University michaelm@eecs.harvard.edu Abstract Recent work has suggested

More information

Using the Power of Two Choices to Improve Bloom Filters

Using the Power of Two Choices to Improve Bloom Filters Internet Mathematics Vol. 4, No. 1: 17-33 Using the Power of Two Choices to Improve Bloom Filters Steve Lumetta and Michael Mitzenmacher Abstract. We consider the combination of two ideas from the hashing

More information

Communication-Efficient Computation on Distributed Noisy Datasets. Qin Zhang Indiana University Bloomington

Communication-Efficient Computation on Distributed Noisy Datasets. Qin Zhang Indiana University Bloomington Communication-Efficient Computation on Distributed Noisy Datasets Qin Zhang Indiana University Bloomington SPAA 15 June 15, 2015 1-1 Model of computation The coordinator model: k sites and 1 coordinator.

More information

6.830 Lecture 11. Recap 10/15/2018

6.830 Lecture 11. Recap 10/15/2018 6.830 Lecture 11 Recap 10/15/2018 Celebration of Knowledge 1.5h No phones, No laptops Bring your Student-ID The 5 things allowed on your desk Calculator allowed 4 pages (2 pages double sided) of your liking

More information

Graphical Model Sketch

Graphical Model Sketch Graphical Model Sketch Branislav Kveton, Hung Bui 2, Mohammad Ghavamzadeh 3, Georgios Theocharous 4, S. Muthukrishnan 5, and Siqi Sun 6 Adobe Research, San Jose, CA kveton@adobe.com 2 Adobe Research, San

More information

arxiv: v2 [cs.ds] 3 Nov 2017

arxiv: v2 [cs.ds] 3 Nov 2017 HyperMinHash: Jaccard index sketching in LogLog space Extended Abstract arxiv:70.08436v [cs.ds] 3 Nov 07 YUN WILLIAM YU, Harvard Medical School DBMI GRIFFIN M. WEBER, Harvard Medical School DBMI In this

More information