A tale of two Bethe ansätze

Size: px
Start display at page:

Download "A tale of two Bethe ansätze"

Transcription

1 UMTG 93 A tale of two Bethe ansätze arxiv: v [math-ph] 6 Apr 018 Antonio Lima-Santos 1, Rafael I. Nepomechie Rodrigo A. Pimenta 3 Abstract We revisit the construction of the eigenvectors of the single double-row transfer matrices associated with the Zamolodchikov-Fateev model, within the algebraic Bethe ansatz method. The left right eigenvectors are constructed using two different methods: the fusion technique Tarasov s construction. A simple explicit relation between the eigenvectors from the two Bethe ansätze is obtained. As a consequence, we obtain the Slavnov formula for the scalar product between on-shell off-shell Tarasov-Bethe vectors. 1 Departamento de Física, Universidade Federal de São Carlos, Caixa Postal 676, CEP , São Carlos, Brazil, dals@df.ufscar.br Physics Department, P.O. Box 48046, University of Miami, Coral Gables, FL 3314 USA, nepomechie@miami.edu 3 Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, , São Carlos, SP, Brazil, pimenta@ifsc.usp.br

2 1 Introduction The Zamolodchikov-Fateev ZF) model [1] is a nineteen-vertex model that can be seen as a generalization of the six-vertex model. Indeed, while the latter is associated with the spin- 1 XXZ chain, the former describes an integrable spin-1 XXZ chain. The ZF R-matrix is a solution of the Yang-Baxter equation, which is given by a 9 9 matrix with nineteen non-null entries. Starting from this R-matrix, one can use the quantum inverse scattering method [, 3, 4] to construct single double-row commuting transfer matrices, which are associated with closed open spin chains, respectively. The spectral problem for the transfer matrix can be solved by means of the algebraic Bethe ansatz. For the ZF model, the construction of the Bethe vectors of the single double-row transfer matrices can be performed in two different ways. The first one is by means of the fusion technique [5, 6, 7, 8, 9, 10, 11, 1, 13, 14, 15, 16, 17], the auxiliary space is still -dimensional, therefore the Bethe vectors are obtained similarly to the six-vertex model case. We shall refer to these as fusion-bethe vectors. The second way is by means of Tarasov s construction [18], which entails working with a 3-dimensional auxiliary space. This approach was originally developed for the Izergin-Korepin model [19] 1, see also [1] for the double-row case, was applied to the ZF model in [, 3]. We shall refer to these as Tarasov-Bethe vectors. The scalar product between on-shell off-shell fusion-bethe vectors, i.e., a formula of the type found in the celebrated paper by Slavnov [4], has been obtained for closed chains, see [5] for the rational case [6] for the trigonometric case. For open chains, the Slavnov formula has been obtained only for spin 1, see [7, 8] for the rational case [9] for the trigonometric case. On the other h, Slavnov-type formulas for Tarasov-Bethe vectors have not yet been found, to the best of our knowledge. This is probably due to the intricacy of the exchange relations arising from the Yang-Baxter reflection algebras when the auxiliary space has dimension greater than two, as is the case in Tarasov s construction. The purpose of this note is to initiate the investigation of the Slavnov scalar products for Tarasov-Bethe vectors. Here we hle this problem by showing that the fusion-bethe vectors the Tarasov-Bethe vectors are simply related: the result for the closed chain is given by 4.40,4.41) for the open chain it is given by 5.39,5.40). Thanks to these simple relations, we can easily obtain the Slavnov formula for the Tarasov-Bethe vectors, for both the closed 4.58) open chains 5.54), without going through Yang-Baxter reflection algebras in Tarasov s construction. Thispaperisorganizedasfollows. InSectionwerecallthebasicsofthefusiontechnique. The fundamental fused monodromy transfer matrices are given in Section 3. In Section 4 the Bethe ansatz is implemented the Slavnov formula is obtained for the single-row transfer matrix, while in Section 5 these results are generalized to the double-row transfer matrix. Our concluding remarks are given is Section 6. 1 This model is also a nineteen-vertex model, but it cannot be obtained by fusion from the fundamental six-vertex model. See, however, [0]. For simplicity, we focus here on the case of diagonal boundary conditions. 1

3 Fusion for R-matrices K-matrices In this section we recall some basic ingredients of the fusion technique, by means of which we can construct integrable generalizations of the fundamental six-vertex model, for both single-row [5, 6, 7, 8, 9, 10, 11, 1, 13, 14] double-row [15, 16, 17] transfer matrices..1 R-matrices We start with the fundamental R-matrix R 1,1 ) u) = sinhu + η) sinhu) sinhη) 0 0 sinhη) sinhu) sinhu + η),.1) which acts on C C η is the free anisotropy parameter. This R-matrix has the parity symmetry P is the permutation matrix, the unitarity property Ru) = PRu)P,.) Ru)R u) = ξu)ξ u)i I,.3) with ξu) = ξ 1,1 ) u) = sinhu+η). It also has crossing symmetry R 1 u) = V 1 R t 1 u ρ)v 1 = V t Rt 1 1 u ρ)v t,.4) with V = V 1,1 ) = ), ρ = ρ 1,1 ) = η+iπ..5) Hence, the matrix M defined by M = V t V.6) is given by M = M 1,1 ) = I..7) By means of the fusion procedure, we can construct R-matrices R i,j) u) associated with su) representations of spins i j, with i,j { 1,1}. These R-matrices, which map C i+1 C j+1 C i+1 C j+1, satisfy the various Yang-Baxter equations R i,j) 1 u v)r i,k) 13 u)r j,k) 3 v) = R j,k) 3 v)r i,k) 13 u)r i,j) 1 u v)..8)

4 Using the fusion procedure following [13, 14]), we define the fused R-matrix R 1,1) 1 3 u) = 1 sinhu+ η )F 3 R 1,1 ) 13 u+ η )R,1 ) 1 u η )E 3 = 1 sinhu+ 3η ) sinhu+ η ) 0 1 sinhη) sinhu η ) 0 sinhη) 0 0 sinhη) 0 sinhu η ) 0 0, sinhη) 0 sinhu+ η ) sinhu+ 3η ) which acts on C C 3. Here E = 1 0 0, F = Et = ) This R-matrix has the unitarity property.3) with ξu) = ξ 1,1) u) = sinhu+ 3η ). We also define the fused R-matrix R 1,1 ) 1 3 u) = 1 sinhu+ η )F 1 R 1,1 ) 13 u+ η )R1,1 ) which acts on C 3 C. The R-matrices.9).11) are related by 3 u η )E 1,.11) R 1,1 ) u) = P 1,1) R 1,1) u)p 1,1 ),.1).9) P 1,1) = ) is a permutation matrix that maps C C 3 to C 3 C, P 1,1 ) = P 1,1)) 1. Finally, we define the fused R-matrix 1 34 u) = F 1 R 1,1) 1 34 u+ η 1 )R,1) 34 u η )E 1 R 1,1) 3

5 = au) bu) 0 cu) fu) 0 du) 0 hu) cu) 0 bu) du) 0 eu) 0 du) bu) 0 cu) hu) 0 du) 0 fu) cu) 0 bu) au),.14) with au) = sinhu+η)sinhu+η), bu) = sinhu)sinhu+η), du) = sinhu)sinhη), du) = sinhu)sinhη)cosh η), cu) = sinhη)sinhu+η), fu) = sinhu)sinhu η), eu) = sinhu)sinhu+η)+sinhη)sinhη), hu) = sinhη)sinhη),.15) which acts on C 3 C 3. This R-matrix has the parity symmetry.) the unitarity property.3) with ξu) = ξ 1,1) u) = sinhu+η)sinhu+η). Although it does not have the crossing symmetry.4), it is related to a symmetric R-matrix R [ R1,1) t1 1,1) t u) = u)] by a constant gauge transformation R 1,1) u) = C 1 1 C 1 R 1,1) u)c 1 C, C = diagcoshη),coshη),1) ;.16) this symmetric R-matrix does have crossing symmetry, with V = V 1,1) = 0 1 0, ρ = ρ 1,1) = η +iπ,.17) therefore M = M 1,1) = I..18) The R-matrix.16) was firstly obtained by Zamolodchikov Fateev [1].. K-matrices We now construct corresponding K-matrices K ±i) u), which map C i+1 C i+1. For K i) u), the boundary Yang-Baxter equations are R i,j) 1 u v)k i) 1 u) R j,i) 1 u+v)k j) v) = K j) v)r i,j) 1 u+v)k i) 1 u)r j,i) 1 u v),.19) 4

6 R j,i) 1 u) = P i,j) R j,i) 1 u)p j,i)..0) For the fundamental K -matrix, we restrict for simplicity to the diagonal solution K 1 ) u) = diag sinhu+ξ ), sinhu ξ ) ),.1) ξ is an arbitrary boundary parameter. For K +, we take K +1 ) u) = K 1 ) u ρ 1,1 ) ) ξ + is another arbitrary boundary parameter. ξ ξ + = diag sinhu+η ξ + ), sinhu+η +ξ + ) ),.) The fused K -matrix is given by following [17]) K 1) u) = 1 sinhu+ η )F 1 K 1 ) 1 u+ η )R1,1 ) 1 u)k 1 ) u η )P 1E 1 = diag k 1 u),k u),k 3 u) ),.3) k1 u) = coshu+ η ) sinhu+ η +ξ ) sinhu η +ξ ), k u) = coshu+ η ) sinhu η +ξ ) sinhu η ξ ), k3 u) = coshu+ η ) sinhu+ η ξ ) sinhu η ξ )..4) For K +, we similarly take K +1) u) = K 1) u ρ 1,1) )..5) ξ ξ + 3 Monodromy transfer matrices Using the R K matrices introduced in the previous section, we can obtain families of commuting operators, i.e., transfer matrices. 3.1 Single-row Indeed, the single-row monodromy matrix for the R-matrix.9) is defined as 1 T 1,1) a u) = R 1,1) an u)...r,1) a1 u), 3.1) 5

7 the associated transfer matrix by Similarly, for the R-matrix.14) The Yang-Baxter equations.8) imply t 1,1) u) = tr a T 1,1) a u). 3.) T 1,1) a u) = R 1,1) an u)...r1,1) a1 u), 3.3) t 1,1) u) = tr a T 1,1) a u). 3.4) R 1,1 ) 1 u v)t,1) 1 1 u)t,1) 1 v) = T,1) 1 v)t,1) 1 1 u)r 1,1 ) 1 u v) 3.5) R 1,1) 1 u v)t 1,1) 1 u)t 1,1) v) = T 1,1) v)t 1,1) 1 u)r 1,1) 1 u v), 3.6) as well as [ ] t 1,1) u),t 1,1) v) = 0, [ t 1,1) u),t 1,1) v) ] = 0, 3.7) [ ] t 1,1) u),t 1,1) v) = ) The latter relation implies that t 1,1) u) t 1,1) v) can be diagonalized simultaneously. In addition, one obtains with the help of.14) the important relation 1 u) = F 1 T 1 T 1,1) which will be used in Section 4.3.,1) 1 u+ η )T1,1) u η )E 1, 3.9) 3. Double-row In order to construct double-row objects, one needs to introduce reflected single-row monodromy matrices similarly T 1,1) a u) = R 1,1) T 1,1) a u) = R 1,1) a1 u)...r 1,1) an a1 u)...r 1,1) an 6 u), 3.10) u). 3.11)

8 The corresponding double-row monodromy matrices are then defined as follows U 1,1) a u) = T 1,1) a u)k 1 ) a u) T 1,1) a u), a u) = T a 1,1) u)ka 1) 1,1) u) T a u). 3.1) U 1,1) They obey the boundary Yang-Baxter equations.19), in particular Moreover, they are related by R 1,1 ) 1 u v)u 1,1) 1 u) R 1,1 ) 1 u+v)u 1,1) v) = U 1,1) v)r 1,1 ) 1 u+v)u 1,1) 1 u)r 1,1 ) 1 u v), 3.13) R 1,1) 1 u v)u 1,1) 1 u) R 1,1) 1 u+v)u 1,1) v) U 1,1) 1 u) = 1 sinhu+ η )F 1 U 1 = U 1,1) v)r 1,1) 1 u+v)u 1,1) 1 u)r 1,1) 1 u v). 3.14),1) 1 u+ η )R1,1 ) 1 u)u 1,1) u η )P 1E 1, 3.15) which can be obtained with the help of.3). This relation, which is the double-row version of 3.9), will be exploited in Section 5.3. Finally, the corresponding transfer matrices are given by τ 1,1) u) = tr a K +1 ) a u)u 1,1) a u), 3.16) τ 1,1) u) = tr a K +1) a u)u 1,1) a u). 3.17) One can show that these transfer matrices obey [ ] [ τ 1,1) u),τ 1,1) v) = 0, τ 1,1) u),τ 1,1) v) ] = 0, 3.18) as well as [ ] τ 1,1) u),τ 1,1) v) = ) Similarly to the single-row case, the latter relation implies that τ 1,1) u) τ 1,1) v) can be diagonalized simultaneously. 7

9 4 Bethe ansatz: single-row transfer matrix In this section we obtain the eigenvectors of the single-row transfer matrices 3.) 3.4). 4.1 Bethe vectors from fusion Westart by applying thebethe ansatzto 3.), we refer to [5, 6, 7, 8, 9, 10, 11, 1, 13, 14] for more details. For that, we use the -dimensional auxiliary space representation, i.e., we set T,1) ) 1 Au) Bu) a u) =, 4.1) Cu) Du) in which each entry is an operator acting on the quantum space C 3 ) N. These operators satisfy exchange relations dictated by 3.5). We also introduce the reference state vector 1 0 = 0 0 as well as its dual N a 4.) 0 = ) N, 4.3) such that 0 0 = 1. The action of the monodromy operators on 4.,4.3) is given by Au) 0 = λ 1 u) 0, Du) 0 = λ u) 0, Cu) 0 = 0, 4.4) 0 Au) = 0 λ 1 u), 0 Du) = 0 λ u), 0 Bu) = 0, 4.5) λ 1 u) = sinh N u+ 3η ), λ u) = sinh N u η ). 4.6) The transfer matrix 3.) is given by t 1,1) u) = Au)+Du). 4.7) The Bethe vectors are given by φ m u 1,...,u m ) = Bu 1 )...Bu m ) 0 4.8) φ m u 1,...,u m ) = 0 Cu 1 )...Cu m ). 4.9) 8

10 In fact, using the Yang-Baxter algebra 3.5) one can show that t,1) 1 u) φ m u 1,...,u m ) = λu,u 1,...u m ) φ m u 1,...,u m ) + sinhη)fu,u j ) E ju j ) Q j u j ) Bu) φ m 1u 1,...,û j,...,u m ) j=1 φ m u 1,...,u m ) t,1) 1 u) = φ m u 1,...,u m ) λu,u 1,...u m ) + φ m u 1,...,û j,...,u m ) Cu) E ju j ) Q j u j ) Fu,u j)sinhη), j=1 4.10) 4.11) λu,u 1,...u m ) = λ 1 u) Qu η) Qu) +λ u) Qu+η) Qu), 4.1) E j u) = λ 1 u)q j u η) λ u)q j u+η), 4.13) Fu,v) = 1 sinhu v). 4.14) In the above formulae we have introduced the Baxter Q-polynomial Qu) = sinhu u i ), 4.15) i=1 which is indeed a Laurent polynomial in z e u, as well as the indexed Baxter Q-polynomial Q j u) = sinhu u i ). 4.16) i j Let us also introduce the two-index polynomial which we will use later Q j,k u) = sinhu u i ). 4.17) i j,k The equations E j u j ) = 0 for j = 1,...,m, 4.18) 9

11 are the conditions for the unwanted terms in the off-shell equations 4.10) 4.11) to vanish; therefore, for the Bethe vectors 4.8) 4.9) to be eigenvectors of the transfer matrix t 1,1) u), with corresponding eigenvalue λu,u 1,...u m ) given by 4.1). These polynomial equations are known as the Bethe ansatz equations, we shall refer to E j u) as the Bethe ansatz polynomials. As usual, the notation û j means that the rapidity u j is absent from a given function or operator argument. Finally, let us suppose that {u 1,...,u m } satisfy the Bethe equations 4.18) i.e., they are on-shell rapidities) that there is no restriction on {v 1,...,v m } i.e., they are offshell rapidities). Then, the scalar product φ m u 1,...,u m ) φ m v 1,...,v m ) is given by the determinant formula [4, 6] ) det m u i λv j,u 1,...,u m ) φ m u 1,...,u m ) φ m v 1,...,v m ) = λ u i ), det m Fv i,u j )) i=1 which is known as the Slavnov formula. Using 4.19) λv j,u 1,...,u m ) = sinhη)fu i,v j )Fv j,u i ) E iv j ) u i Q i v j ), 4.0) we can rewrite the Slavnov formula as ) det m sinhη)fu i,v j )Fv j,u i ) E iv j ) Q i v j ) φ m u 1,...,u m ) φ m v 1,...,v m ) = λ u i ). det m Fv i,u j )) i=1 4.1) Although the Slavnov formula is frequently written in the form 4.19), which was introduced in [30], it seems more suitable for generalization to rewrite the Slavnov formula as in 4.1) in terms of the Bethe ansatz Baxter polynomials instead of the derivative of the transfer matrix eigenvalue, as it will become clear in Section 4.4. The form 4.1) is closer to the expression presented by Slavnov in his pioneering paper [4]. 4. Bethe vectors from Tarasov s construction WenowapplytheBetheansatzto3.4), see[18,]. Here, weusethe3-dimensionalauxiliary space representation, i.e., we set A 1 u) B 1 u) B u) T a 1,1) u) = C 1 u) A u) B 3 u), 4.) C u) C 3 u) A 3 u) each entry acts on the quantum space C 3 ) N. These operators satisfy exchange relations dictated by 3.6). The action of the monodromy operators 4.) on the reference state 4.,4.3) is given by A j u) 0 = Λ j u) 0, C j u) 0 = 0, 4.3) 10 a

12 0 A j u) = 0 Λ j u), 0 B j u) = 0, 4.4) for j = 1,,3 Λ 1 u) = sinhu+η)sinhu+η)) N, Λ u) = sinhu)sinhu+η)) N, Λ 3 u) = sinhu)sinhu η)) N. 4.5) The transfer matrix 3.4) is given by t 1,1) u) = A 1 u)+a u)+a 3 u). 4.6) The Bethe vector is constructed by means of the recursion relation ψ m u 1,...,u m ) = B 1 u 1 ) ψ m 1 u,...,u m ) B u 1 ) γ m) i u 1,...,u m ) ψ m u,...,û i,...,u m ), 4.7) γ m) i u 1,...,u m ) = sinhη)λ 1 u i )Fu 1,u i +η) Q 1,iu i η) Q 1,i u i ) i= j=,j<i Ωu i,u j ), 4.8) Ωu,v) = sinhu v η)sinhu v +η) sinhu v η)sinhu v+η). 4.9) The dual Bethe vector is given by ψ m u 1,...,u m ) = ψ m 1 u,...,u m ) C 1 u 1 ) γ m) i u 1,...,u m ) ψ m u,...,û i,...,u m ) C u 1 ), 4.30) i= γ m) i u 1,...,u m ) = sinhη)coshη)λ 1 u i )Fu 1,u i +η) Q 1,iu i η) Q 1,i u i ) Note that the the initial conditions are assumed for 4.7) 4.30). j=,j<i Ωu i,u j ).4.31) ψ 0 = 0, ψ 0 = 0, 4.3) Using the Yang-Baxter algebra 3.6) one can show that the Tarasov-Bethe vectors 4.7) 4.30) satisfy the off-shell equations t 1,1) u) ψ m u 1,...,u m ) = Λu,u 1,...,u m ) ψ m u 1,...,u m ) 11

13 + + + j=1 j=1 j<k sinhη)fu,u j )Ēju j )Q j u j η) Q j u j )Q j u j η) Ωu j,u p )B 1 u) ψ m 1 u 1,...,û j,...,u m ) p<j sinhη)fu,u j +η)ēju j )Q j u j η) Q j u j )Q j u j η) Ωu j,u p )B 3 u) ψ m 1 u 1,...,û j,...,u m ) p<j H m) jk u,u 1,...,u m )B u) ψ m u 1,...,û j,...,û k,...,u m ), 4.33) ψ m u 1,...,u m ) t 1,1) u) = ψ m u 1,...,u m ) Λu,u 1,...,u m ) + ψ m 1 u 1,...,û j,...,u m ) C 1 u) Ωu j,u p )Ēju j )Q j u j η) Q j u j )Q j u j η) Fu,u j)sinhη) + + j=1 j=1 p<j ψ m 1 u 1,...,û j,...,u m ) C 3 u) p<j Ωu j,u p )Ēju j )Q j u j η) Q j u j )Q j u j η) sinhη)coshη)fu,u j +η) ψ m u 1,...,û j,...,û k,...,u m ) C u)h m) jk u,u 1,...,u m )cosh η), 4.34) j<k Λu,u 1,...,u m ) = Λ 1 u) Qu η) Qu) +Λ u) Qu η)qu+η) Qu)Qu η) +Λ 3 u) Qu+η) Qu η), 4.35) Ē j u) = Λ 1 u)q j u η) Λ u)q j u+η), 4.36) H m) jk u,u 1,...,u m ) = 4coshη)sinh Q j u j η)q j,k u k η) η) Q j u j η)q j,k u j )Q j,k u k )Q j,k u k η) { Fu,u j )Fu,u k )Fu j,u k +η)fu j,u k η)ēju j )Ēku k ) Ωu j,u p ) p<j q<k,q j + sinhη)fu,u k )Fu,u k +η)fu j,u k )Fu j,u k +η)q j,k u j +η)λ u j )Ēku k ) Ωu k,u q ) + sinhη)fu,u j )Fu,u j +η)fu j,u k )Fu j,u k η)q j,k u k +η)λ u k )Ēju j ) }.4.37) The set of polynomial equations Ē j u j ) = 0 for j = 1,...,m, 4.38) are the Bethe ansatz equations from Tarasov s construction. We remark that the unwanted terms have been written explicitly in terms of the Bethe polynomials; in this way, it is clear that all unwanted terms disappear on-shell. 1

14 4.3 Relating the two closed-chain Bethe ansätze The Bethe equations from fusion4.18) from Tarasov s construction4.38) are equivalent. Indeed, since the factors in the Bethe polynomials E j u) 4.13) Ēju) 4.36) are related by Λ 1 u) Λ u) = λ 1u+ η ) λ u+ η ), 4.39) the solutions of the two sets of Bethe equations are related by η shifts. We claim that the relation between the off-shell fusion-bethe vectors 4.8), 4.9), the off-shell Tarasov-Bethe vectors 4.7), 4.30) is given by ψ m u 1,...,u m ) = su 1,...,u m ) φ m u 1 + η,...,u m + η ), 4.40) ψ m u 1,...,u m ) = φ m u 1 + η,...,u m + η ) su1,...,u m )cosh m η), 4.41) su p,...,u m ) = m p 1) i=p λ 1 u i η ) m sinhu j u k η) sinhu j u k η). 4.4) j,k=p,j<k We prove 4.40) by induction; the proof of 4.41) is similar. The cases m = 1 m = follow from brute force computation. We first note that the representations 4.1) 4.) are connected by means of the relation 3.9), which gives us in particular see e.g. [5]) B 1 u) = 1 A u+ η ) B u η ) +B u+ η ) A u η )) = B u+ η ) A u η ), B u) = B u+ η ) B u η ), 4.43) then use commutation relations from 3.5), the action 4.4) the identity Λ 1 u) = λ 1 u+ η )λ 1 u η ). 4.44) Next, let us compute ψ m+1 u 1,...,u m+1 ) supposing 4.40) is valid. By 4.7) we have ψ m+1 u 1,...,u m+1 ) = B 1 u 1 ) ψ m u,...,u m+1 ) m+1 B u 1 ) γ m+1) i u 1,...,u m+1 ) ψ m 1 u,...,û i,...,u m+1 ), 4.45) i=, by means of 4.40), we obtain ψ m+1 u 1,...,u m+1 ) = su,...,u m+1 )B 1 u 1 ) φ m ũ,...,ũ m+1 ) 13

15 m+1 B u 1 ) γ m+1) i u 1,...,u m+1 )su,...,û i,...,u m+1 ) φ m 1 ũ,...,ˆũ i,...,ũ m+1 ), i= 4.46) we have introduced su p,...,û l,...,u m ) = m p i=p,i l λ 1 u i η ) m sinhu j u k η) sinhu j u k η) j,k=p,j<k,j l,k l 4.47) the notation ũ = u+ η. 4.48) Using 4.43) we express B 1 u 1 ) B u 1 ) in terms of Au 1 ) Bu 1 ), compute B 1 u 1 ) φ m ũ,...,ũ m+1 ) = Bũ 1 )A u 1 η ) φ m ũ,...,ũ m+1 ), 4.49) B u 1 ) φ m 1 ũ,...,ˆũ i,...,ũ m+1 ) = Bũ 1 )B u 1 η ) φ m 1 ũ,...,ˆũ i,...,ũ m+1 ) = B u 1 η ) φ m ũ 1,ũ,...,ˆũ i,...,ũ m+1 ). 4.50) By means of 3.5) the action 4.4), we obtain Au) φ m u 1,...,u m ) = λ 1 u) Qu η) φ m u 1,...,u m ) Qu) sinhη) + sinhu u j ) λ 1u j ) Q ju j η) Bu) φ m 1 u 1,...,û j,...,u m ), 4.51) Q j u j ) which leads to j=1 B 1 u 1 ) φ m ũ,...,ũ m+1 ) + m+1 j= sinhη)λ 1 ũ j ) sinhu 1 u j η) Using 4.50) 4.5) we obtain = λ 1 u 1 η )m+1 sinhu 1 u j η) sinhu j= 1 u j η) φ m+1ũ 1,ũ,...,ũ m+1 ) m+1 k=,k j sinhu k u j +η) B u 1 η ) φ m ũ 1,ũ,...,ˆũ j,...,ũ m+1 ). sinhu k u j ) ψ m+1 u 1,...,u m+1 ) = su,...,u m+1 ) λ 1 u 1 η )m+1 sinhu 1 u j η) sinhu j= 1 u j η) φ m+1ũ 1,ũ,...,ũ m+1 ) )

16 + m+1 j= { su,...,u m+1 ) sinhη)λ 1ũ j ) sinhu 1 u j η) m+1 k=,k j sinhu k u j +η) sinhu k u j ) } γ m+1) j u 1,...,u m+1 )su,...,û j,...,u m+1 ) B u 1 η ) φ m ũ 1,ũ,...,ˆũ j,...,ũ m+1 ). 4.53) We can check that su 1,...,u m+1 ) = su,...,u m+1 ) λ 1 u 1 η )m+1 sinhu 1 u j η) sinhu j= 1 u j η), 4.54), thanks to 4.44), which implies su,...,u m+1 ) sinhη)λ 1u j + η ) sinhu 1 u j η) m+1 k=,k j sinhu k u j +η) sinhu k u j ) = γ m+1) j u 1,...,u m+1 )su,...,û j,...,u m+1 ), 4.55) ψ m+1 u 1,...,u m+1 ) = su 1,...,u m+1 ) φ m+1 ũ 1,ũ,...,ũ m+1 ), 4.56) therefore completes the inductive proof of 4.40). 4.4 Scalar products for Tarasov-Bethe vectors Combining the scalar product for the fusion-bethe vectors 4.19) with the relations between Tarasov-Bethe vectors fusion-bethe vectors 4.40), 4.41), it is now straightforward to compute the scalar product between the off-shell state ψ m u 1,...,u m ) 4.30) the onshell state ψ m v 1,...,v m ) 4.7) ψ m u 1,...,u m ) ψ m v 1,...,v m ) = cosh m η)su 1,...,u m )sv 1,...,v m ) λ u i + η ) det m u i λ v j + η,u 1 + η,...,u ) ) m + η ), 4.57) det m Fv i,u j )) i=1 which is in terms of the quantities λ λ arising from fusion. We can rewrite 4.57) in a similar way as in 4.1) ψ m u 1,...,u m ) ψ m v 1,...,v m ) = j<k sinhu j u k η) sinhv j v k η) sinhu j u k η) sinhv j v k η) 15

17 ) det m sinhη)fu i,v j )Fv j,u i )Ēiv j ) Q i v j ) Λ u i ), det m Fv i,u j )) i=1 4.58) which is instead in terms of quantities arising from Tarasov s construction, namely, the Bethe ansatz polynomial 4.38) the Baxter polynomial 4.15). The Slavnov formula written in 4.1) or 4.58) therefore seems more universal than the formula given in terms of the eigenvalue of the transfer matrix. 5 Bethe ansatz: double-row transfer matrix In this section we obtain the eigenvectors of the double-row transfer matrices 3.16) 3.17). 5.1 Bethe vectors from fusion We firstly apply the Bethe ansatz to 3.16), see [4, 15]. For that, we use the -dimensional auxiliary space representation, i.e., we set ) U 1,1) Au) Bu) a u) = Cu) Du)+ sinhη) Au) 5.1) sinhu+η) in which each entry is an operator acting on the quantum space C 3 ) N. These operators satisfy exchange relations dictated by 3.13). The action of the double-row monodromy operators on the reference states 4.,4.3) is given by Au) 0 = δ 1 u) 0, Du) 0 = δ u) 0, Cu) 0 = 0, 5.) a 0 Au) = 0 δ 1 u), 0 Du) = 0 δ u), 0 Bu) = 0, 5.3) δ 1 u) = sinhu+ξ )sinh N u+ 3η ), The transfer matrix 3.16) is given by δ u) = sinhu)sinhξ u η) sinhu+η) sinh N u η ). 5.4) τ 1,1) u) = sinhu+η))sinhu ξ+ ) Au) sinhu+η +ξ + )Du). 5.5) sinhu+η) 16

18 The fusion-bethe vectors are given by Φ m u 1,...,u m ) = Bu 1 )...Bu m ) 0, 5.6) Φ m u 1,...,u m ) = 0 Cu 1 )...Cu m ). 5.7) In fact, using the reflection algebra 3.13) we can show that τ,1) 1 u) Φ m u 1,...,u m ) = δu,u 1,...,u m ) Φ m u 1,...,u m ) F u,u j ) E j u j ) + sinhη) sinhu + η)) sinhu j +η) Q j u j ) Bu) Φ m 1u 1,...,û j,...,u m ), j=1 5.8) Φ m u 1,...,u m ) τ,1) 1 u) = Φ m u 1,...,u m ) δu,u 1,...u m ) + Φ m u 1,...,û j,...,u m ) Cu) E ju j ) F u,u j ) Q j u j ) sinhu j +η) sinhu+η))sinhη), j=1 5.9) δu,u 1,...,u m ) = sinhu+η))sinhu ξ+ ) δ 1 u) Qu η) sinhu+η) Qu) sinhu+η +ξ + )δ u) Qu+η) Qu) E j u) = sinhu)sinhu ξ + )δ 1 u)q j u η), 5.10) +sinhu+η)sinhu+η +ξ + )δ u)q j u+η) 5.11) Fu,v) = 1 sinhu v)sinhu+v +η). 5.1) In the above formulae we have introduced the double-row Baxter Q-polynomial, Qu) = sinhu u i )sinhu+u i +η), 5.13) i=1 the indexed double-row Baxter Q-polynomial, Q j u) = sinhu u i )sinhu+u i +η). 5.14) i j 17

19 The set of polynomial equations E j u j ) = 0 for j = 1,...,m, 5.15) are known as the Bethe ansatz equations for the double-row transfer matrix. Again, we will refer to E j u) as the Bethe ansatz polynomials for the double-row transfer matrix. Finally, let us suppose that {u 1,...,u m } satisfy the Bethe equations 5.15) i.e., they are on-shell rapidities) that there is no restriction on {v 1,...,v m } i.e., they are offshell rapidities). Then, the scalar product Φ m u 1,...,u m ) Φ m v 1,...,v m ) is given by the compact formula [9], Φ m u 1,...,u m ) Φ m v 1,...,v m ) = i=1 δ u i ) sinhv i +η))sinhu i ξ + ) det m u i δv j,u 1,...,u m ) det m Fv i,u j )) ) j<i sinhu i +u j +η) sinhu i +u j ), 5.16) which is the Slavnov formula for the double-row transfer matrix. Using δv j,u 1,...,u m ) = sinhη)sinhu i +η) sinhv j +η)) u i sinhv j +η) Fu i,v j )Fv j,u i ) E iv j ) Q i v j ) 5.17) we can rewrite the Slavnov formula as Φ m u 1,...,u m ) Φ m v 1,...,v m ) = i=1 sinhu i +η)δ u i ) sinhv i +η)sinhu i ξ + ) j<i ) det m sinhη)fu i,v j )Fv j,u i ) E iv j ) det m Fv i,u j )) Q i v j ) sinhu i +u j +η) sinhu i +u j ), 5.18) which is given in terms of the double-row Bethe ansatz Baxter polynomials, similarly to the single-row case. 5. Bethe vectors from Tarasov s construction We now apply the Bethe ansatz to 3.17), see [1, 3]. Here, we use the 3-dimensional auxiliary space representation, i.e., we set U a 1,1) u) = A 1 u) B 1 u) B u) C 1 u) A u)+ sinhη) A sinhu+η)) 1u) B 3 u) C u) C 3 u) A 3 u)+ sinhη) sinhη) A sinhu+η))sinhu+η) 1u)+ sinhη) A sinhu) u) a, 18

20 each entry acts on the quantum space C 3 ) N. These operators satisfy exchange relations dictated by 3.14). The action of the monodromy operators 5.19) on the reference state 4.,4.3) is given by A j u) 0 = j u) 0, C j u) 0 = 0, 5.0) 5.19) for j = 1,,3 1 u) = cosh u+ η u) = cosh u+ η ) sinh 0 A j u) = 0 j u), 0 B j u) = 0, 5.1) u η ) +ξ sinh u+ η ) +ξ sinhu+η)sinhu+η)) N, ) sinhu)sinh u+ 3η ξ ) sinh u η +ξ ) sinhu)sinhu+η)) N, sinhu+η)) 3 u) = sinhu η)sinh u+ η ξ ) sinh u+ 3η ξ ) sinh ) u+ η sinhu)sinhu η)) N. The transfer matrix 3.17) is given by 5.) τ 1,1) u) = sinhu+3η)sinh u η ξ+) sinh u+ η ξ+) sinh ) u+ η A 1 u) + cosh ) u+ η sinhu+η))sinh u η ξ+) sinh u+ 3η +ξ+) A u) sinhu) cosh u+ η ) sinh u+ η ) +ξ+ sinh u+ 3η ) +ξ+ A 3 u). 5.3) The Bethe vector is constructed by means of the recursion relation Ψ m u 1,...,u m ) = B 1 u 1 ) Ψ m 1 u,...,u m ) B u 1 ) i= Γ m) i u 1,...,u m ) = sinhη) Q 1,i u i η) Q 1,i u i ) Γ m) i u 1,...,u m ) Ψ m u,...,û i,...,u m ), 5.4) j=,j<i sinhu i ) sinhu 1 u i η)sinhu i +η)) 1u i ) 19 Ωu i,u j ) 1 sinhu 1 +u i +η) ) Q 1,i u i +η) Q 1,i u i η) u i ),

21 5.5) we have introduced a new Baxter double-row Q-polynomial Qu) = sinhu u i )sinhu+u i +η), 5.6) i=1 Q j u) = sinhu u i )sinhu+u i +η), 5.7) i j Q j,k u) = sinhu u i )sinhu+u i +η). 5.8) i j,k The dual Bethe vector is given by Ψ m u 1,...,u m ) = Ψ m 1 u,...,u m ) C 1 u 1 ) i= Γ m) i u 1,...,u m ) = sinhη)coshη) Q 1,i u i η) Q 1,i u i ) Γ m) i u 1,...,u m ) Ψ m u,...,û i,...,u m ) C u 1 ), 5.9) sinhu i ) sinhu 1 u i η)sinhu i +η)) 1u i ) Notice that the the initial conditions are assumed for 5.4) 5.9). j=,j<i Ωu i,u j ) 1 sinhu 1 +u i +η) ) Q 1,i u i +η) Q 1,i u i η) u i ). 5.30) Ψ 0 = 0, Ψ 0 = ) Using the reflection algebra 3.14) one can show that the vectors 5.4) 5.9) satisfy the off-shell equations τ 1,1) u) Ψ m u 1,...,u m ) = u,u 1,...,u m ) Ψ m u 1,...,u m ) + G 1 u,u j )Ēju j ) Q j u j η) Q j u j ) Q Ωu j,u p )B 1 u) Ψ m 1 u 1,...,û j,...,u m ) j u j η) + j=1 j=1 G u,u j )Ēju j ) Q j u j η) Q j u j ) Q j u j η) p<j Ωu j,u p )B 3 u) Ψ m 1 u 1,...,û j,...,u m ) p<j 0

22 + j<k H m) jk u,u 1,...,u m )B u) Ψ m u 1,...,û j,...,û k,...,u m ), 5.3) Ψ m u 1,...,u m ) τ 1,1) u) = Ψ m u 1,...,u m ) u,u 1,...,u m ) + Ψ m 1 u 1,...,û j,...,u m ) C 1 u) Ωu j,u p )Ēju j ) Q j u j η) Q j u j ) Q j u j η) G 1u,u j ) + + j=1 j=1 p<j Ψ m 1 u 1,...,û j,...,u m ) C 3 u) j<k p<j Ωu j,u p )Ēju j ) Q j u j η) Q j u j ) Q j u j η) G u,u j )cosh η) Ψ m u 1,...,û j,...,û k,...,u m ) C u)h m) jk u,u 1,...,u m )cosh η), 5.33) u,u 1,...,u m ) = sinhu+3η)sinh u η ξ+) sinh u+ η ξ+) sinh ) u+ η 1 u) Qu η) Qu) + cosh ) u+ η sinhu+η))sinh u η ξ+) sinh u+ 3η +ξ+) Qu η) Qu+η) u) sinhu) Qu) Qu η) cosh u+ η ) sinh u+ η ) +ξ+ sinh u+ 3η ) +ξ+ 3 u) Qu+η) Qu η), 5.34) Ē j u) = sinhu)sinh u+ η ) ξ+ 1 u) Q j u η) +sinhu+η))sinh u+ 3η ) +ξ+ u) Q j u+η), 5.35) H m) jk u,u 1,...,u m ) = Q j u j η) Q j,k u k η) Q j u j η) Q j,k u j ) Q j,k u k ) Q j,k u k η) Ωu j,u p ) p<j q<k,q j Ωu k,u q ) { β 1 u,u j,u k )Ēju j )Ēku k )+β u,u k,u j ) Q j,k u j +η)λ u j )Ēku k ) +β u,u j,u k ) Q j,k u k +η)λ u k )Ēju j ) }, 5.36) the functions G 1 u,u j ), G u,u j ), β 1 u,u j,u k ) β u,u j,u k ) are given in the appendix A. The set of polynomial equations Ē j u j ) = 0 for j = 1,...,m, 5.37) are the Bethe ansatz equations for the double-row transfer matrix from Tarasov s construction. We remark that the unwanted terms have been written explicitly in terms of the Bethe polynomials; in this way, it is clear that all unwanted terms disappear on-shell. 1

23 5.3 Relating the two open-chain Bethe ansätze As in the periodic case, the open-chain Bethe equations from fusion5.15) from Tarasov s construction 5.37) are equivalent. Indeed, since the factors in the Bethe polynomials E j u) 5.11) Ēju) 5.35) are related by sinhu)sinh u+ η ξ+) ) 1 u) sinhu+η))sinh u+ 3η +ξ+) u) = sinhu)sinhu ξ + )δ 1 u) sinhu+η)sinhu+η +ξ + )δ u) the solutions of the two sets of Bethe equations are related by η shifts. u u+ η, 5.38) We claim that the off-shell Tarasov-Bethe vectors 5.4), 5.9) are related to the off-shell fusion-bethe vectors 5.6), 5.7) by Ψ m u 1,...,u m ) = su 1,...,u m ) Φ m u 1 + η,...,u m + η ), 5.39) Ψ m u 1,...,u m ) = Φ m u 1 + η,...,u m + η ) su1,...,u m )cosh m η), 5.40) su p,...,u m ) = m p+1 ) sinhu i )δ 1 ui η sinh ) u i + η i=p j=k=p,j<k sinhu j +u k )sinhu j u k η) sinhu j +u k +η)sinhu j u k η). 5.41) We now prove 5.39) by induction; the proof of 5.40) is similar. The cases m = 1 m = can be proved by brute-force computation. We begin by using 5.4) to obtain Ψ m+1 u 1,...,u m+1 ) = B 1 u 1 ) Ψ m u,...,u m+1 ) m+1 B u 1 ) Γ m+1) i u 1,...,u m+1 ) Ψ m 1 u,...,û i,...,u m+1 ). 5.4) i= The induction hypothesis 5.39) implies Ψ m+1 u 1,...,u m+1 ) = su,...,u m+1 )B 1 u 1 ) Φ m ũ,...,ũ m+1 ) 5.43) m+1 B u 1 ) Γ m+1) i u 1,...,u m+1 ) su,...,û i,...,u m+1 ) Φ m 1 ũ,...,ˆũ i,...,ũ m+1 ), i= we have introduced su p,...,û l,...,u m ) 5.44)

24 = m p i=p,i l sinhu i )δ 1 ui η sinh ) u i + η sinhu) = )B sinh u+ η ) j=k=p,j<k,j l,k l sinhu j +u k )sinhu j u k η) sinhu j +u k +η)sinhu j u k η), we have again employed the notation 4.48). We now use the relations ) cosh u+ η B 1 u) = A u+ η ) B u η ) sinhη) + 4sinh )B u+ η u+ η ) D u η ) sinh u)+sinh η) ) + 4sinhu)sinh ) u+ η B u+ η ) A u η ) u+ η B u) = sinhu) sinh )B u+ η ) A u η ), 5.45) u+ η ) B u η ), 5.46) which follow from 3.15) the reflection algebra 3.13). In this way, we obtain { Ψ m+1 u 1,...,u m+1 ) = sinhu 1) sinh ) su u 1 + η,...,u m+1)bũ 1 )Au 1 η ) Φ mũ,...,ũ m+1 ) m+1 i= Γ m+1) i u 1,...,u m+1 ) su,...,û i,...,u m+1 )Bũ 1 )Bu 1 η ) Φ m 1ũ,...,ˆũ i,...,ũ m+1 ) Using the result Au) Φ m u 1,...,u m ) = δ 1 u) Qu η) Φ m u 1,...,u m ) Qu) [ sinhη) sinhu j ) + sinhu u j ) sinhu j +η) δ 1u j ) Q ju j η) Q j u j ) j=1 5.47) sinhη) sinhu+u j +η) δ u j ) Q ju j +η) ] Bu) Φ m 1 u 1,...,û j,...,u m ) 5.48) Q j u j ) that can be obtained using the reflection algebra 3.13), we find that Ψ m+1 u 1,...,u m+1 ) = sinhu 1) sinh ) u 1 + η su,...,u m+1 )δ 1 u 1 η ) m+1 k= sinhu 1 u k η) sinhu 1 +u k ) sinhu 1 u k η) sinhu 1 +u k +η) Φ m+1ũ 1,...,ũ m+1 ) + sinhu 1) sinh ) u 1 + η m+1 j= { 3 α j u 1,...,u m+1 ) }.

25 Γ m+1) j u 1,...,u m+1 ) su,...,û j,...,u m+1 ) } Bu 1 η ) Φ mũ 1,...,ˆũ j,...,ũ m+1 ), α j u 1,...,u m+1 ) = su,...,u m+1 ) sinhη) [ sinhũ j )δ 1 ũ j ) m+1 sinhu j u k η)sinhu j +u k +η) sinhu 1 ũ j η ) sinhũ j +η) sinhu j u k )sinhu j +u k +η) m+1 δ ũ j ) sinhu 1 +ũ j + η ) Finally, using the identities k=,k j k=,k j sinhu j u k +η)sinhu j +u k +3η) sinhu j u k )sinhu j +u k +η) su 1,...,u m+1 ) = sinhu 1) sinh ) u 1 + η su,...,u m+1 )δ 1 u 1 η ) ] 5.49). 5.50) m+1 k= sinhu 1 u k η) sinhu 1 +u k ) sinhu 1 u k η) sinhu 1 +u k +η) α j u 1,...,u m+1 ) = Γ m+1) j u 1,...,u m+1 ) su,...,û j,...,u m+1 ), 5.51) we conclude that Ψ m+1 u 1,...,u m+1 ) = su 1,...,u m+1 ) Φ m+1 ũ 1,...,ũ m+1 ), 5.5) which completes the inductive proof of 5.39). 5.4 Scalar products for Tarasov-Bethe vectors Combining the scalar product for the fusion-bethe vectors 5.16) with the relations between Tarasov-Bethe vectors fusion-bethe vectors 5.39), 5.40), it is now straightforward to compute the scalar product between the off-shell state Ψ m u 1,...,u m ) 5.9) the onshell state Ψ m v 1,...,v m ) 5.4) Ψ m u 1,...,u m ) Ψ m v 1,...,v m ) = cosh m η) su 1,...,u m ) sv 1,...,v m ) ) δ ui + η sinh m sinhu )) i +u j +3η) v i=1 i + 3η sinh ui + η ξ+) sinhu j<i i +u j +η) det m u i δ v j + η,u 1 + η,...,u ) ) m + η ) det m Fvi,u j ) ). 5.53) 4

26 We can rewrite 5.53) like 5.18) Ψ m u 1,...,u m ) Ψ m v 1,...,v m ) sinhu j +u k )sinhu j u k η) sinhv j +v k )sinhv j v k η) = sinhu j +u k +η)sinhu j u k η) sinhv j +v k +η)sinhv j v k η) j<k i=1 sinhu i +η) u i ) sinhv i +η)sinh m u i + η ξ+) j<i sinhu i +u j +3η) sinhu i +u j +η) det m sinhη) Fu i,v j ) Fv ) j,u i ) Ēiv j ) Q i v j ) det m Fvi,u j ) ), 5.54) Fu,v) = 1 sinhu v)sinhu+v +η), 5.55) i.e., in terms of the Bethe ansatz 5.35) the Baxter polynomial 5.6). 6 Conclusion We have considered the Bethe vectors of the ZF model from two different perspectives, namely, the fusion technique Tarasov s construction. For the single-row transfer matrix, the relations between the two sets of Bethe vectors are given by 4.40,4.41). For the doublerow transfer matrix, the associated formulas are given by 5.39,5.40). By means of these simple relations, we have computed the Slavnov scalar products for the Bethe vectors within Tarasov s construction, see 4.58) for the single-row case 5.54) for the double-row case. The Slavnov formulas have been written in terms of Bethe ansatz Baxter polynomials, which seems to have more universal structure. WehopethatourresultscanbeusefulinthestudyoftheSlavnovscalarproductsforother 19-vertex models, since they have similar commutation relations in the 3-dimensional auxiliary space representation. One first step would be to derive the formulas 4.58) 5.54) for the ZF model without resorting to the fusion-bethe vectors. A particularly important 19-vertex model is the Izergin-Korepin IK) model. We hope that there exist scalar product formulas for IK analogous to 4.58) or 5.54), at least for the quantum-group-invariant [31] or root of unity cases [3], even though IK unlike ZF) cannot be obtained from some more elementary model by fusion. Acknowledgments RP thanks Alexer Garbali for insightful discussions about the scalar product of 19-vertex models. This work was supported by the São Paulo Research Foundation FAPESP) 5

27 the University of Miami under the SPRINT grant #016/ Additional support was provided by the Brazilian Research Council CNPq) grant # 31065/013-0 FAPESP #011/1879-1ALS), by a Cooper fellowship a Fulbright Specialist grant RN), by FAPESP/CAPES grant # 017/0987-8RP). RN acknowledges the hospitality at UFSCar, ICTP-SAIFR AIMS-SA. RP thanks the University of Miami for its warm hospitality. A Auxiliary formulas The auxiliary functions entering the off-shell equations 5.3) 5.33) are given by cosh u+ η G 1 u,u j ) = ) sinhη)sinhu+η)) 4sinhu u j )sinhu η u j )sinhη +u j ))sinhu+η +u j )sinhu+η+u j ) sinh u η ) u j ξ + +sinh u+ η ) +ξ+ sinh 3u+ 3η ) ξ+ +sinh u+ 5η ) +ξ+ +sinh u+ 7η ) +u j ξ + sinh u+ 9η )) +ξ+, A.1) G u,u j ) = cosh ) u+ η sinhη)sinhu+η))sinh u+ 3η +ξ+), A.) sinhu η u j )sinhη +u j ))sinhu+η +u j ) β 1 u,u j,u k ) = sinh η)coshη) cosh u η ) cosh u+ 3η ) +cosh 3u+ 9η ) + cosh 5u+ 11η )) W1 u,u j,u k ) A.3) W u,u j,u k ) W 1 u,u j,u k ) = cosh u+u j u k ξ + 3η ) +cosh 3u j u k ξ + +η ) cosh u u j +u k ξ + 3η ) +cosh u j +u k ξ + +η ) +cosh 4u+u j +u k ξ + +η ) cosh u j +u k ξ + +3η ) cosh u+3u j +u k ξ + +3η ) +cosh 3u k u j ξ + +η ) cosh u+u j +3u k ξ + +3η ) +cosh 3u j +3u k ξ + +5η ) cosh u u j 3u k +ξ + η ) cosh u 3u j u k +ξ + η ) +cosh u j u k +ξ + +η ) +cosh u j u k +ξ + +3η ) +cosh 4u u j u k +ξ + +3η ) cosh u+u j u k +ξ + +5η ) cosh 3u j u k +ξ + +3η ) +cosh 3u j u k +ξ + +5η ) cosh u u j +u k +ξ + +5η ) +cosh u j +u k +ξ + +η ) 6

28 cosh u j +u k +ξ + +3η ) +cosh u j +u k +ξ + +5η ) cosh u j +3u k +ξ + +3η ) +cosh u j +3u k +ξ + +5η ) +coshu 4η u j u k )+coshu u j u k η) coshu+η) u j u k ) cosh4u+u j u k +η) +coshu+η)+3u j u k ) cosh4u u j +u k +η) +coshu+u j +u k +4η)+coshu+u j +u k +6η) +coshu+η)+u j +u k ) cosh3u j +u k +6η) +coshu+η) u j +3u k ) coshu j +3u k +6η)+coshu+u j 3u k ) +coshu u j u k ) 3coshu j u k ) cosh3u j u k )) +coshu 3u j +u k ) coshu+u j +u k ), A.4) W u,u j,u k ) = 3sinhu u j )sinhu u k )sinhu u j η)sinhu j +η)) sinhu+u j +η)sinhu+u j +η)sinhu u k η)sinhu k +η)) sinhu+u k +η)sinhu+u k +η)sinhu j u k +η)sinhu k u j +η)sinhu j +u k +η) sinhu j +u k +η)sinh u j ξ + + η ) sinh u k ξ + + η ), A.5) β u,u j,u k ) = cosh u+ η ) sinh η)sinhη)sinhu+η))sinhu+3η) sinhu u j )sinhu u j η)sinhu+u j +η)sinhu+u j +η) sinhu k +η)) sinhu j +η))sinhu j u k )sinhu j u k +η)sinhu j +u k +η)sinhu j +u k +η) sinh u j η ξ+) sinh u j + 5η +ξ+) sinh u k + η. A.6) ξ+) References [1] A. B. Zamolodchikov V. A. Fateev, Model Factorized S Matrix And An Integrable Heisenberg Chain With Spin 1., Sov. J. Nucl. Phys ) [Yad. Fiz.3, )]. [] L. D. Faddeev, E. K. Sklyanin, L. A. Takhtajan, The Quantum Inverse Problem Method. 1, Theor. Math. Phys ) [Teor. Mat. Fiz.40, )]. [3] L. D. Faddeev, How algebraic Bethe ansatz works for integrable models, in Symétries Quantiques Les Houches Summer School Proceedings vol 64), A. Connes, K. Gawedzki, J. Zinn-Justin, eds., pp North Holl, arxiv:hep-th/ [hep-th]. 7

29 [4] E. K. Sklyanin, Boundary Conditions for Integrable Quantum Systems, J. Phys. A1 1988) [5] P. P. Kulish, N. Yu. Reshetikhin, E. K. Sklyanin, Yang-Baxter Equation Representation Theory. 1., Lett. Math. Phys ) [6] P. P. Kulish E. K. Sklyanin, Quantum spectral transform method. Recent developments, Lect. Notes Phys ) [7] H. M. Babujian, Exact Solution Of The Isotropic Heisenberg Chain With Arbitrary Spins: Thermodynamics Of The Model, Nucl. Phys. B ) [8] L. A. Takhtajan, The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins, Phys. Lett. A87 198) [9] P. P. Kulish N. Yu. Reshetikhin, Quantum linear problem for the Sine-Gordon equation higher representation, J. Sov. Math ) [Zap. Nauchn. Semin.101, )]. [10] K. Sogo, Ground state low-lying excitations in the Heisenberg XXZ chain of arbitrary spin S, Physics Letters A 104 no. 1, 1984) [11] H. M. Babujian A. M. Tsvelik, Heisenberg magnet with an arbitrary spin anisotropic chiral field, Nucl. Phys. B ) [1] A. N. Kirillov N. Y. Reshetikhin, Exact solution of the Heisenberg XXZ model of spin s, Journal of Soviet Mathematics 35 no. 4, 1986) [13] F. Gohmann, A. Seel, J. Suzuki, Correlation functions of the integrable isotropic spin-1 chain at finite temperature, J. Stat. Mech ) P11011, arxiv: [cond-mat.str-el]. [14] N. Beisert, M. de Leeuw, P. Nag, Fusion for the one-dimensional Hubbard model, J. Phys. A48 no. 3, 015) 3400, arxiv: [math-ph]. [15] L. Mezincescu, R. I. Nepomechie, V. Rittenberg, Bethe Ansatz Solution of the Fateev-Zamolodchikov Quantum Spin Chain With Boundary Terms, Phys. Lett. A ) [16] L. Mezincescu R. I. Nepomechie, Fusion procedure for open chains, J. Phys. A5 199) [17] R. I. Nepomechie R. A. Pimenta, Fusion for AdS/CFT boundary S-matrices, JHEP ) 161, arxiv: [hep-th]. [18] V. Tarasov, Algebraic Bethe ansatz for the Izergin-Korepin R matrix, Theor. Math. Phys. 76 no., 1988) [19] A. G. Izergin V. E. Korepin, The inverse scattering method approach to the quantum Shabat-Mikhailov model, Comm. Math. Phys. 79 no. 3, 1981)

30 [0] V. F. Jones, Scale invariant transfer matrices Hamiltonians, J. Phys. A51 018) , arxiv: [math.oa]. [1] H. Fan, Bethe ansatz for the Izergin-Korepin model, Nucl. Phys. B ) [] A. Lima-Santos, Bethe ansatz for nineteen vertex models, J. Phys. A3 1999) , arxiv:hep-th/ [hep-th]. [3] V. Kurak A. Lima-Santos, Algebraic Bethe Ansatz for the Zamolodchikov-Fateev Izergin-Korepin models with open boundary conditions, Nucl. Phys. B ) , arxiv:nlin/ [nlin-si]. [4] N. A. Slavnov, Calculation of scalar products of wave functions form factors in the framework of the algebraic Bethe ansatz, Theoret. Math. Phys ) [5] N. Kitanine, Correlation functions of the higher spin XXX chains, J. Phys. A34 001) 8151, arxiv:math-ph/ [math-ph]. [6] T. Deguchi C. Matsui, Form factors of integrable higher-spin XXZ chains the affine quantum-group symmetry, Nucl. Phys. B ) , arxiv: [cond-mat.stat-mech]. [Erratum: Nucl. Phys.B851,38011)]. [7] Y.-S. Wang, The scalar products the norm of Bethe eigenstates for the boundary XXX Heisenberg spin-1/ finite chain, Nucl.Phys. B6 no. 3, 00) [8] S. Belliard R. A. Pimenta, Slavnov Gaudin-Korepin formulas for models without U 1) symmetry: the XXX chain on the segment, J. Phys. A49 no. 17, 016) 17LT01. [9] N. Kitanine, K. K. Kozlowski, J. M. Maillet, G. Niccoli, N. A. Slavnov, V. Terras, Correlation functions of the open XXZ chain I, J. Stat. Mech ) P10009, arxiv: [hep-th]. [30] N. Kitanine, J. M. Maillet, V. Terras, Form factors of the XXZ Heisenberg spin- 1 finite chain, Nucl. Phys. B ) [31] R. I. Nepomechie, Nonstard coproducts the Izergin-Korepin open spin chain, J. Phys. A33 000) L1 L6, arxiv:hep-th/99113 [hep-th]. [3] A. Garbali, The domain wall partition function for the Izergin-Korepin 19-vertex model at a root of unity, ArXiv e-prints Nov., 014), arxiv: [math-ph]. 9

Trigonometric SOS model with DWBC and spin chains with non-diagonal boundaries

Trigonometric SOS model with DWBC and spin chains with non-diagonal boundaries Trigonometric SOS model with DWBC and spin chains with non-diagonal boundaries N. Kitanine IMB, Université de Bourgogne. In collaboration with: G. Filali RAQIS 21, Annecy June 15 - June 19, 21 Typeset

More information

Generalization of the matrix product ansatz for integrable chains

Generalization of the matrix product ansatz for integrable chains arxiv:cond-mat/0608177v1 [cond-mat.str-el] 7 Aug 006 Generalization of the matrix product ansatz for integrable chains F. C. Alcaraz, M. J. Lazo Instituto de Física de São Carlos, Universidade de São Paulo,

More information

Properties of the Bethe Ansatz equations for Richardson-Gaudin models

Properties of the Bethe Ansatz equations for Richardson-Gaudin models Properties of the Bethe Ansatz equations for Richardson-Gaudin models Inna Luyaneno, Phillip Isaac, Jon Lins Centre for Mathematical Physics, School of Mathematics and Physics, The University of Queensland

More information

arxiv: v1 [nlin.si] 24 May 2017

arxiv: v1 [nlin.si] 24 May 2017 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry arxiv:1705.08953v1 nlin.si] 4 May 017 R. S. Vieira E-mail: rsvieira@df.ufscar.br Universidade Federal de São Carlos,

More information

Bethe Ansatz solution of the open XX spin chain with nondiagonal boundary terms

Bethe Ansatz solution of the open XX spin chain with nondiagonal boundary terms UMTG 231 Bethe Ansatz solution of the open XX spin chain with nondiagonal boundary terms arxiv:hep-th/0110081v1 9 Oct 2001 Rafael I. Nepomechie Physics Department, P.O. Box 248046, University of Miami

More information

arxiv: v1 [math-ph] 24 Dec 2013

arxiv: v1 [math-ph] 24 Dec 2013 ITP-UU-13/32 SPIN-13/24 Twisted Heisenberg chain and the six-vertex model with DWBC arxiv:1312.6817v1 [math-ph] 24 Dec 2013 W. Galleas Institute for Theoretical Physics and Spinoza Institute, Utrecht University,

More information

Difference Equations and Highest Weight Modules of U q [sl(n)]

Difference Equations and Highest Weight Modules of U q [sl(n)] arxiv:math/9805089v1 [math.qa] 20 May 1998 Difference Equations and Highest Weight Modules of U q [sl(n)] A. Zapletal 1,2 Institut für Theoretische Physik Freie Universität Berlin, Arnimallee 14, 14195

More information

arxiv:nlin/ v1 [nlin.si] 24 Jul 2003

arxiv:nlin/ v1 [nlin.si] 24 Jul 2003 C (1) n, D (1) n and A (2) 2n 1 reflection K-matrices A. Lima-Santos 1 and R. Malara 2 arxiv:nlin/0307046v1 [nlin.si] 24 Jul 2003 Universidade Federal de São Carlos, Departamento de Física Caixa Postal

More information

arxiv:solv-int/ v1 5 Jan 1999

arxiv:solv-int/ v1 5 Jan 1999 UFSCARF-TH-98-33 Unified algebraic Bethe ansatz for two-dimensional lattice models arxiv:solv-int/9901002v1 5 Jan 1999 M.J. Martins Universidade Federal de São Carlos Departamento de Física C.P. 676, 13565-905,

More information

arxiv: v1 [math-ph] 22 Dec 2014

arxiv: v1 [math-ph] 22 Dec 2014 arxiv:1412.6905v1 [math-ph] 22 Dec 2014 Bethe states of the XXZ spin- 1 chain with arbitrary 2 boundary fields Xin Zhang a, Yuan-Yuan Li a, Junpeng Cao a,b, Wen-Li Yang c,d1, Kangjie Shi c and Yupeng Wang

More information

arxiv: v1 [cond-mat.stat-mech] 24 May 2007

arxiv: v1 [cond-mat.stat-mech] 24 May 2007 arxiv:0705.3569v1 [cond-mat.stat-mech 4 May 007 A note on the spin- 1 XXZ chain concerning its relation to the Bose gas Alexander Seel 1, Tanaya Bhattacharyya, Frank Göhmann 3 and Andreas Klümper 4 1 Institut

More information

Takeo INAMI and Hitoshi KONNO. Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto , Japan. ABSTRACT

Takeo INAMI and Hitoshi KONNO. Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto , Japan. ABSTRACT SLAC{PUB{YITP/K-1084 August 1994 Integrable XYZ Spin Chain with Boundaries Takeo INAMI and Hitoshi KONNO Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan. ABSTRACT HEP-TH-9409138

More information

arxiv: v2 [cond-mat.stat-mech] 13 Jul 2015

arxiv: v2 [cond-mat.stat-mech] 13 Jul 2015 Where are the roots of the Bethe Ansatz equations? R. S. Vieira and A. Lima-Santos Universidade Federal de São Carlos, Departamento de Física, CEP 13560-905, São Carlos, Brazil (Dated: July 14, 2015) arxiv:1502.05316v2

More information

On the algebraic Bethe ansatz approach to correlation functions: the Heisenberg spin chain

On the algebraic Bethe ansatz approach to correlation functions: the Heisenberg spin chain On the algebraic Bethe ansatz approach to correlation functions: the Heisenberg spin chain V. Terras CNRS & ENS Lyon, France People involved: N. Kitanine, J.M. Maillet, N. Slavnov and more recently: J.

More information

Baxter Q-operators and tau-function for quantum integrable spin chains

Baxter Q-operators and tau-function for quantum integrable spin chains Baxter Q-operators and tau-function for quantum integrable spin chains Zengo Tsuboi Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin This is based on the following papers.

More information

Bethe states and separation of variables for SU(N) Heisenberg spin chain

Bethe states and separation of variables for SU(N) Heisenberg spin chain Bethe states and separation of variables for SU(N) Heisenberg spin chain Nikolay Gromov King s College London & PNPI based on 1610.08032 [NG, F. Levkovich-Maslyuk, G. Sizov] Below: FLM = F. Levkovich-Maslyuk

More information

arxiv: v2 [math-ph] 14 Jul 2014

arxiv: v2 [math-ph] 14 Jul 2014 ITP-UU-14/14 SPIN-14/12 Reflection algebra and functional equations arxiv:1405.4281v2 [math-ph] 14 Jul 2014 W. Galleas and J. Lamers Institute for Theoretical Physics and Spinoza Institute, Utrecht University,

More information

arxiv:nlin/ v1 [nlin.si] 18 Mar 2003

arxiv:nlin/ v1 [nlin.si] 18 Mar 2003 UFSCAR-TH-02 Yang-Baxter equation for the asymmetric eight-vertex model. arxiv:nlin/0303036v1 [nlin.si] 18 Mar 2003 W. Galleas and M.J. Martins Departamento de Física, Universidade Federal de São Carlos

More information

Bethe ansatz solution of a closed spin 1 XXZ Heisenberg chain with quantum algebra symmetry

Bethe ansatz solution of a closed spin 1 XXZ Heisenberg chain with quantum algebra symmetry Bethe ansatz solution of a closed spin 1 XXZ Heisenberg chain with quantum algebra symmetry Jon Links, Angela Foerster and Michael Karowski arxiv:solv-int/9809001v1 8 Aug 1998 Department of Mathematics,

More information

On elliptic quantum integrability

On elliptic quantum integrability On elliptic quantum integrability vertex models, solid-on-solid models and spin chains 1405.4281 with Galleas 1505.06870 with Galleas thesis Ch I and II 1510.00342 thesis Ch I and III in progress with

More information

Canonicity of Bäcklund transformation: r-matrix approach. I. arxiv:solv-int/ v1 25 Mar 1999

Canonicity of Bäcklund transformation: r-matrix approach. I. arxiv:solv-int/ v1 25 Mar 1999 LPENSL-Th 05/99 solv-int/990306 Canonicity of Bäcklund transformation: r-matrix approach. I. arxiv:solv-int/990306v 25 Mar 999 E K Sklyanin Laboratoire de Physique 2, Groupe de Physique Théorique, ENS

More information

Since the discovery of high T c superconductivity there has been a great interest in the area of integrable highly correlated electron systems. Notabl

Since the discovery of high T c superconductivity there has been a great interest in the area of integrable highly correlated electron systems. Notabl CERN-TH/97-72 Anisotropic Correlated Electron Model Associated With the Temperley-Lieb Algebra Angela Foerster (;y;a), Jon Links (2;b) and Itzhak Roditi (3;z;c) () Institut fur Theoretische Physik, Freie

More information

7 Algebraic Bethe Ansatz

7 Algebraic Bethe Ansatz 7 Algebraic Bethe Ansatz It is possible to continue the formal developments of the previous chapter and obtain a completely algebraic derivation of the Bethe Ansatz equations (5.31) and the corresponding

More information

Bi-partite vertex model and multi-colored link invariants

Bi-partite vertex model and multi-colored link invariants Prepared for submission to JHEP Bi-partite vertex model and multi-colored link invariants arxiv:80758v [hep-th] 9 Nov 08 Saswati Dhara a, Romesh K Kaul b, P Ramadevi a, and Vivek Kumar Singh a a Department

More information

Ground state and low excitations of an integrable. Institut fur Physik, Humboldt-Universitat, Theorie der Elementarteilchen

Ground state and low excitations of an integrable. Institut fur Physik, Humboldt-Universitat, Theorie der Elementarteilchen Ground state and low excitations of an integrable chain with alternating spins St Meinerz and B - D Dorfelx Institut fur Physik, Humboldt-Universitat, Theorie der Elementarteilchen Invalidenstrae 110,

More information

Izergin-Korepin determinant reloaded

Izergin-Korepin determinant reloaded Izergin-Korepin determinant reloaded arxiv:math-ph/0409072v1 27 Sep 2004 Yu. G. Stroganov Institute for High Energy Physics 142284 Protvino, Moscow region, Russia Abstract We consider the Izergin-Korepin

More information

The form factor program a review and new results

The form factor program a review and new results The form factor program a review and new results the nested SU(N)-off-shell Bethe ansatz H. Babujian, A. Foerster, and M. Karowski FU-Berlin Budapest, June 2006 Babujian, Foerster, Karowski (FU-Berlin)

More information

Free Fermionic Elliptic Reflection Matrices and Quantum Group Invariance

Free Fermionic Elliptic Reflection Matrices and Quantum Group Invariance IMAFF 93/11 LPTHE PAR 93/1 April 1993 Free Fermionic Elliptic Reflection Matrices and Quantum Group Invariance arxiv:hep-th/930411v1 3 Apr 1993 R. Cuerno Instituto de Matemáticas y Física Fundamental,

More information

Spectral Theorem for Self-adjoint Linear Operators

Spectral Theorem for Self-adjoint Linear Operators Notes for the undergraduate lecture by David Adams. (These are the notes I would write if I was teaching a course on this topic. I have included more material than I will cover in the 45 minute lecture;

More information

Deformed Richardson-Gaudin model

Deformed Richardson-Gaudin model Deformed Richardson-Gaudin model P Kulish 1, A Stolin and L H Johannesson 1 St. Petersburg Department of Stelov Mathematical Institute, Russian Academy of Sciences Fontana 7, 19103 St. Petersburg, Russia

More information

Gaudin Hypothesis for the XYZ Spin Chain

Gaudin Hypothesis for the XYZ Spin Chain Gaudin Hypothesis for the XYZ Spin Chain arxiv:cond-mat/9908326v3 2 Nov 1999 Yasuhiro Fujii and Miki Wadati Department of Physics, Graduate School of Science, University of Tokyo, Hongo 7 3 1, Bunkyo-ku,

More information

arxiv: v1 [math-ph] 30 Jul 2018

arxiv: v1 [math-ph] 30 Jul 2018 LPENSL-TH-08-18 On quantum separation of variables arxiv:1807.11572v1 [math-ph] 30 Jul 2018 J. M. Maillet 1 and G. Niccoli 2 Dedicated to the memory of L. D. Faddeev Abstract. We present a new approach

More information

The XYZ spin chain/8-vertex model with quasi-periodic boundary conditions Exact solution by Separation of Variables

The XYZ spin chain/8-vertex model with quasi-periodic boundary conditions Exact solution by Separation of Variables The XYZ spin chain/8-vertex model with quasi-periodic boundary conditions Exact solution by Separation of Variables Véronique TERRAS CNRS & Université Paris Sud, France Workshop: Beyond integrability.

More information

Systematic construction of (boundary) Lax pairs

Systematic construction of (boundary) Lax pairs Thessaloniki, October 2010 Motivation Integrable b.c. interesting for integrable systems per ce, new info on boundary phenomena + learn more on bulk behavior. Examples of integrable b.c. that modify the

More information

D = 4, N = 4, SU(N) Superconformal Yang-Mills Theory, P SU(2, 2 4) Integrable Spin Chain INTEGRABILITY IN YANG-MILLS THEORY

D = 4, N = 4, SU(N) Superconformal Yang-Mills Theory, P SU(2, 2 4) Integrable Spin Chain INTEGRABILITY IN YANG-MILLS THEORY INTEGRABILITY IN YANG-MILLS THEORY D = 4, N = 4, SU(N) Superconformal Yang-Mills Theory, in the Planar Limit N, fixed g 2 N P SU(2, 2 4) Integrable Spin Chain Yangian Symmetry Algebra of P SU(2, 2 4) Local

More information

Bethe ansatz for the deformed Gaudin model

Bethe ansatz for the deformed Gaudin model Proceedings of the Estonian Academy of Sciences, 00, 59, 4, 36 33 doi: 0.376/proc.00.4. Available online at www.eap.ee/proceedings Bethe ansatz for the deformed Gaudin model Petr Kulish a,b, enad anojlović

More information

arxiv: v1 [math.ra] 25 Nov 2017

arxiv: v1 [math.ra] 25 Nov 2017 arxiv:709289v [mathra] 25 Nov 207 LEFT IDEALS IN MATRIX RINGS OVER FINITE FIELDS R A FERRAZ, C POLCINO MILIES, AND E TAUFER Abstract It is well-known that each left ideals in a matrix rings over a finite

More information

The continuum limit of the integrable open XYZ spin-1/2 chain

The continuum limit of the integrable open XYZ spin-1/2 chain arxiv:hep-th/9809028v2 8 Sep 1998 The continuum limit of the integrable open XYZ spin-1/2 chain Hiroshi Tsukahara and Takeo Inami Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551

More information

The sl(2) loop algebra symmetry of the XXZ spin chain at roots of unity and applications to the superintegrable chiral Potts model 1

The sl(2) loop algebra symmetry of the XXZ spin chain at roots of unity and applications to the superintegrable chiral Potts model 1 The sl(2) loop algebra symmetry of the XXZ spin chain at roots of unity and applications to the superintegrable chiral Potts model 1 Tetsuo Deguchi Department of Physics, Ochanomizu Univ. In collaboration

More information

Deformed Richardson-Gaudin model

Deformed Richardson-Gaudin model Home Search Collections Journals About Contact us My IOPscience Deformed Richardson-Gaudin model This content has been downloaded from IOPscience. Please scroll down to see the full text. View the table

More information

arxiv:hep-th/ Jan 95

arxiv:hep-th/ Jan 95 Exact Solution of Long-Range Interacting Spin Chains with Boundaries SPhT/95/003 arxiv:hep-th/9501044 1 Jan 95 D. Bernard*, V. Pasquier and D. Serban Service de Physique Théorique y, CE Saclay, 91191 Gif-sur-Yvette,

More information

Four Point Functions in the SL(2,R) WZW Model

Four Point Functions in the SL(2,R) WZW Model Four Point Functions in the SL,R) WZW Model arxiv:hep-th/719v1 1 Jan 7 Pablo Minces a,1 and Carmen Núñez a,b, a Instituto de Astronomía y Física del Espacio IAFE), C.C.67 - Suc. 8, 18 Buenos Aires, Argentina.

More information

Bethe vectors for XXX-spin chain

Bethe vectors for XXX-spin chain Journal of Physics: Conference Series OPEN ACCESS Bethe vectors for XXX-spin chain To cite this article: estmír Burdík et al 204 J. Phys.: Conf. Ser. 563 020 View the article online for updates and enhancements.

More information

The boundary supersymmetric sine-gordon model revisited

The boundary supersymmetric sine-gordon model revisited UMTG 7 The boundary supersymmetric sine-gordon model revisited arxiv:hep-th/010309v 7 Mar 001 Rafael I. Nepomechie Physics Department, P.O. Box 48046, University of Miami Coral Gables, FL 3314 USA Abstract

More information

S Leurent, V. Kazakov. 6 July 2010

S Leurent, V. Kazakov. 6 July 2010 NLIE for SU(N) SU(N) Principal Chiral Field via Hirota dynamics S Leurent, V. Kazakov 6 July 2010 1 Thermodynaamic Bethe Ansatz (TBA) and Y -system Ground state energy Excited states 2 3 Principal Chiral

More information

arxiv: v2 [hep-th] 22 Aug 2013

arxiv: v2 [hep-th] 22 Aug 2013 arxiv:1304.5901v [hep-th] Aug 013 Transmission matrices in gl N & U q (gl N ) quantum spin chains Anastasia Doikou Department of Engineering Sciences, University of Patras, GR-6500 Patras, Greece E-mail:

More information

Introduction to Integrability in AdS/CFT: Lecture 4

Introduction to Integrability in AdS/CFT: Lecture 4 Introduction to Integrability in AdS/CFT: Lecture 4 Rafael Nepomechie University of Miami Introduction Recall: 1-loop dilatation operator for all single-trace operators in N=4 SYM is integrable 1-loop

More information

arxiv:math/ v2 [math.qa] 10 Jan 2003

arxiv:math/ v2 [math.qa] 10 Jan 2003 R-matrix presentation for (super) Yangians Y(g) D. Arnaudon a, J. Avan b, N. Crampé a, L. Frappat ac, E. Ragoucy a arxiv:math/0111325v2 [math.qa] 10 Jan 2003 a Laboratoire d Annecy-le-Vieux de Physique

More information

About Integrable Non-Abelian Laurent ODEs

About Integrable Non-Abelian Laurent ODEs About Integrable Non-Abelian Laurent ODEs T. Wolf, Brock University September 12, 2013 Outline Non-commutative ODEs First Integrals and Lax Pairs Symmetries Pre-Hamiltonian Operators Recursion Operators

More information

arxiv: v1 [math-ph] 2 Jun 2016

arxiv: v1 [math-ph] 2 Jun 2016 Quantum integrable multi-well tunneling models arxiv:1606.00816v1 [math-ph] 2 Jun 2016 L H Ymai and A P Tonel Universidade Federal do Pampa, Avenida Maria Anunciação Gomes de Godoy 1650 Bairro Malafaia,

More information

arxiv:hep-th/ v1 13 Feb 1992

arxiv:hep-th/ v1 13 Feb 1992 Chiral Bosons Through Linear Constraints H. O. Girotti, M. Gomes and V. O. Rivelles Instituto de Física, Universidade de São Paulo, Caixa Postal 2516, 1498 São Paulo, SP, Brazil. arxiv:hep-th/92243v1 13

More information

Duality and quantum-algebra symmetry of the A (1) open spin chain with diagonal boundary fields

Duality and quantum-algebra symmetry of the A (1) open spin chain with diagonal boundary fields UMTG 207 Duality and quantum-algebra symmetry of the A 1) 1 open spin chain with diagonal boundary fields Anastasia Doikou and Rafael I. epomechie Physics Department, P.O. Box 248046, University of Miami

More information

R a. Aeolian Church. A O g C. Air, Storm, Wind. P a h. Affinity: Clan Law. r q V a b a. R 5 Z t 6. c g M b. Atroxic Church. d / X.

R a. Aeolian Church. A O g C. Air, Storm, Wind. P a h. Affinity: Clan Law. r q V a b a. R 5 Z t 6. c g M b. Atroxic Church. d / X. A M W A A A A R A O C A () A 6 A A G A A A A A A-C Au A A P 0 V A T < Au J Az01 Az02 A Au A A A A R 5 Z 6 M B G B B B P T Bu B B B B S B / X B A Cu A, S, W A: S Hu Ru A: C L A, S, F, S A, u F C, R C F

More information

arxiv:hep-th/ v1 13 May 1994

arxiv:hep-th/ v1 13 May 1994 Hirota equation as an example of integrable symplectic map L. Faddeev 1, and A. Yu. Volkov, arxiv:hep-th/9405087v1 13 May 1994 1 Saint Petersburg Branch of the Steklov Mathematical Institute Fontanka 7,

More information

arxiv: v1 [math-ph] 11 Jun 2016

arxiv: v1 [math-ph] 11 Jun 2016 LAPTH-028/16 Scalar products of Bethe vectors in models with gl2 1 symmetry 2. Determinant representation arxiv:1606.03573v1 [math-ph] 11 Jun 2016 A. Hutsalyuk a, A. Liashyk b,c, S. Z. Pakuliak a,d, E.

More information

arxiv:hep-th/ v1 2 Jul 2003

arxiv:hep-th/ v1 2 Jul 2003 IFT-P.027/2003 CTP-MIT-3393 hep-th/0307019 Yang-Mills Action from Open Superstring Field Theory arxiv:hep-th/0307019v1 2 Jul 2003 Nathan Berkovits 1 Instituto de Física Teórica, Universidade Estadual Paulista,

More information

Introduction to Integrability

Introduction to Integrability Introduction to Integrability Problem Sets ETH Zurich, HS16 Prof. N. Beisert, A. Garus c 2016 Niklas Beisert, ETH Zurich This document as well as its parts is protected by copyright. This work is licensed

More information

On universality of critical behaviour in Hamiltonian PDEs

On universality of critical behaviour in Hamiltonian PDEs Riemann - Hilbert Problems, Integrability and Asymptotics Trieste, September 23, 2005 On universality of critical behaviour in Hamiltonian PDEs Boris DUBROVIN SISSA (Trieste) 1 Main subject: Hamiltonian

More information

arxiv: v1 [hep-th] 3 Mar 2017

arxiv: v1 [hep-th] 3 Mar 2017 Semiclassical expansion of the Bethe scalar products in the XXZ spin chain Constantin Babenko arxiv:703.023v [hep-th] 3 Mar 207 Laboratoire de Physique Théorique et Hautes Énergies, Université Pierre et

More information

arxiv:math/ v1 [math.qa] 5 Nov 2002

arxiv:math/ v1 [math.qa] 5 Nov 2002 A new quantum analog of the Brauer algebra arxiv:math/0211082v1 [math.qa] 5 Nov 2002 A. I. Molev School of Mathematics and Statistics University of Sydney, NSW 2006, Australia alexm@ maths.usyd.edu.au

More information

The dilute Temperley-Lieb O(n = 1) loop model on a semi infinite strip: the sum rule

The dilute Temperley-Lieb O(n = 1) loop model on a semi infinite strip: the sum rule The dilute Temperley-Lieb O(n = 1) loop model on a semi infinite strip: the sum rule arxiv:1411.7160v1 [math-ph] 26 Nov 2014 A. Garbali 1 and B. Nienhuis 2 1 LPTHE, CNRS UMR 7589, Université Pierre et

More information

1 Last time: least-squares problems

1 Last time: least-squares problems MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

More information

arxiv:quant-ph/ v2 24 Dec 2003

arxiv:quant-ph/ v2 24 Dec 2003 Quantum Entanglement in Heisenberg Antiferromagnets V. Subrahmanyam Department of Physics, Indian Institute of Technology, Kanpur, India. arxiv:quant-ph/0309004 v2 24 Dec 2003 Entanglement sharing among

More information

String hypothesis and mirror TBA Excited states TBA: CDT Critical values of g Konishi at five loops Summary. The Mirror TBA

String hypothesis and mirror TBA Excited states TBA: CDT Critical values of g Konishi at five loops Summary. The Mirror TBA The Mirror TBA Through the Looking-Glass, and, What Alice Found There Gleb Arutyunov Institute for Theoretical Physics, Utrecht University Lorentz Center, Leiden, 12 April 2010 Summary of the mirror TBA

More information

arxiv:hep-th/ v1 24 Sep 1998

arxiv:hep-th/ v1 24 Sep 1998 ICTP/IR/98/19 SISSA/EP/98/101 Quantum Integrability of Certain Boundary Conditions 1 arxiv:hep-th/9809178v1 24 Sep 1998 M. Moriconi 2 The Abdus Salam International Centre for Theoretical Physics Strada

More information

Combinatorial Interpretation of the Scalar Products of State Vectors of Integrable Models

Combinatorial Interpretation of the Scalar Products of State Vectors of Integrable Models Combinatorial Interpretation of the Scalar Products of State Vectors of Integrable Models arxiv:40.0449v [math-ph] 3 Feb 04 N. M. Bogoliubov, C. Malyshev St.-Petersburg Department of V. A. Steklov Mathematical

More information

arxiv: v1 [quant-ph] 23 Jan 2019

arxiv: v1 [quant-ph] 23 Jan 2019 Tuning the thermal entanglement in a Ising-XXZ diamond chain with two impurities I. M. Carvalho, O. Rojas,, S. M. de Souza and M. Rojas Departamento de Física, Universidade Federal de Lavras, 3700-000,

More information

Correlation functions of the integrable spin-s XXZ spin chains and some related topics 2

Correlation functions of the integrable spin-s XXZ spin chains and some related topics 2 Correlation functions of the integrable spin-s XXZ spin chains and some related topics 2 Tetsuo Deguchi Ochanomizu University, Tokyo, Japan June 15, 2010 [1,2] T.D. and Chihiro Matsui, NPB 814[FS](2009)405

More information

arxiv:math-ph/ v1 29 Dec 1999

arxiv:math-ph/ v1 29 Dec 1999 On the classical R-matrix of the degenerate Calogero-Moser models L. Fehér and B.G. Pusztai arxiv:math-ph/9912021v1 29 Dec 1999 Department of Theoretical Physics, József Attila University Tisza Lajos krt

More information

Surface excitations and surface energy of the antiferromagnetic XXZ chain by the Bethe ansatz approach

Surface excitations and surface energy of the antiferromagnetic XXZ chain by the Bethe ansatz approach J. Phys. A: Math. Gen. 9 (1996) 169 1638. Printed in the UK Surface excitations and surface energy of the antiferromagnetic XXZ chain by the Bethe ansatz approach A Kapustin and S Skorik Physics Department,

More information

Notes on Linear Algebra and Matrix Theory

Notes on Linear Algebra and Matrix Theory Massimo Franceschet featuring Enrico Bozzo Scalar product The scalar product (a.k.a. dot product or inner product) of two real vectors x = (x 1,..., x n ) and y = (y 1,..., y n ) is not a vector but a

More information

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS Bethe subalgebras in Hecke algebra and Gaudin models. A.P. ISAEV and A.N.

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS Bethe subalgebras in Hecke algebra and Gaudin models. A.P. ISAEV and A.N. RIMS-1775 Bethe subalgebras in Hecke algebra and Gaudin models By A.P. ISAEV and A.N. KIRILLOV February 2013 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan Bethe subalgebras

More information

A new perspective on long range SU(N) spin models

A new perspective on long range SU(N) spin models A new perspective on long range SU(N) spin models Thomas Quella University of Cologne Workshop on Lie Theory and Mathematical Physics Centre de Recherches Mathématiques (CRM), Montreal Based on work with

More information

Some Open Problems in Exactly Solvable Models

Some Open Problems in Exactly Solvable Models Some Open Problems in Exactly Solvable Models Vladimir E. Korepin and Ovidiu I. Pâţu Abstract. Some open problems in Exactly Solvable Models are presented. 1. Introduction In the recent years there has

More information

Star operation in Quantum Mechanics. Abstract

Star operation in Quantum Mechanics. Abstract July 000 UMTG - 33 Star operation in Quantum Mechanics L. Mezincescu Department of Physics, University of Miami, Coral Gables, FL 3314 Abstract We outline the description of Quantum Mechanics with noncommuting

More information

Fractional-Spin Integrals of Motion for the Boundary Sine-Gordon Model at the Free Fermion Point

Fractional-Spin Integrals of Motion for the Boundary Sine-Gordon Model at the Free Fermion Point UMTG 200 Fractional-Spin Integrals of Motion for the Boundary Sine-Gordon Model at the Free Fermion Point Luca Mezincescu and Rafael I. Nepomechie Physics Department, P.O. Box 248046, University of Miami

More information

Temperature Correlation Functions in the XXO Heisenberg Chain

Temperature Correlation Functions in the XXO Heisenberg Chain CONGRESSO NAZIONALE DI FISICA DELLA MATERIA Brescia, 13-16 June, 1994 Temperature Correlation Functions in the XXO Heisenberg Chain F. Colomo 1, A.G. Izergin 2,3, V.E. Korepin 4, V. Tognetti 1,5 1 I.N.F.N.,

More information

City, University of London Institutional Repository

City, University of London Institutional Repository City Research Online City, University of London Institutional Repository Citation: Fring, A., Mussardo, G. & Simonetti, P. (199). Form Factors of the Elementary Field in the Bullough-Dodd Model. Physics

More information

arxiv:hep-th/ v2 7 Mar 2005

arxiv:hep-th/ v2 7 Mar 2005 hep-th/0503003 March 2005 arxiv:hep-th/0503003v2 7 Mar 2005 Drinfeld twists and algebraic Bethe ansatz of the supersymmetric model associated with U q (gl(m n)) Wen-Li Yang, a,b Yao-Zhong Zhang b and Shao-You

More information

U(N) Matrix Difference Equations and a Nested Bethe Ansatz

U(N) Matrix Difference Equations and a Nested Bethe Ansatz U(N) Matrix Difference Equations and a Nested Bethe Ansatz arxiv:hep-th/9611006v1 1 Nov 1996 H. Babujian 1,2,3, M. Karowski 4 and A. Zapletal 5,6 Institut für Theoretische Physik Freie Universität Berlin,

More information

On Entropy Flux Heat Flux Relation in Thermodynamics with Lagrange Multipliers

On Entropy Flux Heat Flux Relation in Thermodynamics with Lagrange Multipliers Continuum Mech. Thermodyn. (1996) 8: 247 256 On Entropy Flux Heat Flux Relation in Thermodynamics with Lagrange Multipliers I-Shih Liu Instituto de Matemática Universidade do rio de Janeiro, Caixa Postal

More information

arxiv:q-alg/ v1 14 Feb 1997

arxiv:q-alg/ v1 14 Feb 1997 arxiv:q-alg/97009v 4 Feb 997 On q-clebsch Gordan Rules and the Spinon Character Formulas for Affine C ) Algebra Yasuhiko Yamada Department of Mathematics Kyushu University September 8, 07 Abstract A q-analog

More information

Refined Cauchy/Littlewood identities and partition functions of the six-vertex model

Refined Cauchy/Littlewood identities and partition functions of the six-vertex model Refined Cauchy/Littlewood identities and partition functions of the six-vertex model LPTHE (UPMC Paris 6), CNRS (Collaboration with Dan Betea and Paul Zinn-Justin) 6 June, 4 Disclaimer: the word Baxterize

More information

Mathematical Methods wk 2: Linear Operators

Mathematical Methods wk 2: Linear Operators John Magorrian, magog@thphysoxacuk These are work-in-progress notes for the second-year course on mathematical methods The most up-to-date version is available from http://www-thphysphysicsoxacuk/people/johnmagorrian/mm

More information

A warm-up for solving noncompact sigma models: The Sinh-Gordon model

A warm-up for solving noncompact sigma models: The Sinh-Gordon model A warm-up for solving noncompact sigma models: The Sinh-Gordon model Jörg Teschner Based on A. Bytsko, J.T., hep-th/0602093, J.T., hep-th/0702122 Goal: Understand string theory on AdS-spaces Building blocks:

More information

Freedom in the Expansion and Obstacles to Integrability in Multiple-Soliton Solutions of the Perturbed KdV Equation

Freedom in the Expansion and Obstacles to Integrability in Multiple-Soliton Solutions of the Perturbed KdV Equation Freedom in the Expansion and Obstacles to Integrability in Multiple-Soliton Solutions of the Perturbed KdV Equation Alex Veksler 1 and Yair Zarmi 1, Ben-Gurion University of the Negev, Israel 1 Department

More information

The dilute Temperley-Lieb O(n = 1) loop model on a semi infinite strip: the ground state

The dilute Temperley-Lieb O(n = 1) loop model on a semi infinite strip: the ground state The dilute Temperley-Lieb O(n = 1) loop model on a semi infinite strip: the ground state arxiv:1411.7020v1 [math-ph] 25 Nov 2014 A. Garbali 1 and B. Nienhuis 2 1 LPTHE, CNRS UMR 7589, Université Pierre

More information

SUSY QM VIA 2x2 MATRIX SUPERPOTENTIAL

SUSY QM VIA 2x2 MATRIX SUPERPOTENTIAL CBPF-NF-031/03 hep-th/0308189 SUSY QM VIA 2x2 MATRIX SUPERPOTENTIAL R. de Lima Rodrigues Centro Brasileiro de Pesquisas Físicas (CBPF) Rua Dr. Xavier Sigaud, 150, CEP 22290-180 Rio de Janeiro, RJ, Brazil

More information

THE SPECTRUM OF BOUNDARY SINE- GORDON THEORY

THE SPECTRUM OF BOUNDARY SINE- GORDON THEORY THE SPECTRUM OF BOUNDARY SINE- GORDON THEORY Z. Bajnok, L. Palla and G. Takács Institute for Theoretical Physics, Eötvös University, Budapest, Hungary Abstract We review our recent results on the on-shell

More information

DUAL HAMILTONIAN STRUCTURES IN AN INTEGRABLE HIERARCHY

DUAL HAMILTONIAN STRUCTURES IN AN INTEGRABLE HIERARCHY DUAL HAMILTONIAN STRUCTURES IN AN INTEGRABLE HIERARCHY RAQIS 16, University of Geneva Somes references and collaborators Based on joint work with J. Avan, A. Doikou and A. Kundu Lagrangian and Hamiltonian

More information

Applications of Gaudin models for condensed matter physics

Applications of Gaudin models for condensed matter physics Applications of Gaudin models for condensed matter physics Luigi Amico MATIS CNR-INFM & Dipartimento di metodologie fisiche e chimiche, Università di Catania. Materials and Technologies for Information

More information

Snyder noncommutative space-time from two-time physics

Snyder noncommutative space-time from two-time physics arxiv:hep-th/0408193v1 25 Aug 2004 Snyder noncommutative space-time from two-time physics Juan M. Romero and Adolfo Zamora Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México Apartado

More information

Introduction to the Mathematics of the XY -Spin Chain

Introduction to the Mathematics of the XY -Spin Chain Introduction to the Mathematics of the XY -Spin Chain Günter Stolz June 9, 2014 Abstract In the following we present an introduction to the mathematical theory of the XY spin chain. The importance of this

More information

Density and current profiles for U q (A (1) 2) zero range process

Density and current profiles for U q (A (1) 2) zero range process Density and current profiles for U q (A (1) 2) zero range process Atsuo Kuniba (Univ. Tokyo) Based on [K & Mangazeev, arxiv:1705.10979, NPB in press] Matrix Program: Integrability in low-dimensional quantum

More information

Some Quantum Aspects of D=3 Space-Time Massive Gravity.

Some Quantum Aspects of D=3 Space-Time Massive Gravity. Some Quantum Aspects of D=3 Space-Time Massive Gravity. arxiv:gr-qc/96049v 0 Nov 996 Carlos Pinheiro, Universidade Federal do Espírito Santo, Departamento de Física, Vitória-ES, Brazil, Gentil O. Pires,

More information

Random matrix theory in lattice statistical mechanics

Random matrix theory in lattice statistical mechanics Available online at www.sciencedirect.com Physica A 321 (23) 325 333 www.elsevier.com/locate/physa Random matrix theory in lattice statistical mechanics J.-Ch. Angles d Auriac a;b;, J.-M. Maillard a;b

More information

The Quantum Heisenberg Ferromagnet

The Quantum Heisenberg Ferromagnet The Quantum Heisenberg Ferromagnet Soon after Schrödinger discovered the wave equation of quantum mechanics, Heisenberg and Dirac developed the first successful quantum theory of ferromagnetism W. Heisenberg,

More information

Pseudo-Hermiticity and Generalized P T- and CP T-Symmetries

Pseudo-Hermiticity and Generalized P T- and CP T-Symmetries Pseudo-Hermiticity and Generalized P T- and CP T-Symmetries arxiv:math-ph/0209018v3 28 Nov 2002 Ali Mostafazadeh Department of Mathematics, Koç University, umelifeneri Yolu, 80910 Sariyer, Istanbul, Turkey

More information

Hexagons and 3pt functions

Hexagons and 3pt functions Hexagons and 3pt functions Benjamin Basso ENS Paris Current Themes in Holography NBI Copenhagen 2016 based on work with Vasco Goncalves, Shota Komatsu and Pedro Vieira The spectral problem is solved O(x)

More information

Quantum integrability in systems with finite number of levels

Quantum integrability in systems with finite number of levels Quantum integrability in systems with finite number of levels Emil Yuzbashyan Rutgers University Collaborators: S. Shastry, H. Owusu, K. Wagh arxiv:1111.3375 J. Phys. A, 44 395302 (2011); 42, 035206 (2009)

More information