CSCB63 Winter Week 11 Bloom Filters. Anna Bretscher. March 30, / 13

Size: px
Start display at page:

Download "CSCB63 Winter Week 11 Bloom Filters. Anna Bretscher. March 30, / 13"

Transcription

1 CSCB63 Winter 2019 Week 11 Bloom Filters Anna Bretscher March 30, / 13

2 Today Bloom Filters Definition Expected Complexity Applications 2 / 13

3 Bloom Filters (Specification) A bloom filter is a probabilistic dictionary and stores a summarized set F S of a set S. It requires elements (keys) to be hashable. Operations: insert(f S, k): Add element k to F S. search(f S, k): Return no" if k S and probably yes" if (with high probability) x S. Note. probably yes" can be returned even though k S. What is this called? false positive. k present k absent return true return false We try to keep Pr(true absent) > 0 small. No delete usually. (If supported, false negatives possible too.) 3 / 13

4 Bloom Filters (Implementation) Let U be the universe of keys. Let BF be an array of m bits BF[0..m 1]. There are t hash functions, h 1, h 2,..., h t that map from U {0,..., m 1}. Idea. To insert key k j, for each hash function h i, set BF[h i (k j )] = 1. Suppose we hash n keys. Q. How can we search for some key k U whether it has been inserted into BF? A. We simply check if all the bits BF[h i (k)] = 1 for 1 i t. Then k is not in BF if any bit is 0 and probably in if all bits are 1. Q. When will this answer be wrong? correct? A. Imagine that we have two hash functions, and inserting x sets bits 1 and 3, and inserting y sets bits 2 and 4. Then if it happens z would set bits 2 and 3, if we search for z we will get probably yes. 4 / 13

5 Summary. insert(f S, k): for i = 1 to t: BF[h i (x)] = 1 search(f S, k): for i = 1 to t: if BF[h i (x)] = 0 return no return probably yes Q. What is the complexity of each of these functions? A. Θ(t) time. Q. Why use multiple hash functions? A. To reduce the probability of false positives. 5 / 13

6 Probability of False Positive Q. What does the probability of a false positive depend on? A. size m of the filter n the number of items inserted t the number of hash functions Intuition. If α = n/m goes up, then collisions go up, false positives go up. If t is too low, more collisions, more false positives If t is too high, too many bits set to 1, more collisions, more false positives Notes. If 1/α = m/n < key length (e.g., keys are IP addresses, addresses, URLs) this uses much less memory than storing the keys verbatim. 6 / 13

7 Probability of False Positive Q. Insert n keys into an empty filter. Now lookup an absent key. What is the probability of returning true? Assumptions. Hash values are uniformly random and mutually independent. Insert n keys can be modelled by: Randomly set a bit to 1 nt times. Search for an absent key can be modelled by: Randomly pick t bits to read, What is the probability of getting all 1 s? After inserting n keys, probability that an individual bit is 1: Q. What is the probability that h i (k) hashes to j? A. 1/m. Q. What is probability that BF[j] = 0 after one hash function applied to 1 key? A. 1 1/m. 7 / 13

8 Probability of False Positive Q. What is the probability that BF[j] = 0 after t hash functions applied to 1 key? A. (1 1/m) t Q. What is the probability that BF[j] = 0 after t hash functions applied to n keys? A. (1 1/m) nt Pr(BF[i] = 1) = 1 Pr(BF[i] = 0) ( = ) nt m ( = nt/m ) nt nt 1 e nt/m = 1 e αt 8 / 13

9 Probability of False Positive Pr(BF[i] = 1) = 1 e αt To model search(f S, k) we randomly check t bits in BF. Q. What is the probability of getting all 1 s? A. Pr(false positive) = (1 e αt ) t Note. We now can minimize the probability of false positive based on the number of hash functions t. The value of t that minimizes Pr(false positive) is t = ln 2 1. α Plug back in for optimal probability: ( ) ln 2 1/α α ln 2 α (1 e α ) = (1 2 1 ) ln α 2 1 = /α 2 ln 2 1 see Hadzilakos notes 9 / 13

10 Examples Example 1. 1/α = 32. Optimal t? t = ln 2/α = ln , use t = 22. Probability of false positives: Pr(false positive) = (1 e αt ) t = (1 e 22/32 ) Example 2. Suppose we want a probability 10 7, find α and t /α = /α t = ln 2/α 23 Q. What about delete(f S, k)? can it be implemented? A. Usually don t. Would cause false negatives - ruins the whole concept. However, if occasionally necessary, could increment a counter at each location in BF. Then decrement counters for delete. BF is no longer just a bit array. 10 / 13

11 Application 1 Blacklisting Consider we have a huge blacklist of domain names, stored on a slow disk. Too long to keep in faster memory. Use the fact most lookups turn out to be not blacklisted. Implementation. Use a Bloom filter for quick 1st-stage check. Q. How can we quickly check whether an input domain name is blacklisted? A. Every time a domain d is blacklisted, insert d into the Bloom filter BF. To check whether a domain d is blacklisted, search(bf, d). False means for sure not blacklisted. Fast and happens most of the time because most inputs are not blacklisted. True means probably blacklisted. We need to check for sure, so check disk file. Slow but happens rarely because few inputs are blacklisted or false positives. Note. A key is bits long, but a Bloom filter just needs 10 bits per key for pretty low probability (< 1%) of false positives. 11 / 13

12 Approximate Counting of Visitors Count how many IP addresses have visited your website. Do not have enough space to store all of them. Implementation. Store a counter and a Bloom filter. When an IP address visits your website, ask the Bloom filter. If false, insert into Bloom filter, and increment counter. If true, do nothing. Q. Is the counter exact? A. This undercounts, but you re probably OK with it. Technically we say that the website has at least counter visitors. An IPv4 address is 32 bits long, IPv6 even worse. But 10 bits per key buys you a 99%-accurate answer. 12 / 13

13 Application: Program Verification SPIN verifies a program by converting to a graph (like finite state automaton) and DFS to see whether bad states are reachable. DFS stores and lookups visited vertices. Each vertex is maybe 160 bits because your program has 5 32-bit variables. Too big. SPIN uses a Bloom filter for that with t = 2. Much fewer bits per vertex and still low false-positive rate. (Also, adjacency list not stored permanently, instead recomputed from state transition function which is small and fast.) Not perfect but still much more effective than handwritten tests. 13 / 13

Algorithms for Data Science

Algorithms for Data Science Algorithms for Data Science CSOR W4246 Eleni Drinea Computer Science Department Columbia University Tuesday, December 1, 2015 Outline 1 Recap Balls and bins 2 On randomized algorithms 3 Saving space: hashing-based

More information

Introduction to Randomized Algorithms III

Introduction to Randomized Algorithms III Introduction to Randomized Algorithms III Joaquim Madeira Version 0.1 November 2017 U. Aveiro, November 2017 1 Overview Probabilistic counters Counting with probability 1 / 2 Counting with probability

More information

Lecture and notes by: Alessio Guerrieri and Wei Jin Bloom filters and Hashing

Lecture and notes by: Alessio Guerrieri and Wei Jin Bloom filters and Hashing Bloom filters and Hashing 1 Introduction The Bloom filter, conceived by Burton H. Bloom in 1970, is a space-efficient probabilistic data structure that is used to test whether an element is a member of

More information

CS5314 Randomized Algorithms. Lecture 15: Balls, Bins, Random Graphs (Hashing)

CS5314 Randomized Algorithms. Lecture 15: Balls, Bins, Random Graphs (Hashing) CS5314 Randomized Algorithms Lecture 15: Balls, Bins, Random Graphs (Hashing) 1 Objectives Study various hashing schemes Apply balls-and-bins model to analyze their performances 2 Chain Hashing Suppose

More information

1 Maintaining a Dictionary

1 Maintaining a Dictionary 15-451/651: Design & Analysis of Algorithms February 1, 2016 Lecture #7: Hashing last changed: January 29, 2016 Hashing is a great practical tool, with an interesting and subtle theory too. In addition

More information

15-451/651: Design & Analysis of Algorithms September 13, 2018 Lecture #6: Streaming Algorithms last changed: August 30, 2018

15-451/651: Design & Analysis of Algorithms September 13, 2018 Lecture #6: Streaming Algorithms last changed: August 30, 2018 15-451/651: Design & Analysis of Algorithms September 13, 2018 Lecture #6: Streaming Algorithms last changed: August 30, 2018 Today we ll talk about a topic that is both very old (as far as computer science

More information

Lecture 24: Bloom Filters. Wednesday, June 2, 2010

Lecture 24: Bloom Filters. Wednesday, June 2, 2010 Lecture 24: Bloom Filters Wednesday, June 2, 2010 1 Topics for the Final SQL Conceptual Design (BCNF) Transactions Indexes Query execution and optimization Cardinality Estimation Parallel Databases 2 Lecture

More information

4/26/2017. More algorithms for streams: Each element of data stream is a tuple Given a list of keys S Determine which tuples of stream are in S

4/26/2017. More algorithms for streams: Each element of data stream is a tuple Given a list of keys S Determine which tuples of stream are in S Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

CSCB63 Winter Week10 - Lecture 2 - Hashing. Anna Bretscher. March 21, / 30

CSCB63 Winter Week10 - Lecture 2 - Hashing. Anna Bretscher. March 21, / 30 CSCB63 Winter 2019 Week10 - Lecture 2 - Hashing Anna Bretscher March 21, 2019 1 / 30 Today Hashing Open Addressing Hash functions Universal Hashing 2 / 30 Open Addressing Open Addressing. Each entry in

More information

Algorithms lecture notes 1. Hashing, and Universal Hash functions

Algorithms lecture notes 1. Hashing, and Universal Hash functions Algorithms lecture notes 1 Hashing, and Universal Hash functions Algorithms lecture notes 2 Can we maintain a dictionary with O(1) per operation? Not in the deterministic sense. But in expectation, yes.

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 32

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 32 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 32 CS 473: Algorithms, Spring 2018 Universal Hashing Lecture 10 Feb 15, 2018 Most

More information

Advanced topic: Space complexity

Advanced topic: Space complexity Advanced topic: Space complexity CSCI 3130 Formal Languages and Automata Theory Siu On CHAN Chinese University of Hong Kong Fall 2016 1/28 Review: time complexity We have looked at how long it takes to

More information

Analysis of Algorithms I: Perfect Hashing

Analysis of Algorithms I: Perfect Hashing Analysis of Algorithms I: Perfect Hashing Xi Chen Columbia University Goal: Let U = {0, 1,..., p 1} be a huge universe set. Given a static subset V U of n keys (here static means we will never change the

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/26/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2 More algorithms

More information

Lecture 5: Hashing. David Woodruff Carnegie Mellon University

Lecture 5: Hashing. David Woodruff Carnegie Mellon University Lecture 5: Hashing David Woodruff Carnegie Mellon University Hashing Universal hashing Perfect hashing Maintaining a Dictionary Let U be a universe of keys U could be all strings of ASCII characters of

More information

CS 125 Section #12 (More) Probability and Randomized Algorithms 11/24/14. For random numbers X which only take on nonnegative integer values, E(X) =

CS 125 Section #12 (More) Probability and Randomized Algorithms 11/24/14. For random numbers X which only take on nonnegative integer values, E(X) = CS 125 Section #12 (More) Probability and Randomized Algorithms 11/24/14 1 Probability First, recall a couple useful facts from last time about probability: Linearity of expectation: E(aX + by ) = ae(x)

More information

1 Probability Review. CS 124 Section #8 Hashing, Skip Lists 3/20/17. Expectation (weighted average): the expectation of a random quantity X is:

1 Probability Review. CS 124 Section #8 Hashing, Skip Lists 3/20/17. Expectation (weighted average): the expectation of a random quantity X is: CS 24 Section #8 Hashing, Skip Lists 3/20/7 Probability Review Expectation (weighted average): the expectation of a random quantity X is: x= x P (X = x) For each value x that X can take on, we look at

More information

Cuckoo Hashing and Cuckoo Filters

Cuckoo Hashing and Cuckoo Filters Cuckoo Hashing and Cuckoo Filters Noah Fleming May 7, 208 Preliminaries A dictionary is an abstract data type that stores a collection of elements, located by their key. It supports operations: insert,

More information

Hash tables. Hash tables

Hash tables. Hash tables Dictionary Definition A dictionary is a data-structure that stores a set of elements where each element has a unique key, and supports the following operations: Search(S, k) Return the element whose key

More information

Problem 1: (Chernoff Bounds via Negative Dependence - from MU Ex 5.15)

Problem 1: (Chernoff Bounds via Negative Dependence - from MU Ex 5.15) Problem 1: Chernoff Bounds via Negative Dependence - from MU Ex 5.15) While deriving lower bounds on the load of the maximum loaded bin when n balls are thrown in n bins, we saw the use of negative dependence.

More information

CSE 190, Great ideas in algorithms: Pairwise independent hash functions

CSE 190, Great ideas in algorithms: Pairwise independent hash functions CSE 190, Great ideas in algorithms: Pairwise independent hash functions 1 Hash functions The goal of hash functions is to map elements from a large domain to a small one. Typically, to obtain the required

More information

Hash tables. Hash tables

Hash tables. Hash tables Dictionary Definition A dictionary is a data-structure that stores a set of elements where each element has a unique key, and supports the following operations: Search(S, k) Return the element whose key

More information

CS341 info session is on Thu 3/1 5pm in Gates415. CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS341 info session is on Thu 3/1 5pm in Gates415. CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS341 info session is on Thu 3/1 5pm in Gates415 CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/28/18 Jure Leskovec, Stanford CS246: Mining Massive Datasets,

More information

12 Count-Min Sketch and Apriori Algorithm (and Bloom Filters)

12 Count-Min Sketch and Apriori Algorithm (and Bloom Filters) 12 Count-Min Sketch and Apriori Algorithm (and Bloom Filters) Many streaming algorithms use random hashing functions to compress data. They basically randomly map some data items on top of each other.

More information

Today: Amortized Analysis

Today: Amortized Analysis Today: Amortized Analysis COSC 581, Algorithms March 6, 2014 Many of these slides are adapted from several online sources Today s class: Chapter 17 Reading Assignments Reading assignment for next class:

More information

Module 1: Analyzing the Efficiency of Algorithms

Module 1: Analyzing the Efficiency of Algorithms Module 1: Analyzing the Efficiency of Algorithms Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu What is an Algorithm?

More information

A General-Purpose Counting Filter: Making Every Bit Count. Prashant Pandey, Michael A. Bender, Rob Johnson, Rob Patro Stony Brook University, NY

A General-Purpose Counting Filter: Making Every Bit Count. Prashant Pandey, Michael A. Bender, Rob Johnson, Rob Patro Stony Brook University, NY A General-Purpose Counting Filter: Making Every Bit Count Prashant Pandey, Michael A. Bender, Rob Johnson, Rob Patro Stony Brook University, NY Approximate Membership Query (AMQ) insert(x) ismember(x)

More information

2 How many distinct elements are in a stream?

2 How many distinct elements are in a stream? Dealing with Massive Data January 31, 2011 Lecture 2: Distinct Element Counting Lecturer: Sergei Vassilvitskii Scribe:Ido Rosen & Yoonji Shin 1 Introduction We begin by defining the stream formally. Definition

More information

1 Difference between grad and undergrad algorithms

1 Difference between grad and undergrad algorithms princeton univ. F 4 cos 52: Advanced Algorithm Design Lecture : Course Intro and Hashing Lecturer: Sanjeev Arora Scribe:Sanjeev Algorithms are integral to computer science and every computer scientist

More information

compare to comparison and pointer based sorting, binary trees

compare to comparison and pointer based sorting, binary trees Admin Hashing Dictionaries Model Operations. makeset, insert, delete, find keys are integers in M = {1,..., m} (so assume machine word size, or unit time, is log m) can store in array of size M using power:

More information

Lecture 4 Thursday Sep 11, 2014

Lecture 4 Thursday Sep 11, 2014 CS 224: Advanced Algorithms Fall 2014 Lecture 4 Thursday Sep 11, 2014 Prof. Jelani Nelson Scribe: Marco Gentili 1 Overview Today we re going to talk about: 1. linear probing (show with 5-wise independence)

More information

An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems

An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems An Optimal Algorithm for l 1 -Heavy Hitters in Insertion Streams and Related Problems Arnab Bhattacharyya, Palash Dey, and David P. Woodruff Indian Institute of Science, Bangalore {arnabb,palash}@csa.iisc.ernet.in

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: NP-Completeness I Date: 11/13/18 20.1 Introduction Definition 20.1.1 We say that an algorithm runs in polynomial time if its running

More information

Application: Bucket Sort

Application: Bucket Sort 5.2.2. Application: Bucket Sort Bucket sort breaks the log) lower bound for standard comparison-based sorting, under certain assumptions on the input We want to sort a set of =2 integers chosen I+U@R from

More information

Lecture 5. 1 Review (Pairwise Independence and Derandomization)

Lecture 5. 1 Review (Pairwise Independence and Derandomization) 6.842 Randomness and Computation September 20, 2017 Lecture 5 Lecturer: Ronitt Rubinfeld Scribe: Tom Kolokotrones 1 Review (Pairwise Independence and Derandomization) As we discussed last time, we can

More information

Lecture 27: Theory of Computation. Marvin Zhang 08/08/2016

Lecture 27: Theory of Computation. Marvin Zhang 08/08/2016 Lecture 27: Theory of Computation Marvin Zhang 08/08/2016 Announcements Roadmap Introduction Functions Data Mutability Objects This week (Applications), the goals are: To go beyond CS 61A and see examples

More information

As mentioned, we will relax the conditions of our dictionary data structure. The relaxations we

As mentioned, we will relax the conditions of our dictionary data structure. The relaxations we CSE 203A: Advanced Algorithms Prof. Daniel Kane Lecture : Dictionary Data Structures and Load Balancing Lecture Date: 10/27 P Chitimireddi Recap This lecture continues the discussion of dictionary data

More information

Introduction to Hashtables

Introduction to Hashtables Introduction to HashTables Boise State University March 5th 2015 Hash Tables: What Problem Do They Solve What Problem Do They Solve? Why not use arrays for everything? 1 Arrays can be very wasteful: Example

More information

Streaming - 2. Bloom Filters, Distinct Item counting, Computing moments. credits:www.mmds.org.

Streaming - 2. Bloom Filters, Distinct Item counting, Computing moments. credits:www.mmds.org. Streaming - 2 Bloom Filters, Distinct Item counting, Computing moments credits:www.mmds.org http://www.mmds.org Outline More algorithms for streams: 2 Outline More algorithms for streams: (1) Filtering

More information

Lecture 8 HASHING!!!!!

Lecture 8 HASHING!!!!! Lecture 8 HASHING!!!!! Announcements HW3 due Friday! HW4 posted Friday! Q: Where can I see examples of proofs? Lecture Notes CLRS HW Solutions Office hours: lines are long L Solutions: We will be (more)

More information

Lecture: Analysis of Algorithms (CS )

Lecture: Analysis of Algorithms (CS ) Lecture: Analysis of Algorithms (CS483-001) Amarda Shehu Spring 2017 1 Outline of Today s Class 2 Choosing Hash Functions Universal Universality Theorem Constructing a Set of Universal Hash Functions Perfect

More information

CS361 Homework #3 Solutions

CS361 Homework #3 Solutions CS6 Homework # Solutions. Suppose I have a hash table with 5 locations. I would like to know how many items I can store in it before it becomes fairly likely that I have a collision, i.e., that two items

More information

Some notes on streaming algorithms continued

Some notes on streaming algorithms continued U.C. Berkeley CS170: Algorithms Handout LN-11-9 Christos Papadimitriou & Luca Trevisan November 9, 016 Some notes on streaming algorithms continued Today we complete our quick review of streaming algorithms.

More information

More Asymptotic Analysis Spring 2018 Discussion 8: March 6, 2018

More Asymptotic Analysis Spring 2018 Discussion 8: March 6, 2018 CS 61B More Asymptotic Analysis Spring 2018 Discussion 8: March 6, 2018 Here is a review of some formulas that you will find useful when doing asymptotic analysis. ˆ N i=1 i = 1 + 2 + 3 + 4 + + N = N(N+1)

More information

arxiv: v1 [cs.ds] 3 Feb 2018

arxiv: v1 [cs.ds] 3 Feb 2018 A Model for Learned Bloom Filters and Related Structures Michael Mitzenmacher 1 arxiv:1802.00884v1 [cs.ds] 3 Feb 2018 Abstract Recent work has suggested enhancing Bloom filters by using a pre-filter, based

More information

Ad Placement Strategies

Ad Placement Strategies Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox 2014 Emily Fox January

More information

Hash Tables (Cont'd) Carlos Moreno uwaterloo.ca EIT https://ece.uwaterloo.ca/~cmoreno/ece250

Hash Tables (Cont'd) Carlos Moreno uwaterloo.ca EIT https://ece.uwaterloo.ca/~cmoreno/ece250 (Cont'd) Carlos Moreno cmoreno @ uwaterloo.ca EIT-4103 https://ece.uwaterloo.ca/~cmoreno/ece250 Standard reminder to set phones to silent/vibrate mode, please! Today's class: Investigate the other important

More information

Algorithms and Data Structures 2016 Week 5 solutions (Tues 9th - Fri 12th February)

Algorithms and Data Structures 2016 Week 5 solutions (Tues 9th - Fri 12th February) Algorithms and Data Structures 016 Week 5 solutions (Tues 9th - Fri 1th February) 1. Draw the decision tree (under the assumption of all-distinct inputs) Quicksort for n = 3. answer: (of course you should

More information

:s ej2mttlm-(iii+j2mlnm )(J21nm/m-lnm/m)

:s ej2mttlm-(iii+j2mlnm )(J21nm/m-lnm/m) BALLS, BINS, AND RANDOM GRAPHS We use the Chernoff bound for the Poisson distribution (Theorem 5.4) to bound this probability, writing the bound as Pr(X 2: x) :s ex-ill-x In(x/m). For x = m + J2m In m,

More information

6 Filtering and Streaming

6 Filtering and Streaming Casus ubique valet; semper tibi pendeat hamus: Quo minime credas gurgite, piscis erit. [Luck affects everything. Let your hook always be cast. Where you least expect it, there will be a fish.] Publius

More information

A Model for Learned Bloom Filters, and Optimizing by Sandwiching

A Model for Learned Bloom Filters, and Optimizing by Sandwiching A Model for Learned Bloom Filters, and Optimizing by Sandwiching Michael Mitzenmacher School of Engineering and Applied Sciences Harvard University michaelm@eecs.harvard.edu Abstract Recent work has suggested

More information

Motivation. Dictionaries. Direct Addressing. CSE 680 Prof. Roger Crawfis

Motivation. Dictionaries. Direct Addressing. CSE 680 Prof. Roger Crawfis Motivation Introduction to Algorithms Hash Tables CSE 680 Prof. Roger Crawfis Arrays provide an indirect way to access a set. Many times we need an association between two sets, or a set of keys and associated

More information

Hashing. Dictionaries Chained Hashing Universal Hashing Static Dictionaries and Perfect Hashing. Philip Bille

Hashing. Dictionaries Chained Hashing Universal Hashing Static Dictionaries and Perfect Hashing. Philip Bille Hashing Dictionaries Chained Hashing Universal Hashing Static Dictionaries and Perfect Hashing Philip Bille Hashing Dictionaries Chained Hashing Universal Hashing Static Dictionaries and Perfect Hashing

More information

Hashing. Hashing. Dictionaries. Dictionaries. Dictionaries Chained Hashing Universal Hashing Static Dictionaries and Perfect Hashing

Hashing. Hashing. Dictionaries. Dictionaries. Dictionaries Chained Hashing Universal Hashing Static Dictionaries and Perfect Hashing Philip Bille Dictionaries Dictionary problem. Maintain a set S U = {,..., u-} supporting lookup(x): return true if x S and false otherwise. insert(x): set S = S {x} delete(x): set S = S - {x} Dictionaries

More information

Quick Sort Notes , Spring 2010

Quick Sort Notes , Spring 2010 Quick Sort Notes 18.310, Spring 2010 0.1 Randomized Median Finding In a previous lecture, we discussed the problem of finding the median of a list of m elements, or more generally the element of rank m.

More information

CSE 502 Class 11 Part 2

CSE 502 Class 11 Part 2 CSE 502 Class 11 Part 2 Jeremy Buhler Steve Cole February 17 2015 Today: analysis of hashing 1 Constraints of Double Hashing How does using OA w/double hashing constrain our hash function design? Need

More information

Bloom Filter Redux. CS 270 Combinatorial Algorithms and Data Structures. UC Berkeley, Spring 2011

Bloom Filter Redux. CS 270 Combinatorial Algorithms and Data Structures. UC Berkeley, Spring 2011 Bloom Filter Redux Matthias Vallentin Gene Pang CS 270 Combinatorial Algorithms and Data Structures UC Berkeley, Spring 2011 Inspiration Our background: network security, databases We deal with massive

More information

P, NP, NP-Complete, and NPhard

P, NP, NP-Complete, and NPhard P, NP, NP-Complete, and NPhard Problems Zhenjiang Li 21/09/2011 Outline Algorithm time complicity P and NP problems NP-Complete and NP-Hard problems Algorithm time complicity Outline What is this course

More information

So far we have implemented the search for a key by carefully choosing split-elements.

So far we have implemented the search for a key by carefully choosing split-elements. 7.7 Hashing Dictionary: S. insert(x): Insert an element x. S. delete(x): Delete the element pointed to by x. S. search(k): Return a pointer to an element e with key[e] = k in S if it exists; otherwise

More information

CS483 Design and Analysis of Algorithms

CS483 Design and Analysis of Algorithms CS483 Design and Analysis of Algorithms Lectures 2-3 Algorithms with Numbers Instructor: Fei Li lifei@cs.gmu.edu with subject: CS483 Office hours: STII, Room 443, Friday 4:00pm - 6:00pm or by appointments

More information

CS 5321: Advanced Algorithms Amortized Analysis of Data Structures. Motivations. Motivation cont d

CS 5321: Advanced Algorithms Amortized Analysis of Data Structures. Motivations. Motivation cont d CS 5321: Advanced Algorithms Amortized Analysis of Data Structures Ali Ebnenasir Department of Computer Science Michigan Technological University Motivations Why amortized analysis and when? Suppose you

More information

PAPER Adaptive Bloom Filter : A Space-Efficient Counting Algorithm for Unpredictable Network Traffic

PAPER Adaptive Bloom Filter : A Space-Efficient Counting Algorithm for Unpredictable Network Traffic IEICE TRANS.??, VOL.Exx??, NO.xx XXXX x PAPER Adaptive Bloom Filter : A Space-Efficient Counting Algorithm for Unpredictable Network Traffic Yoshihide MATSUMOTO a), Hiroaki HAZEYAMA b), and Youki KADOBAYASHI

More information

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness

NP-Completeness I. Lecture Overview Introduction: Reduction and Expressiveness Lecture 19 NP-Completeness I 19.1 Overview In the past few lectures we have looked at increasingly more expressive problems that we were able to solve using efficient algorithms. In this lecture we introduce

More information

Computing the Entropy of a Stream

Computing the Entropy of a Stream Computing the Entropy of a Stream To appear in SODA 2007 Graham Cormode graham@research.att.com Amit Chakrabarti Dartmouth College Andrew McGregor U. Penn / UCSD Outline Introduction Entropy Upper Bound

More information

Lecture Note 2. 1 Bonferroni Principle. 1.1 Idea. 1.2 Want. Material covered today is from Chapter 1 and chapter 4

Lecture Note 2. 1 Bonferroni Principle. 1.1 Idea. 1.2 Want. Material covered today is from Chapter 1 and chapter 4 Lecture Note 2 Material covere toay is from Chapter an chapter 4 Bonferroni Principle. Iea Get an iea the frequency of events when things are ranom billion = 0 9 Each person has a % chance to stay in a

More information

Solutions. Prelim 2[Solutions]

Solutions. Prelim 2[Solutions] Prelim [Solutions]. Short Answer [ pts] (a) [ pts] A traversal of an expression tree produces the string + + 3. i. What kind of traversal is it? Preorder; the operator is printed before the operands. ii.

More information

Hash Tables. Given a set of possible keys U, such that U = u and a table of m entries, a Hash function h is a

Hash Tables. Given a set of possible keys U, such that U = u and a table of m entries, a Hash function h is a Hash Tables Given a set of possible keys U, such that U = u and a table of m entries, a Hash function h is a mapping from U to M = {1,..., m}. A collision occurs when two hashed elements have h(x) =h(y).

More information

Lecture 1 September 3, 2013

Lecture 1 September 3, 2013 CS 229r: Algorithms for Big Data Fall 2013 Prof. Jelani Nelson Lecture 1 September 3, 2013 Scribes: Andrew Wang and Andrew Liu 1 Course Logistics The problem sets can be found on the course website: http://people.seas.harvard.edu/~minilek/cs229r/index.html

More information

Theory of Computer Science

Theory of Computer Science Theory of Computer Science E1. Complexity Theory: Motivation and Introduction Malte Helmert University of Basel May 18, 2016 Overview: Course contents of this course: logic How can knowledge be represented?

More information

Lecture 10. Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1

Lecture 10. Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1 Lecture 10 Sublinear Time Algorithms (contd) CSC2420 Allan Borodin & Nisarg Shah 1 Recap Sublinear time algorithms Deterministic + exact: binary search Deterministic + inexact: estimating diameter in a

More information

Bloom Filters, general theory and variants

Bloom Filters, general theory and variants Bloom Filters: general theory and variants G. Caravagna caravagn@cli.di.unipi.it Information Retrieval Wherever a list or set is used, and space is a consideration, a Bloom Filter should be considered.

More information

Advanced Implementations of Tables: Balanced Search Trees and Hashing

Advanced Implementations of Tables: Balanced Search Trees and Hashing Advanced Implementations of Tables: Balanced Search Trees and Hashing Balanced Search Trees Binary search tree operations such as insert, delete, retrieve, etc. depend on the length of the path to the

More information

Theory of Computer Science. Theory of Computer Science. E1.1 Motivation. E1.2 How to Measure Runtime? E1.3 Decision Problems. E1.

Theory of Computer Science. Theory of Computer Science. E1.1 Motivation. E1.2 How to Measure Runtime? E1.3 Decision Problems. E1. Theory of Computer Science May 18, 2016 E1. Complexity Theory: Motivation and Introduction Theory of Computer Science E1. Complexity Theory: Motivation and Introduction Malte Helmert University of Basel

More information

Algorithms. Quicksort. Slide credit: David Luebke (Virginia)

Algorithms. Quicksort. Slide credit: David Luebke (Virginia) 1 Algorithms Quicksort Slide credit: David Luebke (Virginia) Sorting revisited We have seen algorithms for sorting: INSERTION-SORT, MERGESORT More generally: given a sequence of items Each item has a characteristic

More information

University of New Mexico Department of Computer Science. Final Examination. CS 561 Data Structures and Algorithms Fall, 2013

University of New Mexico Department of Computer Science. Final Examination. CS 561 Data Structures and Algorithms Fall, 2013 University of New Mexico Department of Computer Science Final Examination CS 561 Data Structures and Algorithms Fall, 2013 Name: Email: This exam lasts 2 hours. It is closed book and closed notes wing

More information

Cache-Oblivious Hashing

Cache-Oblivious Hashing Cache-Oblivious Hashing Zhewei Wei Hong Kong University of Science & Technology Joint work with Rasmus Pagh, Ke Yi and Qin Zhang Dictionary Problem Store a subset S of the Universe U. Lookup: Does x belong

More information

4.5 Applications of Congruences

4.5 Applications of Congruences 4.5 Applications of Congruences 287 66. Find all solutions of the congruence x 2 16 (mod 105). [Hint: Find the solutions of this congruence modulo 3, modulo 5, and modulo 7, and then use the Chinese remainder

More information

CS5314 Randomized Algorithms. Lecture 18: Probabilistic Method (De-randomization, Sample-and-Modify)

CS5314 Randomized Algorithms. Lecture 18: Probabilistic Method (De-randomization, Sample-and-Modify) CS5314 Randomized Algorithms Lecture 18: Probabilistic Method (De-randomization, Sample-and-Modify) 1 Introduce two topics: De-randomize by conditional expectation provides a deterministic way to construct

More information

Searching, mainly via Hash tables

Searching, mainly via Hash tables Data structures and algorithms Part 11 Searching, mainly via Hash tables Petr Felkel 26.1.2007 Topics Searching Hashing Hash function Resolving collisions Hashing with chaining Open addressing Linear Probing

More information

CS1800: Mathematical Induction. Professor Kevin Gold

CS1800: Mathematical Induction. Professor Kevin Gold CS1800: Mathematical Induction Professor Kevin Gold Induction: Used to Prove Patterns Just Keep Going For an algorithm, we may want to prove that it just keeps working, no matter how big the input size

More information

MITOCW ocw-18_02-f07-lec17_220k

MITOCW ocw-18_02-f07-lec17_220k MITOCW ocw-18_02-f07-lec17_220k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

md5bloom: Forensic Filesystem Hashing Revisited

md5bloom: Forensic Filesystem Hashing Revisited DIGITAL FORENSIC RESEARCH CONFERENCE md5bloom: Forensic Filesystem Hashing Revisited By Vassil Roussev, Timothy Bourg, Yixin Chen, Golden Richard Presented At The Digital Forensic Research Conference DFRWS

More information

Sanjit A. Seshia EECS, UC Berkeley

Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Explicit-State Model Checking: Additional Material Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: G. Holzmann Checking if M satisfies : Steps 1. Compute Buchi

More information

RAPPOR: Randomized Aggregatable Privacy- Preserving Ordinal Response

RAPPOR: Randomized Aggregatable Privacy- Preserving Ordinal Response RAPPOR: Randomized Aggregatable Privacy- Preserving Ordinal Response Úlfar Erlingsson, Vasyl Pihur, Aleksandra Korolova Google & USC Presented By: Pat Pannuto RAPPOR, What is is good for? (Absolutely something!)

More information

N/4 + N/2 + N = 2N 2.

N/4 + N/2 + N = 2N 2. CS61B Summer 2006 Instructor: Erin Korber Lecture 24, 7 Aug. 1 Amortized Analysis For some of the data structures we ve discussed (namely hash tables and splay trees), it was claimed that the average time

More information

Lecture Notes for Chapter 17: Amortized Analysis

Lecture Notes for Chapter 17: Amortized Analysis Lecture Notes for Chapter 17: Amortized Analysis Chapter 17 overview Amortized analysis Analyze a sequence of operations on a data structure. Goal: Show that although some individual operations may be

More information

Algorithms for NLP. Language Modeling III. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley

Algorithms for NLP. Language Modeling III. Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Algorithms for NLP Language Modeling III Taylor Berg-Kirkpatrick CMU Slides: Dan Klein UC Berkeley Announcements Office hours on website but no OH for Taylor until next week. Efficient Hashing Closed address

More information

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2016)

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2016) Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2016) Week 12: Real-Time Data Analytics (2/2) March 31, 2016 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

More information

INTRODUCTION TO HASHING Dr. Thomas Hicks Trinity University. Data Set - SSN's from UTSA Class

INTRODUCTION TO HASHING Dr. Thomas Hicks Trinity University. Data Set - SSN's from UTSA Class Dr. Thomas E. Hicks Data Abstractions Homework - Hashing -1 - INTRODUCTION TO HASHING Dr. Thomas Hicks Trinity University Data Set - SSN's from UTSA Class 467 13 3881 498 66 2055 450 27 3804 456 49 5261

More information

The Bloom Paradox: When not to Use a Bloom Filter

The Bloom Paradox: When not to Use a Bloom Filter 1 The Bloom Paradox: When not to Use a Bloom Filter Ori Rottenstreich and Isaac Keslassy Abstract In this paper, we uncover the Bloom paradox in Bloom filters: sometimes, the Bloom filter is harmful and

More information

Data Structures. Outline. Introduction. Andres Mendez-Vazquez. December 3, Data Manipulation Examples

Data Structures. Outline. Introduction. Andres Mendez-Vazquez. December 3, Data Manipulation Examples Data Structures Introduction Andres Mendez-Vazquez December 3, 2015 1 / 53 Outline 1 What the Course is About? Data Manipulation Examples 2 What is a Good Algorithm? Sorting Example A Naive Algorithm Counting

More information

From Non-Negative Matrix Factorization to Deep Learning

From Non-Negative Matrix Factorization to Deep Learning The Math!! From Non-Negative Matrix Factorization to Deep Learning Intuitions and some Math too! luissarmento@gmailcom https://wwwlinkedincom/in/luissarmento/ October 18, 2017 The Math!! Introduction Disclaimer

More information

Q You mentioned that in complex analysis we study analytic functions, or, in another name, holomorphic functions. Pray tell me, what are they?

Q You mentioned that in complex analysis we study analytic functions, or, in another name, holomorphic functions. Pray tell me, what are they? COMPLEX ANALYSIS PART 2: ANALYTIC FUNCTIONS Q You mentioned that in complex analysis we study analytic functions, or, in another name, holomorphic functions. Pray tell me, what are they? A There are many

More information

Hashing. Hashing DESIGN & ANALYSIS OF ALGORITHM

Hashing. Hashing DESIGN & ANALYSIS OF ALGORITHM Hashing Hashing Start with an array that holds the hash table. Use a hash function to take a key and map it to some index in the array. If the desired record is in the location given by the index, then

More information

Bloom Filters. filters: A survey, Internet Mathematics, vol. 1 no. 4, pp , 2004.

Bloom Filters. filters: A survey, Internet Mathematics, vol. 1 no. 4, pp , 2004. Bloo Filters References A. Broder and M. Mitzenacher, Network applications of Bloo filters: A survey, Internet Matheatics, vol. 1 no. 4, pp. 485-509, 2004. Li Fan, Pei Cao, Jussara Aleida, Andrei Broder,

More information

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #15: Mining Streams 2

CS 5614: (Big) Data Management Systems. B. Aditya Prakash Lecture #15: Mining Streams 2 CS 5614: (Big) Data Management Systems B. Aditya Prakash Lecture #15: Mining Streams 2 Today s Lecture More algorithms for streams: (1) Filtering a data stream: Bloom filters Select elements with property

More information

Amortized Analysis (chap. 17)

Amortized Analysis (chap. 17) Amortized Analysis (chap. 17) Not just consider one operation, but a sequence of operations on a given data structure. Average cost over a sequence of operations. Probabilistic analysis: Average case running

More information

Sorting and Searching. Tony Wong

Sorting and Searching. Tony Wong Tony Wong 2017-03-04 Sorting Sorting is the reordering of array elements into a specific order (usually ascending) For example, array a[0..8] consists of the final exam scores of the n = 9 students in

More information

Value-Ordering and Discrepancies. Ciaran McCreesh and Patrick Prosser

Value-Ordering and Discrepancies. Ciaran McCreesh and Patrick Prosser Value-Ordering and Discrepancies Maintaining Arc Consistency (MAC) Achieve (generalised) arc consistency (AC3, etc). If we have a domain wipeout, backtrack. If all domains have one value, we re done. Pick

More information

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata

CISC 4090: Theory of Computation Chapter 1 Regular Languages. Section 1.1: Finite Automata. What is a computer? Finite automata CISC 4090: Theory of Computation Chapter Regular Languages Xiaolan Zhang, adapted from slides by Prof. Werschulz Section.: Finite Automata Fordham University Department of Computer and Information Sciences

More information