arxiv: v1 [nlin.si] 24 May 2017

Size: px
Start display at page:

Download "arxiv: v1 [nlin.si] 24 May 2017"

Transcription

1 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry arxiv: v1 nlin.si] 4 May 017 R. S. Vieira rsvieira@df.ufscar.br Universidade Federal de São Carlos, Departamento de Física, caixa-postal 676, CEP , São Carlos, SP, Brasil. A. Lima Santos dals@df.ufscar.br Universidade Federal de São Carlos, Departamento de Física, caixa-postal 676, CEP , São Carlos, SP, Brasil. Abstract. The boundary algebraic Bethe Ansatz for a supersymmetric nineteen vertex-model constructed from a three-dimensional representation of the twisted quantum affine Lie superalgebra U qosp ) ) ] is presented. The eigenvalues and eigenvectors of Sklyanin s transfer matrix, with diagonal reflection K- matrices, are calculated and the corresponding Bethe Ansatz equations are obtained. Keywords: Algebraic Bethe Ansatz, Open boundary conditions, Lie superalgebras, twisted Lie algebras, nineteen vertex-models.

2 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 1. The model Over the last decades, great interest has been aroused in the study of supersymmetric integrable systems. In fact, supersymmetry is now present in several fields of contemporary mathematics and physics, ranging from condensed matter physics to superstring theory. We can cite, for instance, the graded generalizations of Hubbard and t-j models 1 3], which play an important role in condensed matter physics, and also the search for solutions of the graded Yang-Baxter equation 4 9], which gave origin to important algebraic construction as the supersymmetric Hopf algebras and quantum groups 10]. More recently, the integrability of supersymmetric models also proved to be important in superstring theory, more specifically in the AdS/CFT correspondence 11 14]. The most powerful and beautiful method to analyze these integrable quantum systems is probably the Algebraic Bethe Ansatz aba) 15 17]. This technique allows to diagonalize the transfer matrix of a given integrable quantum system in an analytical way and the commutability of the transfer matrix which is guaranteed by the Yang-Baxter equation) ensures the existence of several conserved quantities in evolution, the Hamiltonian being one of them. A complete analytical answer for the problem, however, require the solution of the Bethe Ansatz equations, a system of non-linear equations which have not been completely solved so far 18]. The aba was originally applied to systems with periodic boundary conditions but after the work of Sklyanin 19], integrable models with non-periodic boundaries could also be handled. Further generalizations 0, 1] showed that the aba can be applied to several classes of integrable models, described by different Lie algebras and superalgebras, with both periodic as non-periodic boundary conditions. In the case of the periodic aba, the fundamental object is a R-matrix, solution of the Yang-Baxter equation, while in the case of the boundary aba, other fundamental ingredient is necessary: the K-matrices or reflection matrices), which are solutions of the boundary Yang-Baxter equations a.k.a. reflection equations) 19 1]. The aba was successfully applied to nineteen vertex models. In fact, after Tarasov ] used this technique to solve the Izergin-Korepin model 3] with periodic boundary conditions, the Zamolodchikov-Fateev vertexmodel 4] was also solved by Lima-Santos 5]. The boundary aba for these vertex models were performed in 6, 7] together with the supersymmetric sl 1) and osp 1) vertex models. Several other important results were obtained for nineteen vertex-models see, for instance, 8] and references therein. In this work we will study another graded three-state nineteen-vertex model with reflecting boundary conditions. We derive the boundary aba for a supersymmetric nineteen-vertex model that was presented by Yang and Zhang in 9]. The R-matrix associated with this model is constructed from a three-dimensional free boson representation V of the twisted quantum affine Lie superalgebra U q osp ) ) ] and the periodic aba for this model was presented in 30]. We would like to emphasize that vertex-models described by Lie superalgebras and, in particular, by twisted Lie superalgebras are usually the most complex ones, which of course is due to the high complexity of such Lie superalgebras 31 36]. In fact, even the reflection K-matrices of those models were not yet completely classified, although a great advance in this direction has been obtained in the last years 37 4]. In the recent work 8], we derived the reflection K-matrices of the Yang-Zhang model which allowed us to implement now the boundary aba for this model. Since we shall deal here with a supersymmetric system, it will be helpful to remember first the basics of the graded Lie algebras 43]. Let W = V U be a Z -graded vector space where V and U denote their even and odd parts, respectively. In a Z -graded vector space we associate a graduation pi) to each element ǫ i of a given basis of V. In the present case, we shall consider only a three-dimensional representation of the twisted quantum affine Lie superalgebrau q osp ) ) ] with a basis E = {ǫ 1,ǫ,ǫ 3 } and the grading p1) = 0, p) = 1 and p3) = 0. Multiplication rules in the graded vector space W differ from the ordinary ones by the appearance of additional signs. For example, the graded tensor product of two homogeneous even elements A EndV) and B EndV) turns out to be defined by the formula, n A g B = 1) pi)pk)+pj)pk) A ij B kl e ij e kl ), 1) {i,j,k,l}=1 where n = 3 is the dimension of the vector space V and e ij are the Weyl matrices e ij is a matrix in which all elements are null, except that element on the i,j] position, which equals 1). In the same fashion, the

3 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 3 graded permutation operator P g is defined by n P g = 1) pi)pj) e ij e ji ). ) {i,j}=1 and the graded transposition A tg of a matrix A EndV) as well as its inverse graded transposition, A τg, are defined, respectively, by n n A tg = 1) pi)pj)+pi) A ji e ij, A τg = 1) pi)pj)+pj) A ji e ij, 3) {i,j}=1 {i,j}=1 so that A tg τ g = A τg t g = A. Finally, the graded trace of a matrix A EndV) is given by n tr g A) = 1) pi) A ii e ii. 4) In the graded case, both the periodic YB equation 4 9], R 1 x)r 13 xy)r 3 y) = R 3 y)r 13 xy)r 1 x), 5) as well as the boundary YB equation 19 1], R 1 x/y)k 1 x)r 1xy)K y) = K y)r 1xy)K 1 x)r 1x/y), 6) can be written in the same way as in in the non-graded case: it is only necessary to employ graded operations instead of the usual operations 1]. The R-matrix, solution of the graded YB equation 5), associated with the Yang-Zhang vertex-model 9] can be written, up to a normalizing factor and employing a different notation, as follows: Rx) = r 1 x) r x) 0 r 5 x) r 3 x) 0 r 6 x) 0 r 7 x) s 5 x) 0 r x) s 6 x) 0 r 4 x) 0 r 6 x) r x) 0 r 5 x) s 7 x) 0 s 6 x) 0 r 3 x) s 5 x) 0 r x) r 1 x) where the amplitudes r i x) and s i x) are given respectively by r 1 x) = q x 1,, 7) r x) = qx 1), 9) r 3 x) = qq +x)x 1)/qx+1), 10) r 4 x) = qx 1) q +1) q 1 ) x/qx+1), 11) r 5 x) = q 1, r 6 x) = q 1/ q 1 ) x 1)/qx+1), 13) r 7 x) = q 1)q +1) /qx+1), 14) s 5 x) = q 1 ) x = xr 5 x), 15) s 6 x) = q 1/ q 1 ) xx 1)/qx+1) = xr 6 x), 16) s 7 x) = q 1)q +1) x /qx+1) = x r 7 x). 17) 8) 1)

4 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 4 where This R-matrix has the following properties or symmetries 8]: regularity: R 1 1) = f 1) 1/ P g 1, 18) unitarity: R 1 x) = f x)r1 1 x 1 ), 19) super PT: R 1 x) = R tg 1 τg 1 x), 0) crossing: R 1 x) = gx) V 1 R tg 1 η 1 x 1) ] V1 1, 1) ) 1 f x) = r 1 x)r 1 = q x 1 ) q ) x x 1, gx) = qxx 1) qx+1). ) Here, t g 1 and t mean graded partial transpositions in the first and second vector spaces, respectively, and τ 1 and τ the corresponding inverse operations. Besides, η = q is the crossing parameter while M = V tg V = diag1/q,1,q) 3) is the crossing matrix. Solutions of the boundary YB equation 6) for this vertex model were presented recently in 8]. The most general regular diagonal reflection K-matrix, K x) = diag k 1,1 x),k, x),k 3,3 x)), 4) of the Yang-Zhang vertex model which is of interest in the present work has the following entries 8]: k1,1 x) = 1+ 1 x 1 ) β 1,1, 5) ] k, x) = x β, β 1,1 )x+β 1,1 β, +) 1+ 1 x 1 ) ] β 1,1, 6) β 1,1 β, +)x+β, β 1,1 ) ] k3,3 x) = β1,1 β, +) qxβ, β 1,1 ) x β 1,1 β, +)x+β, β 1,1 ) β, β 1,1 ) β, β 1,1 )x β, β 1,1 )x+qβ, β 1,1 ) ] 1+ 1 x 1 ) β 1,1 ], 7) where β 1,1 and β, are the boundary free-parameters of the solutions. Notice that the properties 18), 19), 0), and 1), enjoyed by the R-matrix 7), ensure the existence of the dual reflection equation, y ) ) ) η η y R 1 K 1 + x x)m 1 1 R 1 M 1 K + xy y) = M 1K + y)r 1 M1 1 xy K+ 1 x)r 1, x) 8) as described by Bracken et Al. 1]. Besides, the dual reflection matrices K + x) which are solutions of the dual reflection equation 8) can determined by the following isomorphism 1,8] K + x) = K η 1 x 1 )M, 9) with a new set of boundary free-parameters say, with α i,j replacing β i,j ). It is to be noticed that special values for the boundary free-parameters lead to particular reflection matrices, for instance, the quantum group invariant solutions K x) = I and K + x) = M.. The Boundary Algebraic Bethe Ansatz The aba for quantum integrable systems containing diagonal boundaries was developed by Sklyanin 19] for integrable systms described by symmetric R-matrices. Menisezcu and Nepomechie extended Sklyanin s formalism to get account of non-periodic R-matrices 0] and the graded case was developed further by Bazhanov and Shadrikov 9] and also Bracken et Al. 1]. The fundamental ingredient of the boundary aba is the Sklyanin transfer matrix, tx) = tr g a K + x)ux) ], 30)

5 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 5 where K x) and K + x) are any pair of reflection K-matrices satisfying the reflection equations 6) and 8), respectively, and Ux) = K + x)tx)k x)t 1 x 1 ) ], Tx) = R an x)r an 1 x) R a1 x), 31) are, respectively, the Sklyanin monodromy and the usual periodic monodromy. Notice that the operators R aq x) appearing in the expressions above act in EndV a V q ), where V a denotes the auxiliary space and V q, for 1 q N, are in the quantum spaces associated to a lattice of N sites the graded trace should be taken in the auxiliary space only). In performing the aba, we consider any pair {K x),k + x)} of reflection K-matrices which do not necessarily need to be related by the isomorphism 9). As commented already in the introduction, he mean feature of the boundary aba is that the transfer matrix 30) commutes with itself for any values of the spectral parameters x and y, that is, tx),ty)] = 0, {x,y} C. 3) This means that tx) can be thought as the generator of infinitely many conserved quantities in evolution, which justifies the name of integrable to systems that can be solved by the boundary) aba. The commutative property of tx) can be proved from the unitarity and crossing symmetries of the R-matrix plus the algebra provided by the reflection equations 19 1]; in particular, this implies the integrability of open quantum spin chains whose Hamiltonian is given by where H = N 1 H i,i dk 1 x) dx + trg ak a + 1)H N,a ] x=1 K + a 1) ], 33) tr g a H i,i+1 = d dx P i,i+1r i,i+1 x)], 1 i N 1. 34) x=1 We remark, that the free boson realization of the U q osp ) ) ] quantum Lie superalgebra considered by Yang-Zhang does not have a classical limit as q 1 9]. This particularity prevent us to study the Gaudin magnets through the off-shell aba for this model. Nevertheless, other realizations as, for instance, that one presented in 34], could provide other vertex models with U q osp ) ) ] symmetry that do have a classical limit..1. The reference state In order to find the eigenvalues and eigenvectors of the transfer matrix through the Bethe Ansatz method, it is necessary to know at least one of its eigenvectors that is simple enough so that the corresponding eigenvalue can be directly computed 19]. This simple eigenvector is called reference state. To find the reference state is useful to rewrite the transfer matrix in the Lax representation, that is, as an three-by-three operator valued matrix, say, Ux) = A 1x) B 1 x) B x) C 1 x) A x) B 3 x) C x) C 3 x) A 3 x) In this representation, the diagonal Sklyanin s transfer matrix 30), becomes,. 35) tx) = k + 1,1 x)a 1x) k +, x)a x)+k + 3,3 x)a 3x), 36) and we can easily verify that the following state Ψ 0 = 1,0,0) t is an eigenvector of the transfer matrix and, hence, it is the reference state we were looking for. In fact, the action of the monodromy elements over Ψ 0 can be evaluated following 6,7], and reads, A i x)ψ 0 = α i x)ψ 0, B i x)ψ 0 ξψ 0, C i x)ψ 0 0Ψ 0, 1 i 3. 38) 37)

6 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 6 where ξ can be any complex number and where, α 1 x) = k 1,1 x)r N 1 x) / f N x), 39) α x) = F 1 x)α 1 x)+k, x) F 1 x)k 1,1 x)]r N x)/ f N x), 40) α 3 x) = F x) F 1 x)g 3 x)]α 1 x)+f 3 x)α x) + k 3,3 x) F 3 x)k, x) F 4 x)k 1,1 x)]r N 3 x)/ f N x), 41) F 1 x) = s 5 x )/ r 1 x ), 4) F x) = s 7 x )/ r 1 x ), 43) F 3 x) = r ) 1 x s ) 5 x r ) 5 x s ) 7 x r 1 x )r 4 x )+r 5 x )s 5 x ), 44) F 4 x) = r ) 4 x s ) 7 x +s ) 5 x s ) 5 x, r 1 x )r 4 x )+r 5 x )s 5 x 45) ) Therefore, the action of the transfer matrix on Ψ 0 reads: tx)ψ 0 = k + 1,1 x)α 1x) k +, x)α x)+k + 3,3 x)α 3x). 46) It will be more convenient, however, to introduce a new set of diagonal operators, namely, D 1 x) = A 1 x), D x) = A x) F 1 x)d 1 x), 48) D 3 x) = A 3 x) F 3 x)a x) F x) F 1 x)f 3 x)]a 1 x), 49) so that their action on the reference state Ψ 0 simplifies to with D 1 x)ψ 0 = δ 1 x)ψ 0, D x)ψ 0 = δ x)ψ 0, D 3 x)ψ 0 = δ 3 x)ψ 0, 50) δ 1 x) = k 1,1 x)rn 1 x) / f N x), 51) δ x) = k, x) F 1x)k 1,1 x)] r N x) / f N x), 5) δ 3 x) = k 3,3 x) F 3x)k, x) F 4x)k 1,1 x)] r N 3 x) / f N x). 53) Similarly, the transfer matrix can be rewritten as with tx) = Ω 1,1 x)d 1 x)+ω, x)d x)+ω 3,3 x)d 3 x), 54) Ω 1,1 x) = k 1,1 + x) F 1x)k, + x)+f x)k 3,3 + x), 55) Ω, x) = k, + x)+f 3x)k 33 + x), 56) Ω 3,3 x) = k 3,3 + x), 57) so that their action on the reference state reads now,.. The 1-particle state tx)ψ 0 = Ω + 1,1 x)δ 1x)+Ω +, x)δ x)+ω + 3,3 x)δ 3x). 58) Once the action of the transfer matrix over the reference state is determined, we can ask about their excited states. In the framework of the boundary aba, these excited states are constructed from the action of the creators operators B 1 and B it can be verified, however, that the excited states can be constructed without use the operator B 3,6,7]) over the reference state Ψ 0. Further, we can verify that the action of B on Ψ 0 is proportional to a double action of B 1 on Ψ 0 in the sense that B rises the magnon number of the 47)

7 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 7 system twice when compared to B 1 ). From this follows that the first excited state, named here the 1-particle state, should be defined as, Ψ 1 x 1 ) = B 1 x 1 )Ψ 0. 59) The new variable x 1 called rapidity must be determined in order to Ψ 1 x 1 ) be indeed an eigenvector of the transfer matrix; we shall see below that this requirement is provided by the Bethe Ansatz equation of the 1-particle state. From 58) and 59) we can write down the action of tx) over Ψ 1 x 1 ): tx)ψ 1 x 1 ) = Ω 1,1 x)d 1 x)b 1 x 1 )Ψ 0 +Ω 1,1 x)d x)b 1 x 1 )Ψ 0 + Ω 1,1 x)d 3 x)b 1 x 1 )Ψ 0. 60) Notice that we shall need to know the commutation relations between the diagonal operators D 1 x), D x) and D 3 x) with B 1 x 1 ) in order to evaluate the action of tx) on Ψ 1 x 1 ). These commutation relations are provided by the fundamental relation of the boundary aba A.1) and they are presented in the Appendix. Making use of the commutation relations A.), A.3) and A.4) and simplifying the results, we can realize that the action of tx) on Ψ 1 x 1 ) can be written as follows: where, and, tx)ψ 1 x 1 ) = τ 1 x x 1 )Ψ 1 x 1 )+β 1 x 1 )B 1 x)ψ 0 +β 3 x 1 )B 3 x)ψ 0, 61) τ 1 x x 1 ) = a 1 1 x,x 1)Ω 1,1 x)δ 1 x)+a 1 x,x 1)Ω, x)δ x)+a 3 1 x,x 1)Ω 3,3 x)δ 3 x), 6) β 1 x 1 ) = Ω 1,1 x) a 1 x,x 1)δ 1 x 1 )+a 1 3 x,x 1)δ x 1 ) ] + Ω, x) a x,x 1)δ 1 x 1 )+a 3 x,x 1)δ x 1 ) ] + Ω 3,3 x) a 3 x,x 1)δ 1 x 1 )+a 3 3 x,x 1)δ x 1 ) ], 63) β 3 x 1 ) = Ω, x) a 4x,x 1 )δ 1 x 1 )+a 5x,x 1 )δ x 1 ) ] + Ω 3,3 x) a 3 4x,x 1 )δ 1 x 1 )+a 3 5x,x 1 )δ x 1 ) ]. 64) Now, if Ψ 1 x 1 ) is an eigenstate of tx), then we must have β 1 1 x 1 ) = β 1 x 1 ) = 0. This provides the Bethe Ansatz equation of the 1-particle state that implicitly fix the rapidity x 1 : δ x 1 ) δ 1 x 1 ) = Ω 1,1x)a 1 x,x 1 )+Ω, x)a x,x 1 )+Ω 3,3 x)a 3 x,x 1 ) Ω 1,1 x)a 1 3 x,x 1)+Ω, x)a 3 x,x 1)+Ω 3,3 x)a 3 3 x,x 1) = Ω,x)a 4x,x 1 )+Ω 3,3 x)a 3 4x,x 1 ) Ω, x)a 5 x,x 1)+Ω 3,3 x)a 3 5 x,x 1). 65) After simplify we can verify that both β 1 1 x 1 ) as β 1 x 1 ) vanish and also that the right-hand-side of 65) does not actually depend on the spectral parameter x, as it should. The conclusion in that Ψ 1 x 1 ) is an eigenvector of the transfer matrix with eigenvalue τ 1 x x 1 ) given by 6)..3. The -Particle state In the construction of the next excited state the -particle state both the operators B 1 and B should be taken into account. This is necessary because both B Ψ 0 as B 1 B 1 Ψ 0 are in the same sector i.e., both states have the same magnon number). Therefore, the most general -particle state should be constructed through a linear combination of these operators and we can verify a posteriori that the adequate linear combination is as follows: Ψ x 1,x ) = B 1 x 1 )B 1 x )Ψ 0 +λx 1,x )B x 1 )Ψ 0 = B 1 x 1 )Ψ 1 x )+B x 1 )Ψ 0. 66) The coefficient λx 1,x ) of this linear combination can be fixed by the condition that Ψ x,x 1 ) = B 1 x )B 1 x 1 )Ψ 0 +λx,x 1 )B x )Ψ 0 = ωx 1,x )Ψ x 1,x ), 67)

8 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 8 for some phase function ωx 1,x ),6,7]. Making use of the commutation relation A.11) between B 1 x 1 ) and B 1 x ), we get that from which follows that Ψ x,x 1 ) = b 1 1 x,x 1 )B 1 x 1 )B 1 x )Ψ 0 + b 1 x,x 1 )δ 1 x )+b 1 3 x,x 1 )δ x ) ] B x 1 )Ψ 0 + b 1 4 x,x 1 )δ 1 x 1 )+b 1 5 x,x 1 )δ x 1 )+λx,x 1 )B x ) ] Ψ 0 68) ωx 1,x ) = b 1 1 x,x 1 ), λx 1,x ) = b 1 4 x 1,x )δ 1 x ) b 1 5 x 1,x )δ x ), 69) where we made use of the following properties: ωx 1,x )ωx,x 1 ) = 1, b 1 x,x 1 ) b 1 4 x,x 1 ) = b1 3 x,x 1 ) b 1 5 x,x 1 ) = ωx 1,x ). 70) Once λx 1,x ) is determined, we can find the action of the transfer matrix on the -particle state. To this end, will be necessary to use several other commutation relations besides the previous one, namely, the commutation relations provided by A.5), A.6), A.7), A.0) and A.). Although this computation maybe somewhat extensive, we can verify that the action of tx) over Ψ x 1,x ) can be written as, where, and with tx)ψ x 1,x ) = τ x x 1,x )Ψ x 1,x )+β 1 1 x 1,x )B 1 x)ψ 1 x ) τ x x 1,x ) = + β 1 x 1,x )B 1 x)ψ 1 x 1 )+β 3 1 x 1,x )B 3 x)ψ 1 x ) + β 3 x 1,x )B 3 x)ψ 1 x 1 )+β 1 x 1,x )B x)ψ 0, 71) Ω j,j x)δ j x)a j 1 x,x 1)a j 1 x,x ), 7) j=1 β 1 1 x 1,x ) = δ 1 x 1 )a 1 1x 1,x ) + δ x 1 )a 1 x 1,x ) Ω j,j x)a j x,x 1) j=1 Ω j,j x)a j 3 x,x 1), 73) j=1 β 1 x 1,x ) = ωx,x 1 )β1 1 x,x 1 ), 74) β1 3 x 1,x ) = δ 1 x 1 )a 1 1 x 1,x ) Ω j,j x)a j 4 x,x 1) + δ x 1 )a 1 x 1,x ) j= Ω j,j x)a j 5 x,x 1), 75) j= β 3 x 1,x ) = ωx,x 1 )β1 3 x,x 1 ), 76) β1 x 1,x ) = δ i x 1 )δ j x )H ij x 1,x ), 77) {i,j}=1 H 11 x 1,x ) = b 1 x 1,x) + b 6 3x 1,x) Ω i,i x)a i 1x,x 1 )a i x,x ) Ω i,i x)a i 1x,x 1 )a i 4x,x ) i=

9 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 9 + c 1 6 x 1,x )+c 1 8 x 1,x ) ] 3 Ω i,i x)a i 6 x,x 1) + c 3 6 x 1,x )+c 3 9 x 1,x ) ] 3 Ω i,i x)a i 7 x,x 1) b 1 4 x 1,x ) H 1 x 1,x ) = b 1 x 1,x) + b 6 3 x 1,x) + c 1 9 x 1,x ) + c 3 10 x 1,x ) b 1 5 x 1,x ) Ω i,i x)a 3+i x,x 1 ), 78) Ω i,i x)a i 1 x,x 1)a i 3 x,x ) Ω i,i x)a i 1 x,x 1)a i 5 x,x ) i= Ω i,i x)a i 6 x,x 1) Ω i,i x)a i 7 x,x 1) Ω i,i x)a 3+i x,x 1 ), 79) and H 1 x 1,x ) = b 1 3 x 1,x) + b 6 4 x 1,x) Ω i,i x)a i 1 x,x 1)a i x,x ) Ω i,i x)a i 1 x,x 1)a i 4 x,x ) i= + c 1 7 x 1,x )+c 1 10 x 1,x ) ] 3 Ω i,i x)a i 6 x,x 1) + c 3 7 x 1,x )+c 3 11 x 1,x ) ] 3 Ω i,i x)a i 7 x,x 1) b 1 4 x 1,x ) H x 1,x ) = b 1 3 x 1,x) + b 6 4 x 1,x) + c 1 11 x 1,x ) + c 3 1 x 1,x ) Ω i,i x)a 3+i 3 x,x 1 ), 80) Ω i,i x)a i 1 x,x 1)a i 3 x,x ) Ω i,i x)a i 1 x,x 1)a i 5 x,x ) i= Ω i,i x)a i 6 x,x 1) Ω i,i x)a i 7 x,x 1)

10 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 10 b 1 5 x 1,x ) Ω i,i x)a 3+i 3 x,x 1 ). 81) Now, in order to Ψ x 1,x ) given at 66) be an eigenstate of the transfer matrix 58), all terms on 71) but the first one must vanish. This is indeed true, provided that the Bethe Ansatz equations of the -particle state, Ω, x)a 4 x,x 1)+Ω 3,3 x)a 3 4 x,x 1) δ x 1 ) δ 1 x 1 ) = a1 1 x 1,x ) a 1 x 1,x ) δ x ) δ 1 x ) = a1 1x,x 1 ) a 1 x,x 1 ) Ω, x)a 5 x,x 1)+Ω 3,3 x)a 3 5 x,x 1) Ω, x)a 4x,x )+Ω 3,3 x)a 3 4x,x ) Ω, x)a 5 x,x )+Ω 3,3 x)a 3 5 x,x ) ), 8) ), 83) are satisfied. Moreover, we can realize again that all dependence of the Bethe Ansatz equations on the spectral parameter x is only apparent, as they should. Therefore, provided that the Bethe Ansatz equations 8) and 83) are satisfied, Ψ x 1,x ) as given by 66) will be an eigenvector of the transfer matrix 58) with eigenvalue τ x x 1,x ) given by 7)..4. The n-particle state From the previous cases we can figure out what should be the appropriated n-particle state of the transfer matrix 58). It follows that Ψ n x 1,...,x n ) can be defined through a recurrence relation of the form, ) Ψ n x 1,...,x n ) = B 1 x 1 )Ψ n 1 x 1 n + λ i x 1,...,x n )B x 1 )Ψ n x 1,x ) i, n, 84) i= where Ψ 0 is given by 37) and Ψ 1 x 1 ) is given by 59). We have also introduced the notation, Ψ n 1 x i ) = n k=1,k i B 1 x k ), Ψ n x i,x ) n j = k=1,k {i,j} B 1 x k ). 85) The functions λ i x 1,...,x n ) appearing in 84) can be determined imposing the following exchange conditions, Ψ n x 1,...,x i,x i 1,...,x n ) = ωx i 1,x i )Ψ n x 1,...,x i 1,x i,...,x n ), i n, 86) and using the commutations relations between the creator operators in order to put them in a well-ordered form see Appendix). This lead us to the expressions, and ωx i 1,x i ) = b 1 1x i+1,x i ), i n, 87) k 1 λ k x 1,...,x n ) = ωx k,x j ) b1 4x 1,x k )δ 1 x k ) j= + b 1 5x 1,x k )δ x k ) i=,i k i=,i k a 1 1x k,x i ) a 1x k,x i ), k n. 88) The action of tx) on Ψ n x 1,...,x n ) can be computed using many others commutation relations presented in the Appendix. It follows that this action can be written as, tx)ψ n x 1,...,x n ) = τ n x x 1,...,x n )Ψ n x 1,...,x n ) n + βi 1 x ) 1,...,x n )B 1 x)ψ n 1 x i + n βi 3 ) x 1,...,x n )B 3 x)ψ n 1 x i

11 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 11 where, τ n x x 1,...,x n ) = + j=1 n {i,j}=1,i<j βi,j ) x 1,...,x n )B x)ψ n x i,x j, 89) Ω j,j x)δ j x) a j 1 x,x i), 90) and β 1 kx 1,...,x n ) = + β 3 k x 1,...,x n ) = + β i,j x 1,...,x n ) = k 1 l=1 k 1 l=1 k 1 l=1 k 1 l=1 i 1 k=1 ωx k,x l )δ 1 x k ) ωx k,x l )δ x ) ωx k,x l )δ 1 x k ) ωx k,x l )δ x ) j 1 ωx k,x i ) k=1,k {i,j} k=1 a p 1 x i,x k ) Ω j,j x)a j x,x k) j=1 Ω j,j x)a j 3 x,x i) j=1 Ω j,j x)a j 4 x,x k) j= Ω j,j x)a j 5 x,x i) j= ωx k,x j ) l=1,l {i,j} {p,q}=1,i k,i k,i k,i k a 1 1x k,x i ) a 1x k,x i ), 91) a 1 1 x k,x i ) δ p x i )δ q x j )H pq x i,x j ) a 1x k,x i ), 9) a q 1 x i,x l ). 93) The requirement that Ψ n x 1,...,x n ) be an eigenstate of the transfer matrix means that all terms in 89) that are not proportional to Ψ n x 1,...,x n ) itself must vanish. This lead us to the Bethe Ansatz equations of the general n-particle state: 3. Explicit results δ x k ) δ 1 x k ) = Ω, x)a 4x,x k )+Ω 3,3 x)a 3 4x,x k ) Ω, x)a 5 x,x k)+ω 3,3 x)a 3 5 x,x k) ] n j=1,j k a 1 1x k,x j ) a 1 x, 1 k n. 94) k,x j ) Making use of the amplitudes of the R-matrix 7), the expressions of the elements of the diagonal reflection K-matrix 4) and the coefficients of the commutation relations presented in the appendix, we can explicitly write down the results of the boundary aba for the Yang-Zhang model. It follows that the n-state eigenvector of the transfer matrix 58) is given by 84) where and ωx,y) = q x y ) q y x) k 1 λ k x 1,...,x n ) = qy +x) qx+y), 95) j= q x k x j ) q x j x k ) qx j +x k ) qx k +x j ) q q 1 ) x k 1) x k qx k +x 1 )q x k 1) δ 1x k ) 1 q qqx1 x k +1) δ x k ) i=,i k x i x k 1) ) q x i x k x i x k )q x i x k 1) i=,i k q 1 ) x i 1) x i x i x k )q x i 1), k n. 96)

12 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 1 where The eigenvalues of the Sklyanin transfer matrix 58) are given by q 3 x +1 ) 1 1 x 1)β 1,1 β, ) ] τ n x x 1,...,x n ) = q 3 x qx δ 1 x) +1) β1,1 q x 1 ) ] q x n { xxi 1) )} x q x i q x 1)β 1,1 β, ) x x i )q xx i 1) qx 1)qx+1) 1 1 x 1)β 1,1 β, ) ] q 3 x 3 x δ x) 1) β1,1 q x 1 ) ] q x qx+1)β1,1 ] β, )+qx q x 1)β 1,1 β, ) qx+1)β 1,1 β, )+ { xx i 1)x i +qx) q x i x ) q 3 xx i +1 ) } qx x i )qx i +x)qxx i +1)q xx i 1) 1 + x 1)β ] 1,1 β, )+x q x 4 δ 3 x) β1,1 q x 1 ) ] q x qx+1)β1,1 ] β, )+qx q x 1)β 1,1 β, ) qx+1)β 1,1 β, )+ { xi +qx) q 3 xx i +1 ) }, 97) qqx i +x)qxx i +1) δ 1 x) = 1+ 1 x 1 ) ] q x 1 β 1,1 q /x 1 x 1 ) ] β 1,1 δ x) = x x 1 ) 1+ 1 q x 1) ) N, 98) q x 1 ) ] β 1,1 β, ) x 1)β 1,1 β, )+x qx 1)] N q x)q N, 99) x 1)/x] δ 3 x) = x q +x ) 1+ 1 x 1 ) ] β 1,1 q x 1 ) ] β 1,1 β, ) qqx +1) x 1)β 1,1 β, )+x ] N qx+1)β1,1 β, )+ qx 1)q +x)/qx+1)] β 1,1 β, )q +x)+x q x)q x 1)/x] N. 100) Finally, the Bethe Ansatz equations are: δ x k ) δ 1 x k ) = qx k x k 1 ) ] qxk +1)β 1,1 β, )+ q x k 1) qx k +1)β 1,1 β, )+qx k { } qqxj +x k )qx j x k +1) x j +qx k )q 3, 1 k n. 101) x j x k +1) 4. Conclusion j=1,j k In this work we derived the boundary aba for the supersymetric nineteen vertex model constructed from a three-dimensional boson free representation V of the twisted quantum affine Lie superalgebra U q osp ) ) ]. The R-matrix of this model was introduced by Yang and Zhang in 9] and the correponding reflection K- matrices were derived by us recently in 8]. The eigenvalues and eigenvectors of Sklyanin s transfer matrix with diagonal reflection K-matrices were determined, as well as the corresponding Bethe Ansatz equations. Explicit results were also presented.

13 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 13 Acknowledgments This work was supported in part by Brazilian Research Council CNPq), grant #31065/013-0 and FAPESP, grant #011/ Appendix A. The fundamental commutation relations To perform the boundary aba, we need to know how the diagonal operators D 1, D and D 3 pass through the creators operators B 1, B and B 3 as an intermediate step, we shall also need known how the C s operators pass through the B s). These exchange rules are provided by the commutation relations that can be derived from the so-called fundamental relation of the boundary aba: R 1 x/y)u 1 x)r 1 xy)u y) = U y)r 1 xy)u 1 x)r 1 x/y), In fact, writing Ux) in the Lax representation as 35), and using the relations 4), 43), 44) and 45), the following commutation relations ca be obtained for details about how these expressions are obtained, please see 6, 7]): D 1 x)b 1 y) = a 1 1x,y)B 1 y)d 1 x)+a 1 x,y)b 1 x)d 1 y)+a 1 3x,y)B 1 x)d y) A.1) + a 1 6 x,y)b x)c 1 y)+a 1 7 x,y)b x)c 3 y)+a 1 8 x,y)b y)c 1 x), A.) D x)b 1 y) = a 1x,y)B 1 y)d x)+a x,y)b 1 x)d 1 y)+a 3x,y)B 1 x)d y) + a 4 x,y)b 3x)D 1 y)+a 5 x,y)b 3x)D y)+a 6 x,y)b x)c 1 y) + a 7x,y)B x)c 3 y)+a 8x,y)B y)c 1 x)+a 9x,y)B y)c 3 x), A.3) D 3 x)b 1 y) = a 3 1 x,y)b 1y)D 3 x)+a 3 x,y)b 1x)D 1 y)+a 3 3 x,y)b 1x)D y) + a 3 4x,y)B 3 x)d 1 y)+a 3 5x,y)B 3 x)d y)+a 3 6x,y)B x)c 1 y) + a 3 7 x,y)b x)c 3 y)+a 3 8 x,y)b y)c 1 x)+a 3 9 x,y)b y)c 3 x), A.4) D 1 x)b y) = a 4 1x,y)B y)d 1 x)+a 4 x,y)b x)d 1 y)+a 4 3x,y)B x)d y) + a 4 4 x,y)b x)d 3 y)+a 4 5 x,y)b 1x)B 1 y)+a 4 6 x,y)b 1x)B 3 y), A.5) D x)b y) = a 5 1x,y)B y)d x)+a 5 x,y)b x)d 1 y)+a 5 3x,y)B x)d y) + a 5 4 x,y)b x)d 3 y)+a 5 5 x,y)b 1x)B 1 y)+a 5 6 x,y)b 1x)B 3 y) + a 5 7x,y)B 3 x)b 1 y)+a 5 8x,y)B 3 x)b 3 y), A.6) D 3 x)b y) = a 6 1 x,y)b y)d 3 x)+a 6 x,y)b x)d 1 y)+a 6 3 x,y)b x)d y) + a 6 4 x,y)b x)d 3 y)+a 6 5 x,y)b 1x)B 1 y)+a 6 6 x,y)b 1x)B 3 y) + a 6 7x,y)B 3 x)b 1 y)+a 6 8x,y)B 3 x)b 3 y), A.7) D 1 x)b 3 y) = a 7 1 x,y)b 3y)D 1 x)+a 7 x,y)b 1y)D 1 x)+a 7 3 x,y)b 1x)D 1 y) + a 7 4x,y)B 1 x)d y)+a 7 5x,y)B 1 x)d 3 y)+a 7 6x,y)B x)c 1 y) + a 7 7 x,y)b x)c 3 y)+a 7 8 x,y)b y)c 1 x), A.8) D x)b 3 y) = a 8 1x,y)B 3 y)d x)+a 8 x,y)b 1 y)d x)+a 8 3x,y)B 1 x)d 1 y) + a 8 4 x,y)b 1x)D y)+a 8 5 x,y)b 1x)D 3 y)+a 8 6 x,y)b 3x)D 1 y) + a 8 7x,y)B 3 x)d y)+a 8 8x,y)B 3 x)d 3 y)+a 8 9x,y)B x)c 1 y) + a 8 10 x,y)b x)c 3 y)+a 8 11 x,y)b y)c 1 x)+a 8 1 x,y)b y)c 3 x), A.9) D 3 x)b 3 y) = a 9 1x,y)B 3 y)d 3 x)+a 9 x,y)b 1 y)d 3 x)+a 9 3x,y)B 1 x)d 1 y) + a 9 4 x,y)b 1x)D y)+a 9 5 x,y)b 1x)D 3 y)+a 9 6 x,y)b 3x)D 1 y) + a 9 7x,y)B 3 x)d y)+a 9 8x,y)B 3 x)d 3 y)+a 9 9x,y)B x)c 1 y) + a 9 10 x,y)b x)c 3 y)+a 9 11 x,y)b y)c 1 x)+a 9 1 x,y)b y)c 3 x). A.10) The commutation relation among the creators operators B 1, B and B 3 themselves are: B 1 x)b 1 y) = b 1 1 x,y)b 1y)B 1 x)+b 1 x,y)b y)d 1 x)+b 1 3 x,y)b y)d x)

14 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 14 + b 1 4x,y)B x)d 1 y)+b 1 5x,y)B x)d y), A.11) B x)b 1 y) = b 1 x,y)b 1y)B x)+b x,y)b y)b 1 x)+b 3 x,y)b y)b 3 x), B 3 x)b 1 y) = b 3 1x,y)B 1 y)b 3 x)+b 3 x,y)b 1 y)b 1 x)+b 3 3x,y)B y)d 1 x) + b 3 4 x,y)b y)d x)+b 3 5 x,y)b y)d 3 x)+b 3 6 x,y)b x)d 1 y) A.1) + b 3 7x,y)B x)d y), A.13) B 1 x)b y) = b 4 1 x,y)b y)b 1 x)+b 4 x,y)b y)b 3 x)+b 4 3 x,y)b 1y)B x) + b 4 4x,y)B 3 y)b x), A.14) B x)b y) = B y)b x), B 3 x)b y) = b 5 1x,y)B y)b 3 x)+b 5 x,y)b 1 y)b x)+b 5 3x,y)B 3 y)b x), B 1 x)b 3 y) = b 6 1 x,y)b 3y)B 1 x)+b 6 x,y)b 1y)B 1 x)+b 6 3 x,y)b y)d 1 x) + b 6 4 x,y)b y)d x)+b 6 5 x,y)b x)d 1 y)+b 6 6 x,y)b x)d y) A.15) A.16) + b 6 7x,y)B x)d 3 y), A.17) B x)b 3 y) = b 7 1 x,y)b 3y)B x)+b 7 x,y)b 1y)B x)+b 7 3 x,y)b y)b 1 x) + b 7 4x,y)B y)b 3 x), A.18) B 3 x)b 3 y) = b 8 1 x,y)b 3y)B 3 x)+b 8 x,y)b 1y)B 1 x)+b 8 3 x,y)b 1y)B 3 x) + b 8 4x,y)B y)d 1 x)+b 8 5x,y)B y)d x)+b 8 6x,y)B y)d 3 x) + b 8 7 x,y)b x)d 1 y)+b 8 8 x,y)b x)d y)+b 8 9 x,y)b x)d 3 y) + b 8 10x,y)B 3 y)b 1 x), A.19) Notice that we have chosen an appropriated order for the creators operators, namely, that B i x k ) B j x l ) if, and only if, x k < x l, for the indexes {i,j,k,l} running from 1 to 3. This order is important to the implementation of the boundary aba, since we should use these commutation relations until all operators be well ordered i.e., so that all diagonal operators D i, and all annihilator operators C i, be at right of the creator operators B j and, further, that among the creator operators themselves, we always have B i B j. Finally, the commutation relations between the C s and the B s are: C 1 x)b 1 y) = c 1 1x,y)B 1 y)c 1 x)+c 1 x,y)b 1 y)c 3 x)+c 1 3x,y)B 1 x)c 3 y) + c 1 4 x,y)b x)c 3 y)+c 1 5 x,y)b y)c x)+c 1 6 x,y)d 1y)D 1 x) + c 1 7x,y)D 1 y)d x)+c 1 8x,y)D 1 x)d 1 y)+c 1 9x,y)D 1 x)d y) + c 1 10 x,y)d x)d 1 y)+c 1 11 x,y)d x)d y), A.0) C x)b 1 y) = c 1x,y)B 3 y)c x)+c x,y)c 1 y)d 1 x)+c 3x,y)C 1 x)d 1 y) + c 4 x,y)c 1y)D x)+c 5 x,y)c 1x)D y)+c 6 x,y)c 1y)D 3 x) + c 7x,y)C 3 x)d 1 y)+c 8x,y)C 3 x)d y)+c 9x,y)C 1 x)d 1 y) + c 10 x,y)c 3x)D 1 y)+c 11 x,y)c 3y)D 1 x)+c 1 x,y)c 1x)D y) + c 13 x,y)c 3x)D y)+c 14 x,y)c 3y)D x)+c 15 x,y)c 3y)D 3 x), A.1) C 3 x)b 1 y) = c 3 1x,y)B 1 y)c 3 x)+c 3 x,y)b 1 y)c 1 x)+c 3 3x,y)B 1 x)c 3 y) + c 3 4 x,y)b y)c y)+c 3 5 x,y)b 3x)C 3 y)+c 3 6 x,y)d 1y)D 1 x) + c 3 7x,y)D 1 y)d x)+c 3 8x,y)D 1 y)d 3 x)+c 3 9x,y)D 1 x)d 1 y) + c 3 10 x,y)d 1x)D y)+c 3 11 x,y)d x)d 1 y)+c 3 1 x,y)d x)d y) + c 3 13x,y)D 3 x)d 1 y)+c 3 14x,y)D 3 x)d y), A.) C 1 x)b y) = c 4 1 x,y)b y)c 1 x)+c 4 x,y)b y)c 3 x)+c 4 3 x,y)b x)c 1 y) + c 4 4x,y)B x)c 3 y)+c 4 5x,y)B 1 y)d 1 x)+c 4 6x,y)B 1 y)d x) + c 4 7 x,y)b 3y)D 1 x)+c 4 8 x,y)b 3y)D x)+c 4 9 x,y)b 1x)D 1 y) + c 4 10x,y)B 1 x)d y)+c 4 11x,y)B 1 x)d 3 y)+c 4 1x,y)B 3 x)d 1 y) + c 4 13 x,y)b 3x)D y)+c 4 14 x,y)b 3x)D 3 y), A.3)

15 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 15 C x)b y) = c 5 1x,y)B y)c x)+c 5 x,y)b x)c y)+c 5 3x,y)B 1 y)c 1 x) + c 5 4 x,y)b 1x)C 1 y)+c 5 5 x,y)b 1y)C 3 x)+c 5 6 x,y)b 1x)C 3 y) + c 5 7x,y)B 3 y)c 1 x)+c 5 8x,y)B 3 y)c 3 x)+c 5 9x,y)B 3 x)c 3 y) + c 5 10 x,y)d 1x)D y)+c 5 11 x,y)d 1x)D 1 y)+c 5 1 x,y)d 1x)D 1 y) + c 5 13x,y)D x)d 1 y)+c 5 14x,y)D 3 x)d 1 y)+c 5 15x,y)D 1 x)d 3 y) + c 5 16 x,y)d 1x)D y)+c 5 7 x,y)d x)d 1 y)+c 5 18 x,y)d x)d y) + c 5 19x,y)D x)d y)+c 5 0x,y)D x)d 3 y)+c 5 1x,y)D 1 x)d 3 y) + c 5 x,y)d 3x)D 1 y)+c 5 3 x,y)d x)d 3 y)+c 5 4 x,y)d 3x)D y) + c 5 5x,y)D 3 x)d 3 y), A.4) C 3 x)b y) = c 6 1 x,y)b y)c 3 x)+c 6 x,y)b x)c 3 y)+c 6 3 x,y)b 1y)D 1 x) + c 6 4 x,y)b 1x)D 1 y)+c 6 5 x,y)b 1y)D x)+c 6 6 x,y)b 1x)D y) + c 6 7x,y)B 1 y)d 3 x)+c 6 8x,y)B 1 x)d 3 y)+c 6 9x,y)B y)c 1 x) + c 6 10 x,y)b x)c 1 y)+c 6 11 x,y)b 3y)D 1 x)+c 6 1 x,y)b 3x)D 1 y) + c 6 13x,y)B 3 y)d x)+c 6 14x,y)B 3 x)d y)+c 6 15x,y)B 3 y)d 3 x) + c 6 16 x,y)b 3x)D 3 y), A.5) C 1 x)b 3 y) = c 7 1x,y)B 3 y)c 1 x)+c 7 x,y)b 3 x)c 1 y)+c 7 3x,y)B 1 y)c 1 x) + c 7 4 x,y)b 1y)C 3 x)+c 7 5 x,y)b 1x)C 3 y)+c 7 6 x,y)b y)c x) + c 7 7x,y)B 3 x)c 3 y)+c 7 8x,y)D 1 x)d 1 y)+c 7 9x,y)D 1 x)d 1 y) + c 7 10 x,y)d x)d 1 y)+c 7 11 x,y)d 1x)D y)+c 7 1 x,y)d 1x)D 3 y) + c 7 13x,y)D 1 x)d y)+c 7 14x,y)D x)d 1 y)+c 7 15x,y)D x)d y) + c 7 16 x,y)d x)d 3 y)+c 7 17 x,y)d 1x)D 3 y), A.6) C x)b 3 y) = c 8 1x,y)B 3 y)c x)+c 8 x,y)b 3 x)c y)+c 8 3x,y)C 1 y)d 1 x) + c 8 4 x,y)c 1x)D 1 y)+c 8 5 x,y)c 1y)D x)+c 8 6 x,y)c 1x)D y) + c 8 7x,y)C 1 y)d 3 x)+c 8 8x,y)C 1 x)d 3 y)+c 8 9x,y)C 3 y)d 1 x) + c 8 10 x,y)c 3x)D 1 y)+c 8 11 x,y)c 3y)D x)+c 8 1 x,y)c 3x)D y) + c 8 13 x,y)c 3x)D 3 y)+c 8 14 x,y)c 1x)D 1 y)+c 8 15 x,y)c 1y)D 1 x) + c 8 16x,y)C 3 x)d 1 y)+c 8 17x,y)C 3 y)d 1 x)+c 8 18x,y)C 1 x)d y) + c 8 19 x,y)c 1y)D x)+c 8 0 x,y)c 3x)D y)+c 8 1 x,y)c 3y)D x) + c 8 x,y)c 3 x)d 3 y)+c 8 3x,y)C 3 y)d 3 x), A.7) C 3 x)b 3 y) = c 9 1 x,y)b 3y)C 3 x)+c 9 x,y)b 3x)C 3 y)+c 9 3 x,y)b 1y)C 1 x) + c 9 4x,y)B 1 x)c 1 y)+c 9 5x,y)B 1 y)c 3 x)+c 9 6x,y)B 1 x)c 3 y) + c 9 7 x,y)b y)c x)+c 9 8 x,y)b x)c y)+c 9 9 x,y)b 3y)C 1 x) + c 9 10x,y)D 1 x)d 1 y)+c 9 11x,y)D 1 x)d 1 y)+c 9 1x,y)D x)d 1 y) + c 9 13 x,y)d 1x)D y)+c 9 14 x,y)d 3x)D 1 y)+c 9 15 x,y)d 1x)D 3 y) + c 9 16x,y)D 1 x)d y)+c 9 17x,y)D x)d 1 y)+c 9 18x,y)D x)d y) + c 9 19 x,y)d x)d y)+c 9 0 x,y)d x)d 3 y)+c 9 1 x,y)d 1x)D 3 y) + c 9 x,y)d 3 x)d 1 y)+c 9 3x,y)D x)d 3 y)+c 9 4x,y)D 3 x)d y) + c 9 5 x,y)d 3x)D 3 y). A.8) The fundamental relation A.1) also provides the commutation relations between the operators C i and D j, which can be used to decrease a bit the number of terms of some commutation relations. However, these supplementary commutation relations are not necessary in the implementation of the boundary aba and they will not be presented the reader can consult references 6,7] for this purpose).

16 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 16 Next we will write down the coefficients of the commutation relations above. We restrict ourselves only to the coefficients that appear explicitly in the text; the others expressions which are usually very cumbersome and, as a mater of fact, not necessary) can also be found following the lines of 6,7]. a 1 1x,y) = r 1y/x)r xy) r 1 xy)r y/x), a 1 x,y) = F 1y) r 5xy) r 1 xy) r xy)s 5 y/x) r 1 xy)r y/x), a 1 3x,y) = r 5xy) r 1 xy), a 1 6x,y) = r 6xy)s 5 y/x) r 1 xy)r y/x), a 1 7 x,y) = r 7xy) r 1 xy), A.9) A.30) A.31) A.3) A.33) a 1 x,y) = r 5xy)s 5 xy)+r 1 xy)r 4 xy)]r 3 x/y)r 4 x/y) r 6 x/y)s 6 x/y)], A.34) r 1 xy)r x/y)r xy)r 3 x/y) ] a s5 x/y)s 5 xy) x,y) = r x/y)r xy) +F F1 y)r 5 xy) 1x) + r ] xy)s 5 y/x) r 1 xy) r 1 xy)r y/x) s5 x/y)s 6 xy) r xy)r 3 x/y) r ] 1x/y)s 5 xy)s 6 x/y) r6 x/y) r 1 xy)r x/y)r 3 x/y) r x/y) + F 1y)r 4 xy)s 5 x/y) r 1x/y)r 4 x/y)s 5 xy) r x/y)r xy) r 1 xy)r x/y), A.35) a 3x,y) = r 5xy) r 1 xy) F 1x)+ s 5x/y)r 5 xy)s 5 xy)+r 1 xy)r 4 xy)], r 1 xy)r x/y)r xy) A.36) a 4 x,y) = r 6xy) r xy) F 1y) r 3xy)r 6 x/y), r 3 x/y) A.37) a 5x,y) = r 6xy) r xy), A.38) a 6x,y) = r 1x/y)r 4 x/y)r 6 xy)s 5 xy) r 1 xy)r x/y) r xy) a 7 x,y) = r 7xy) F 1x)r 6 xy)s 5 y/x), A.39) r 1 xy)r y/x) r 1 xy) F 1x)+ s 5x/y)r 7 xy)s 5 xy) r 1 xy)r 5 xy)], A.40) r 1 xy)r x/y)r xy) a 3 1 x,y) = r x/y) r 6 xy)s 6 xy)+r xy) ), A.41) r xy)r 3 x/y)r 3 xy) a 3 F1 y)r 5 xy) x,y) = + r ]{ xy)s 5 y/x) s6 x/y)s 6 xy)s 5 x/y)s 5 xy) r 1 xy) r 1 xy)r y/x) r x/y)r xy)r 3 x/y)r 3 xy) + s 7x/y)s 7 xy) r 3 x/y)r 3 xy) F 1 x) s ] } 5x/y)s 5 xy) F 3 x)+f x) r x/y)r xy) s5 x/y)s 6 xy) + r xy)r 3 x/y) r ]{ 1x/y)s 5 xy)s 6 x/y) F 3 x) r 6x/y) r 1 xy)r x/y)r 3 x/y) r x/y) s 6x/y)s 6 xy)r 6 x/y) r x/y)r 3 x/y)r 3 xy) r } x/y)s 6 xy) r 3 x/y)r 3 xy) r4 xy)s 5 x/y)s 6 x/y)s 6 xy) + r x/y)r xy)r 3 x/y)r 3 xy) s ] 5xy)s 7 x/y) F 1 y) r 3 x/y)r 3 xy)

17 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 17 r xy)s 5 x/y)s 7 xy) + r 1 xy)r x/y)r 3 x/y)r 3 xy) r 1x/y)r 4 x/y)s 5 xy)s 6 x/y)s 6 xy) r 1 xy)r x/y), A.4) r 3 x/y)r 3 xy) a 3 3 x,y) = r 4xy)s 5 x/y)s 6 x/y)s 6 xy) r x/y)r xy)r 3 x/y)r 3 xy) s 5xy)s 7 x/y) r 3 x/y)r 3 xy) ] r5 xy)s 5 xy) s5 x/y)f 3 x) +r 4 xy) r 1 xy) r x/y)r xy) + F x) F 1 x)f 3 x)] r 5xy) r 1 xy) s5 x/y)s 5 xy)s 6 x/y)s 6 xy) + r x/y)r xy)r 3 x/y)r 3 xy) + s ] 7x/y)s 7 xy) r5 xy) r 3 x/y)r 3 xy) r 1 xy), A.43) a 3 4x,y) = r 3x/y)s 6 x/y) r 6 xy)s 6 xy)+r xy) ] r xy)r 3 x/y) F 1 y) r 3 xy) + r 3xy)r 6 x/y) r 3 x/y)r 6 xy)f 1 y)] F 3 x) r xy)r 3 x/y) s 6xy) r 6 x/y)s 6 x/y)+r x/y) ] r xy)r 3 x/y), A.44) a 3 5x,y) = s 6x/y) r 6 xy)s 6 xy)+r xy) ] r 6xy) r xy)r 3 x/y)r 3 xy) r xy) F 3x), A.45) ] a 3 6 x,y) = s6 xy)s 6 x/y) r 3 x/y)r 3 xy) F 3x) { ] r1 x/y)r 4 x/y)s 5 xy) r x/y)r xy)s 5 y/x) F s5 y/x)r 6 xy) 1x) r 1 xy)r y/x) s5 x/y) r 3 x/y) + r ] 1x/y)r 6 xy)s 5 xy)s 6 x/y) r6 x/y) r 1 xy)r x/y)r xy)r 3 x/y) r x/y) r ]} x/y)s 6 xy) r 3 x/y)r 3 xy) s5 y/x)s 5 xy) r y/x)r xy) + r ] 1x/y)s 7 xy) r6 xy)s 5 x/y) r 3 x/y)r 3 xy) r 1 xy)r x/y) + r 6xy)s 5 y/x) r 1 xy)r y/x) F x) + s 6x/y)s 6 xy)f 1 x) s 7 x/y)s 7 xy)]r 6 xy)s 5 y/x), A.46) r 1 xy)r y/x)r 3 x/y)r 3 xy) ] a 3 7 x,y) = s6 x/y)s 6 xy) r 3 x/y)r 3 xy) F 3x) r 7xy)s 6 x/y)s 6 xy) r 1 xy)r 3 x/y)r 3 xy) F 1x) + r ] 7xy) r 1 xy) F s7 xy) x)+ r 1 xy) r r7 xy)s 7 x/y) 1xy)s 7 x/y) r 3 x/y)r 3 xy), A.47) b 1 1x,y) = s 6x/y) r 6 xy)s 6 xy)+r xy) ] r xy)r 3 x/y)r 3 xy) r 6xy) r xy) F 3x), A.48) b 1 x,y) = r 1y/x)r 3 y/x)r 6 xy)f 1 x) r 3 xy)r 6 y/x)], r xy)r 3 y/x)r 4 y/x) r 6 y/x)s 6 y/x)] A.49) b 1 r 1 y/x)r 3 y/x)r 6 xy) 3x,y) = r xy)r 3 y/x)r 4 y/x) r 6 y/x)s 6 y/x)], A.50) b 1 4x,y) = r 6xy) r xy) F 1y) + r 3xy)r 6 y/x)s 7 y/x) r 3 y/x)s 6 y/x)] r xy)r 3 y/x)r 4 y/x) r 6 y/x)s 6 y/x)], b 1 5x,y) = r 6xy) r xy), A.51) A.5)

18 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 18 References c 1 6 x,y) = r xy)r 5 x/y) r 1 xy)r x/y) F 1x)+ s 5xy) r 1 xy), c 1 7 x,y) = r xy)r 5 x/y) r 1 xy)r x/y), c 1 8x,y) = r xy)s 5 x/y) r 1 xy)r x/y) F 1y) r 5xy) r 1 xy) F 1x)F 1 y), c 1 9 x,y) = r 5xy) r 1 xy) F 1x) r xy)s 5 x/y) r 1 xy)r x/y), c 1 10 x,y) = r 5xy) r 1 xy) F 1y), c 1 11x,y) = r 5xy) r 1 xy), c 3 6 x,y) = s 5xy)s 6 x/y) r xy)r 5 x/y) r xy)r 3 x/y) r 1 xy)r x/y) F 1x)+ s ] 5xy) r 1 xy) + r 4x/y)s 6 xy) r xy)r 3 x/y) F 1x) r 3xy)r 6 x/y) r xy)r 3 x/y) F x) s 6x/y)s 7 xy) r xy)r 3 x/y), c 3 7 x,y) = r 3xy)r 6 x/y) r xy)r 3 x/y) F 3x)+ r 5x/y)s 5 xy)s 6 x/y) r 1 xy)r x/y)r 3 x/y) + r 4x/y)s 6 xy) r xy)r 3 x/y), c 3 8 x,y) = r 3xy)r 6 x/y) r xy)r 3 x/y), c 3 9x,y) = s 5xy)s 6 x/y) r xy)r 3 x/y) + s 6xy)s 7 x/y) r xy)r 3 x/y) F 1y)+ r 6xy) c 3 10x,y) = s 5xy)s 6 x/y) r xy)r 3 x/y) r xy)s 5 x/y) r 1 xy)r x/y) F 1y)+ r 5xy) r 1 xy) F 1x)F 1 y) r xy) F x)f 1 y) r 4xy)s 6 x/y) r xy)r 3 x/y) F 1x)F 1 y), r5 xy) r 1 xy) F 1x)+ r ] xy)s 5 x/y) r 1 xy)r x/y) r 4xy)s 6 x/y) r xy)r 3 x/y) F 1x)+ r 6xy) r xy) F x)+ s 6xy)s 7 x/y) r xy)r 3 x/y), ] A.53) A.54) A.55) A.56) A.57) A.58) A.59) A.60) A.61) A.6) A.63) c 3 11 x,y) = r 4xy)s 6 x/y) r xy)r 3 x/y) F 1y) r 5xy)s 5 xy)s 6 x/y) r 1 xy)r xy)r 3 x/y) F 1y)+ r 6xy) r xy) F 1y)F 3 x), A.64) c 3 1x,y) = r 6xy) r xy) F 3x) r 4xy)s 6 x/y) r xy)r 3 x/y) r 5xy)s 5 xy)s 6 x/y) r 1 xy)r xy)r 3 x/y). A.65) 1] Essler F H L, Korepin V E and Schoutens K 199 Physical Review Letters ] Essler F H L and Korepin V E 199 Physical Review B ] Martins M J and Ramos P B 1998 Nuclear Physics B ] McGuire J B 1964 Journal of Mathematical Physics ] Yang C N 1967 Physical Review Letters ] Yang C N 1968 Physical Review ] Baxter R J 197 Annals of Physics ] Baxter R J 1978 Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences ] Bazhanov V V and Shadrikov A G 1987 Theoretical and Mathematical Physics ] Drinfel d V G 1988 Journal of Soviet Mathematics ] Maldacena J 1999 International Journal of Theoretical Physics ] Minahan J A and Zarembo K 003 Journal of High Energy Physics ] Beisert N and Staudacher M 003 Nuclear Physics B ] Bena I, Polchinski J and Roiban R 004 Physical Review D

19 Boundary Algebraic Bethe Ansatz for a nineteen vertex model with U q osp ) ) ] symmetry 19 15] Takhtadzhan L A and Faddeev L D 1979 Russian Mathematical Surveys ] Sklyanin E K 198 Journal of Soviet Mathematics ] Korepin V E, Bogoliubov N M and Izergin A G 1997 Quantum inverse scattering method and correlation functions vol 3 Cambridge university press) 18] Vieira R S and Lima-Santos A 015 Physics Letters A Preprint arxiv: ) 19] Sklyanin E K 1988 Journal of Physics A: Mathematical and General ] Mezincescu L and Nepomechie R I 1991 Journal of Physics A: Mathematical and General 4 L17 1] Bracken A J, Ge X Y, Zhang Y Z and Zhou H Q 1998 Nuclear Physics B ] Tarasov V O 1988 Theoretical and Mathematical Physics ] Izergin A G and Korepin V E 1981 Communications in Mathematical Physics ] Zamolodchikov A B and Fateev V A 1980 Sov. J. Nucl. Phys. 3 5] Lima-Santos A 1999 Journal of Physics A: Mathematical and General ] Kurak V and Lima-Santos A 004 Nuclear Physics B ] Kurak V and Lima-Santos A 005 Journal of Physics A: Mathematical and General ] Vieira R S and Lima Santos A 017 Preprint arxiv: ) 9] Yang W L and Zhang Y Z 1999 Physics Letters A ] Yang W L and Zhen Y 001 Communications In Theoretical Physics ] Frappat L, Sciarrino A and Sorba P 1989 Communications in Mathematical Physics ] Frappat L, Sciarrino A and Sorba P 000 Dictionary on Lie algebras and superalgebras vol 10 Academic Press) 33] Khoroshkin S, Lukierski J and Tolstoy V 001 Communications in Mathematical Physics ] MacKay N and Zhao L 001 Journal of Physics A: Mathematical and General ] Ransingh B 013 International Journal of Pure and Applied Mathematics Preprint arxiv: ) 36] Xu Y and Zhang R B 016 Preprint arxiv: ) 37] Lima-Santos A 009 Journal of Statistical Mechanics: Theory and Experiment 009 P04005 Preprint arxiv: ) 38] Lima-Santos A 009 Journal of Statistical Mechanics: Theory and Experiment 009 P ] Lima-Santos A 009 Journal of Statistical Mechanics: Theory and Experiment 009 P ] Lima-Santos A and Galleas W 010 Nuclear Physics B ] Vieira R S and Lima-Santos A 013 Journal of Statistical Mechanics: Theory and Experiment 013 P0011 Preprint arxiv: ) 4] Vieira R S and Lima-Santos A 016 Preprint arxiv: ) 43] Kac V G 1977 Communications in Mathematical Physics

arxiv:nlin/ v1 [nlin.si] 18 Mar 2003

arxiv:nlin/ v1 [nlin.si] 18 Mar 2003 UFSCAR-TH-02 Yang-Baxter equation for the asymmetric eight-vertex model. arxiv:nlin/0303036v1 [nlin.si] 18 Mar 2003 W. Galleas and M.J. Martins Departamento de Física, Universidade Federal de São Carlos

More information

Baxter Q-operators and tau-function for quantum integrable spin chains

Baxter Q-operators and tau-function for quantum integrable spin chains Baxter Q-operators and tau-function for quantum integrable spin chains Zengo Tsuboi Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin This is based on the following papers.

More information

arxiv:solv-int/ v1 5 Jan 1999

arxiv:solv-int/ v1 5 Jan 1999 UFSCARF-TH-98-33 Unified algebraic Bethe ansatz for two-dimensional lattice models arxiv:solv-int/9901002v1 5 Jan 1999 M.J. Martins Universidade Federal de São Carlos Departamento de Física C.P. 676, 13565-905,

More information

arxiv: v1 [math-ph] 1 Mar 2013

arxiv: v1 [math-ph] 1 Mar 2013 VOGAN DIAGRAMS OF AFFINE TWISTED LIE SUPERALGEBRAS BISWAJIT RANSINGH arxiv:303.0092v [math-ph] Mar 203 Department of Mathematics National Institute of Technology Rourkela (India) email- bransingh@gmail.com

More information

arxiv: v2 [math-ph] 14 Jul 2014

arxiv: v2 [math-ph] 14 Jul 2014 ITP-UU-14/14 SPIN-14/12 Reflection algebra and functional equations arxiv:1405.4281v2 [math-ph] 14 Jul 2014 W. Galleas and J. Lamers Institute for Theoretical Physics and Spinoza Institute, Utrecht University,

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 4 Nov 1996

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 4 Nov 1996 UQMATH-qe-9601 cond-mat/9611014 arxiv:cond-mat/9611014v1 [cond-mat.stat-mech] 4 Nov 1996 Twisted Quantum Affine Superalgebra U q [sl( ( ], U q [osp( ] Invariant R-matrices and a New Integrable Electronic

More information

arxiv:nlin/ v1 [nlin.si] 24 Jul 2003

arxiv:nlin/ v1 [nlin.si] 24 Jul 2003 C (1) n, D (1) n and A (2) 2n 1 reflection K-matrices A. Lima-Santos 1 and R. Malara 2 arxiv:nlin/0307046v1 [nlin.si] 24 Jul 2003 Universidade Federal de São Carlos, Departamento de Física Caixa Postal

More information

arxiv: v2 [cond-mat.stat-mech] 13 Jul 2015

arxiv: v2 [cond-mat.stat-mech] 13 Jul 2015 Where are the roots of the Bethe Ansatz equations? R. S. Vieira and A. Lima-Santos Universidade Federal de São Carlos, Departamento de Física, CEP 13560-905, São Carlos, Brazil (Dated: July 14, 2015) arxiv:1502.05316v2

More information

Generalization of the matrix product ansatz for integrable chains

Generalization of the matrix product ansatz for integrable chains arxiv:cond-mat/0608177v1 [cond-mat.str-el] 7 Aug 006 Generalization of the matrix product ansatz for integrable chains F. C. Alcaraz, M. J. Lazo Instituto de Física de São Carlos, Universidade de São Paulo,

More information

Trigonometric SOS model with DWBC and spin chains with non-diagonal boundaries

Trigonometric SOS model with DWBC and spin chains with non-diagonal boundaries Trigonometric SOS model with DWBC and spin chains with non-diagonal boundaries N. Kitanine IMB, Université de Bourgogne. In collaboration with: G. Filali RAQIS 21, Annecy June 15 - June 19, 21 Typeset

More information

D = 4, N = 4, SU(N) Superconformal Yang-Mills Theory, P SU(2, 2 4) Integrable Spin Chain INTEGRABILITY IN YANG-MILLS THEORY

D = 4, N = 4, SU(N) Superconformal Yang-Mills Theory, P SU(2, 2 4) Integrable Spin Chain INTEGRABILITY IN YANG-MILLS THEORY INTEGRABILITY IN YANG-MILLS THEORY D = 4, N = 4, SU(N) Superconformal Yang-Mills Theory, in the Planar Limit N, fixed g 2 N P SU(2, 2 4) Integrable Spin Chain Yangian Symmetry Algebra of P SU(2, 2 4) Local

More information

Deformed Richardson-Gaudin model

Deformed Richardson-Gaudin model Deformed Richardson-Gaudin model P Kulish 1, A Stolin and L H Johannesson 1 St. Petersburg Department of Stelov Mathematical Institute, Russian Academy of Sciences Fontana 7, 19103 St. Petersburg, Russia

More information

Systematic construction of (boundary) Lax pairs

Systematic construction of (boundary) Lax pairs Thessaloniki, October 2010 Motivation Integrable b.c. interesting for integrable systems per ce, new info on boundary phenomena + learn more on bulk behavior. Examples of integrable b.c. that modify the

More information

Bethe states and separation of variables for SU(N) Heisenberg spin chain

Bethe states and separation of variables for SU(N) Heisenberg spin chain Bethe states and separation of variables for SU(N) Heisenberg spin chain Nikolay Gromov King s College London & PNPI based on 1610.08032 [NG, F. Levkovich-Maslyuk, G. Sizov] Below: FLM = F. Levkovich-Maslyuk

More information

Since the discovery of high T c superconductivity there has been a great interest in the area of integrable highly correlated electron systems. Notabl

Since the discovery of high T c superconductivity there has been a great interest in the area of integrable highly correlated electron systems. Notabl CERN-TH/97-72 Anisotropic Correlated Electron Model Associated With the Temperley-Lieb Algebra Angela Foerster (;y;a), Jon Links (2;b) and Itzhak Roditi (3;z;c) () Institut fur Theoretische Physik, Freie

More information

arxiv: v1 [math-ph] 24 Dec 2013

arxiv: v1 [math-ph] 24 Dec 2013 ITP-UU-13/32 SPIN-13/24 Twisted Heisenberg chain and the six-vertex model with DWBC arxiv:1312.6817v1 [math-ph] 24 Dec 2013 W. Galleas Institute for Theoretical Physics and Spinoza Institute, Utrecht University,

More information

Difference Equations and Highest Weight Modules of U q [sl(n)]

Difference Equations and Highest Weight Modules of U q [sl(n)] arxiv:math/9805089v1 [math.qa] 20 May 1998 Difference Equations and Highest Weight Modules of U q [sl(n)] A. Zapletal 1,2 Institut für Theoretische Physik Freie Universität Berlin, Arnimallee 14, 14195

More information

Green-Schwarz action for Type IIA strings on AdS 4 CP 3

Green-Schwarz action for Type IIA strings on AdS 4 CP 3 MIT-CTP-nnnn Imperial/TP/2-08/nn arxiv:0806.4948v2 [hep-th] 18 Aug 2008 Green-Schwarz action for Type IIA strings on AdS 4 CP 3 B. Stefański, jr. 1,2 1 Center for Theoretical Physics Laboratory for Nuclear

More information

A tale of two Bethe ansätze

A tale of two Bethe ansätze UMTG 93 A tale of two Bethe ansätze arxiv:171.06475v [math-ph] 6 Apr 018 Antonio Lima-Santos 1, Rafael I. Nepomechie Rodrigo A. Pimenta 3 Abstract We revisit the construction of the eigenvectors of the

More information

Introduction to Integrability in AdS/CFT: Lecture 4

Introduction to Integrability in AdS/CFT: Lecture 4 Introduction to Integrability in AdS/CFT: Lecture 4 Rafael Nepomechie University of Miami Introduction Recall: 1-loop dilatation operator for all single-trace operators in N=4 SYM is integrable 1-loop

More information

Quantum integrable systems and non-skew-symmetric classical r-matrices. T. Skrypnyk

Quantum integrable systems and non-skew-symmetric classical r-matrices. T. Skrypnyk Quantum integrable systems and non-skew-symmetric classical r-matrices. T. Skrypnyk Universita degli studi di Milano Bicocca, Milano, Italy and Bogolyubov Institute for Theoretical Physics, Kyiv, Ukraine

More information

AdS/CFT duality, spin chains and 2d effective actions

AdS/CFT duality, spin chains and 2d effective actions AdS/CFT duality, spin chains and 2d effective actions R. Roiban, A. Tirziu and A. A. Tseytlin Asymptotic Bethe ansatz S-matrix and Landau-Lifshitz type effective 2-d actions, hep-th/0604199 also talks

More information

Deformed Richardson-Gaudin model

Deformed Richardson-Gaudin model Home Search Collections Journals About Contact us My IOPscience Deformed Richardson-Gaudin model This content has been downloaded from IOPscience. Please scroll down to see the full text. View the table

More information

Lecture notes for QFT I (662)

Lecture notes for QFT I (662) Preprint typeset in JHEP style - PAPER VERSION Lecture notes for QFT I (66) Martin Kruczenski Department of Physics, Purdue University, 55 Northwestern Avenue, W. Lafayette, IN 47907-036. E-mail: markru@purdue.edu

More information

Bethe ansatz solution of a closed spin 1 XXZ Heisenberg chain with quantum algebra symmetry

Bethe ansatz solution of a closed spin 1 XXZ Heisenberg chain with quantum algebra symmetry Bethe ansatz solution of a closed spin 1 XXZ Heisenberg chain with quantum algebra symmetry Jon Links, Angela Foerster and Michael Karowski arxiv:solv-int/9809001v1 8 Aug 1998 Department of Mathematics,

More information

Bethe ansatz for the deformed Gaudin model

Bethe ansatz for the deformed Gaudin model Proceedings of the Estonian Academy of Sciences, 00, 59, 4, 36 33 doi: 0.376/proc.00.4. Available online at www.eap.ee/proceedings Bethe ansatz for the deformed Gaudin model Petr Kulish a,b, enad anojlović

More information

Cartan A n series as Drinfeld doubles

Cartan A n series as Drinfeld doubles Monografías de la Real Academia de Ciencias de Zaragoza. 9: 197 05, (006). Cartan A n series as Drinfeld doubles M.A. del Olmo 1, A. Ballesteros and E. Celeghini 3 1 Departamento de Física Teórica, Universidad

More information

A Study on Kac-Moody Superalgebras

A Study on Kac-Moody Superalgebras ICGTMP, 2012 Chern Institute of Mathematics, Tianjin, China Aug 2o-26, 2012 The importance of being Lie Discrete groups describe discrete symmetries. Continues symmetries are described by so called Lie

More information

arxiv:solv-int/ v1 19 Dec 1997 M.J.Martins 1,2 and P.B.Ramos 2

arxiv:solv-int/ v1 19 Dec 1997 M.J.Martins 1,2 and P.B.Ramos 2 IFTA-97-35/UFSCARTH-97-19 The Quantum Inverse Scattering Method for Hubbard-like Models arxiv:solv-int/9712014v1 19 Dec 1997 M.J.Martins 1,2 and P.B.Ramos 2 1. Instituut voor Theoretische Fysica, Universiteit

More information

A new perspective on long range SU(N) spin models

A new perspective on long range SU(N) spin models A new perspective on long range SU(N) spin models Thomas Quella University of Cologne Workshop on Lie Theory and Mathematical Physics Centre de Recherches Mathématiques (CRM), Montreal Based on work with

More information

Integrability and Finite Size Effects of (AdS 5 /CFT 4 ) β

Integrability and Finite Size Effects of (AdS 5 /CFT 4 ) β Integrability and Finite Size Effects of (AdS 5 /CFT 4 ) β Based on arxiv:1201.2635v1 and on-going work With C. Ahn, D. Bombardelli and B-H. Lee February 21, 2012 Table of contents 1 One parameter generalization

More information

arxiv:hep-th/ v1 24 Sep 1998

arxiv:hep-th/ v1 24 Sep 1998 ICTP/IR/98/19 SISSA/EP/98/101 Quantum Integrability of Certain Boundary Conditions 1 arxiv:hep-th/9809178v1 24 Sep 1998 M. Moriconi 2 The Abdus Salam International Centre for Theoretical Physics Strada

More information

Affine Gaudin models

Affine Gaudin models Affine Gaudin models Sylvain Lacroix Laboratoire de Physique, ENS de Lyon RAQIS 18, Annecy September 10th, 2018 [SL, Magro, Vicedo, 1703.01951] [SL, Vicedo, Young, 1804.01480, 1804.06751] Introduction

More information

Symmetries of the Schrödinger equation and algebra/superalgebra duality

Symmetries of the Schrödinger equation and algebra/superalgebra duality Journal of Physics: Conference Series PAPER OPEN ACCESS Symmetries of the Schrödinger equation and algebra/superalgebra duality To cite this article: Francesco Toppan 2015 J. Phys.: Conf. Ser. 597 012071

More information

Deformation of the `embedding'

Deformation of the `embedding' Home Search Collections Journals About Contact us My IOPscience Deformation of the `embedding' This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1997 J.

More information

Progress in understanding quantum spectrum of AdS 5 S 5 superstring

Progress in understanding quantum spectrum of AdS 5 S 5 superstring Progress in understanding quantum spectrum of AdS 5 S 5 superstring Arkady Tseytlin R. Roiban, AT, arxiv:0906.494, arxiv:0.09 M. Beccaria, S. Giombi, G. Macorini, R. Roiban, AT, arxiv:03.570 M. Beccaria,

More information

arxiv:math/ v2 [math.qa] 10 Jan 2003

arxiv:math/ v2 [math.qa] 10 Jan 2003 R-matrix presentation for (super) Yangians Y(g) D. Arnaudon a, J. Avan b, N. Crampé a, L. Frappat ac, E. Ragoucy a arxiv:math/0111325v2 [math.qa] 10 Jan 2003 a Laboratoire d Annecy-le-Vieux de Physique

More information

SUSY QM VIA 2x2 MATRIX SUPERPOTENTIAL

SUSY QM VIA 2x2 MATRIX SUPERPOTENTIAL CBPF-NF-031/03 hep-th/0308189 SUSY QM VIA 2x2 MATRIX SUPERPOTENTIAL R. de Lima Rodrigues Centro Brasileiro de Pesquisas Físicas (CBPF) Rua Dr. Xavier Sigaud, 150, CEP 22290-180 Rio de Janeiro, RJ, Brazil

More information

Four Point Functions in the SL(2,R) WZW Model

Four Point Functions in the SL(2,R) WZW Model Four Point Functions in the SL,R) WZW Model arxiv:hep-th/719v1 1 Jan 7 Pablo Minces a,1 and Carmen Núñez a,b, a Instituto de Astronomía y Física del Espacio IAFE), C.C.67 - Suc. 8, 18 Buenos Aires, Argentina.

More information

D-Branes at Finite Temperature in TFD

D-Branes at Finite Temperature in TFD D-Branes at Finite Temperature in TFD arxiv:hep-th/0308114v1 18 Aug 2003 M. C. B. Abdalla a, A. L. Gadelha a, I. V. Vancea b January 8, 2014 a Instituto de Física Teórica, Universidade Estadual Paulista

More information

The Hodge Operator Revisited

The Hodge Operator Revisited arxiv:1511.05105v2 [hep-th] 19 Nov 2015 The Hodge Operator Revisited L. Castellani a,b,, R. Catenacci a,c,, and P.A. Grassi a,b, (a) Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte

More information

Quantum Mechanics Solutions. λ i λ j v j v j v i v i.

Quantum Mechanics Solutions. λ i λ j v j v j v i v i. Quantum Mechanics Solutions 1. (a) If H has an orthonormal basis consisting of the eigenvectors { v i } of A with eigenvalues λ i C, then A can be written in terms of its spectral decomposition as A =

More information

DUAL HAMILTONIAN STRUCTURES IN AN INTEGRABLE HIERARCHY

DUAL HAMILTONIAN STRUCTURES IN AN INTEGRABLE HIERARCHY DUAL HAMILTONIAN STRUCTURES IN AN INTEGRABLE HIERARCHY RAQIS 16, University of Geneva Somes references and collaborators Based on joint work with J. Avan, A. Doikou and A. Kundu Lagrangian and Hamiltonian

More information

BPS states, permutations and information

BPS states, permutations and information BPS states, permutations and information Sanjaye Ramgoolam Queen Mary, University of London YITP workshop, June 2016 Permutation centralizer algebras, Mattioli and Ramgoolam arxiv:1601.06086, Phys. Rev.

More information

New Shape Invariant Potentials in Supersymmetric. Quantum Mechanics. Avinash Khare and Uday P. Sukhatme. Institute of Physics, Sachivalaya Marg,

New Shape Invariant Potentials in Supersymmetric. Quantum Mechanics. Avinash Khare and Uday P. Sukhatme. Institute of Physics, Sachivalaya Marg, New Shape Invariant Potentials in Supersymmetric Quantum Mechanics Avinash Khare and Uday P. Sukhatme Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India Abstract: Quantum mechanical potentials

More information

7.1 Creation and annihilation operators

7.1 Creation and annihilation operators Chapter 7 Second Quantization Creation and annihilation operators. Occupation number. Anticommutation relations. Normal product. Wick s theorem. One-body operator in second quantization. Hartree- Fock

More information

Nikolay Gromov. Based on

Nikolay Gromov. Based on Nikolay Gromov Based on N. G., V.Kazakov, S.Leurent, D.Volin 1305.1939,????.???? N. G., F. Levkovich-Maslyuk, G. Sizov, S.Valatka????.???? A. Cavaglia, D. Fioravanti, N.G, R.Tateo????.???? December, 2013

More information

Physics 239/139 Spring 2018 Assignment 2 Solutions

Physics 239/139 Spring 2018 Assignment 2 Solutions University of California at San Diego Department of Physics Prof. John McGreevy Physics 39/139 Spring 018 Assignment Solutions Due 1:30pm Monday, April 16, 018 1. Classical circuits brain-warmer. (a) Show

More information

Takeo INAMI and Hitoshi KONNO. Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto , Japan. ABSTRACT

Takeo INAMI and Hitoshi KONNO. Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto , Japan. ABSTRACT SLAC{PUB{YITP/K-1084 August 1994 Integrable XYZ Spin Chain with Boundaries Takeo INAMI and Hitoshi KONNO Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-01, Japan. ABSTRACT HEP-TH-9409138

More information

7 Algebraic Bethe Ansatz

7 Algebraic Bethe Ansatz 7 Algebraic Bethe Ansatz It is possible to continue the formal developments of the previous chapter and obtain a completely algebraic derivation of the Bethe Ansatz equations (5.31) and the corresponding

More information

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS Bethe subalgebras in Hecke algebra and Gaudin models. A.P. ISAEV and A.N.

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS Bethe subalgebras in Hecke algebra and Gaudin models. A.P. ISAEV and A.N. RIMS-1775 Bethe subalgebras in Hecke algebra and Gaudin models By A.P. ISAEV and A.N. KIRILLOV February 2013 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan Bethe subalgebras

More information

Exact anomalous dimensions of 4-dimensional N=4 super-yang-mills theory in 'thooft limit

Exact anomalous dimensions of 4-dimensional N=4 super-yang-mills theory in 'thooft limit PACIFIC 2015 UCLA Symposium on Particle Astrophysics and Cosmology Including Fundamental Interactions September 12-19, 2015, Moorea, French Polynesia Exact anomalous dimensions of 4-dimensional N=4 super-yang-mills

More information

Tetrahedron equation and generalized quantum groups

Tetrahedron equation and generalized quantum groups Atsuo Kuniba University of Tokyo PMNP2015@Gallipoli, 25 June 2015 PMNP2015@Gallipoli, 25 June 2015 1 / 1 Key to integrability in 2D Yang-Baxter equation Reflection equation R 12 R 13 R 23 = R 23 R 13 R

More information

ON THE MATRIX EQUATION XA AX = X P

ON THE MATRIX EQUATION XA AX = X P ON THE MATRIX EQUATION XA AX = X P DIETRICH BURDE Abstract We study the matrix equation XA AX = X p in M n (K) for 1 < p < n It is shown that every matrix solution X is nilpotent and that the generalized

More information

The XYZ spin chain/8-vertex model with quasi-periodic boundary conditions Exact solution by Separation of Variables

The XYZ spin chain/8-vertex model with quasi-periodic boundary conditions Exact solution by Separation of Variables The XYZ spin chain/8-vertex model with quasi-periodic boundary conditions Exact solution by Separation of Variables Véronique TERRAS CNRS & Université Paris Sud, France Workshop: Beyond integrability.

More information

arxiv: v1 [math-ph] 28 Mar 2019

arxiv: v1 [math-ph] 28 Mar 2019 ITEP-TH-07 /19 The Dynamical equations for gln m E. Dotsenko 1,2,3 1 - Institute for Theoretical and Experimental Physics, Moscow, 117218, Russia 2 - Moscow Institute of physics and Technology, Dolgoprudny,

More information

U(N) Matrix Difference Equations and a Nested Bethe Ansatz

U(N) Matrix Difference Equations and a Nested Bethe Ansatz U(N) Matrix Difference Equations and a Nested Bethe Ansatz arxiv:hep-th/9611006v1 1 Nov 1996 H. Babujian 1,2,3, M. Karowski 4 and A. Zapletal 5,6 Institut für Theoretische Physik Freie Universität Berlin,

More information

221B Lecture Notes Quantum Field Theory II (Fermi Systems)

221B Lecture Notes Quantum Field Theory II (Fermi Systems) 1B Lecture Notes Quantum Field Theory II (Fermi Systems) 1 Statistical Mechanics of Fermions 1.1 Partition Function In the case of fermions, we had learnt that the field operator satisfies the anticommutation

More information

Bethe vectors for XXX-spin chain

Bethe vectors for XXX-spin chain Journal of Physics: Conference Series OPEN ACCESS Bethe vectors for XXX-spin chain To cite this article: estmír Burdík et al 204 J. Phys.: Conf. Ser. 563 020 View the article online for updates and enhancements.

More information

Translations, Integrals and Fourier Transforms In the Quantum Plane

Translations, Integrals and Fourier Transforms In the Quantum Plane LBL-34803 UCB-PTH-93/30 Translations, Integrals and Fourier Transforms In the Quantum Plane Chryssomalis Chryssomalakos and Bruno Zumino Department of Physics and Theoretical Physics Group Lawrence Berkeley

More information

Perturbative Integrability of large Matrix Theories

Perturbative Integrability of large Matrix Theories 35 th summer institute @ ENS Perturbative Integrability of large Matrix Theories August 9 th, 2005 Thomas Klose Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Potsdam, Germany

More information

CLASSICAL R-MATRICES AND NOVIKOV ALGEBRAS

CLASSICAL R-MATRICES AND NOVIKOV ALGEBRAS CLASSICAL R-MATRICES AND NOVIKOV ALGEBRAS DIETRICH BURDE Abstract. We study the existence problem for Novikov algebra structures on finite-dimensional Lie algebras. We show that a Lie algebra admitting

More information

Seminar in Wigner Research Centre for Physics. Minkyoo Kim (Sogang & Ewha University) 10th, May, 2013

Seminar in Wigner Research Centre for Physics. Minkyoo Kim (Sogang & Ewha University) 10th, May, 2013 Seminar in Wigner Research Centre for Physics Minkyoo Kim (Sogang & Ewha University) 10th, May, 2013 Introduction - Old aspects of String theory - AdS/CFT and its Integrability String non-linear sigma

More information

Bethe Ansatz solution of the open XX spin chain with nondiagonal boundary terms

Bethe Ansatz solution of the open XX spin chain with nondiagonal boundary terms UMTG 231 Bethe Ansatz solution of the open XX spin chain with nondiagonal boundary terms arxiv:hep-th/0110081v1 9 Oct 2001 Rafael I. Nepomechie Physics Department, P.O. Box 248046, University of Miami

More information

Classification of irreps and invariants of the N-extended Supersymmetric Quantum Mechanics

Classification of irreps and invariants of the N-extended Supersymmetric Quantum Mechanics Published by Institute of Physics Publishing for SISSA Received: December 11, 2005 Revised: March 13, 2006 Accepted: March 21, 2006 Published: March 30, 2006 Classification of irreps and invariants of

More information

Self duality of ASEP with two particle types via symmetry of quantum groups of rank two

Self duality of ASEP with two particle types via symmetry of quantum groups of rank two Self duality of ASEP with two particle types via symmetry of quantum groups of rank two 26 May 2015 Consider the asymmetric simple exclusion process (ASEP): Let q = β/α (or τ = β/α). Denote the occupation

More information

arxiv:hep-th/ v1 2 Jul 2003

arxiv:hep-th/ v1 2 Jul 2003 IFT-P.027/2003 CTP-MIT-3393 hep-th/0307019 Yang-Mills Action from Open Superstring Field Theory arxiv:hep-th/0307019v1 2 Jul 2003 Nathan Berkovits 1 Instituto de Física Teórica, Universidade Estadual Paulista,

More information

The quantum state as a vector

The quantum state as a vector The quantum state as a vector February 6, 27 Wave mechanics In our review of the development of wave mechanics, we have established several basic properties of the quantum description of nature:. A particle

More information

15. Polynomial rings Definition-Lemma Let R be a ring and let x be an indeterminate.

15. Polynomial rings Definition-Lemma Let R be a ring and let x be an indeterminate. 15. Polynomial rings Definition-Lemma 15.1. Let R be a ring and let x be an indeterminate. The polynomial ring R[x] is defined to be the set of all formal sums a n x n + a n 1 x n +... a 1 x + a 0 = a

More information

Non-equilibrium statistical mechanics Stochastic dynamics, Markov process, Integrable systems Quantum groups, Yang-Baxter equation,

Non-equilibrium statistical mechanics Stochastic dynamics, Markov process, Integrable systems Quantum groups, Yang-Baxter equation, (Mon) Non-equilibrium statistical mechanics Stochastic dynamics, Markov process, Integrable systems Quantum groups, Yang-Baxter equation, Integrable Markov process Spectral problem of the Markov matrix:

More information

A Lax Representation for the Born-Infeld Equation

A Lax Representation for the Born-Infeld Equation A Lax Representation for the Born-Infeld Equation J. C. Brunelli Universidade Federal de Santa Catarina Departamento de Física CFM Campus Universitário Trindade C.P. 476, CEP 88040-900 Florianópolis, SC

More information

Symmetries for fun and profit

Symmetries for fun and profit Symmetries for fun and profit Sourendu Gupta TIFR Graduate School Quantum Mechanics 1 August 28, 2008 Sourendu Gupta (TIFR Graduate School) Symmetries for fun and profit QM I 1 / 20 Outline 1 The isotropic

More information

Y-system for the Spectrum of Planar AdS/CFT: News and Checks

Y-system for the Spectrum of Planar AdS/CFT: News and Checks -,,,,, Y-system for the Spectrum of Planar AdS/CFT: News and Checks Vladimir Kazakov (ENS, Paris) Collaborations with N.Gromov, A.Kozak, S.Leurent, Z.Tsuboi and P.Vieira Outline Integrability for QFT in

More information

The six vertex model is an example of a lattice model in statistical mechanics. The data are

The six vertex model is an example of a lattice model in statistical mechanics. The data are The six vertex model, R-matrices, and quantum groups Jethro van Ekeren. 1 The six vertex model The six vertex model is an example of a lattice model in statistical mechanics. The data are A finite rectangular

More information

SOME RESULTS ON THE YANG-BAXTER EQUATIONS AND APPLICATIONS

SOME RESULTS ON THE YANG-BAXTER EQUATIONS AND APPLICATIONS SOME RESULTS ON THE YANG-BAXTER EQUATIONS AND APPLICATIONS F. F. NICHITA 1, B. P. POPOVICI 2 1 Institute of Mathematics Simion Stoilow of the Romanian Academy P.O. Box 1-764, RO-014700 Bucharest, Romania

More information

1 Unitary representations of the Virasoro algebra

1 Unitary representations of the Virasoro algebra Week 5 Reading material from the books Polchinski, Chapter 2, 15 Becker, Becker, Schwartz, Chapter 3 Ginspargs lectures, Chapters 3, 4 1 Unitary representations of the Virasoro algebra Now that we have

More information

Yangian symmetry in deformed WZNW models on squashed spheres

Yangian symmetry in deformed WZNW models on squashed spheres seminar@ipmu, 2011/05/24 Yangian symmetry in deformed WZNW models on squashed spheres Kentaroh Yoshida (Kyoto Univ.) Based on I. Kawaguchi, D. Orlando and K.Y., arxiv: 1104.0738. I. Kawaguchi and K.Y.,

More information

CGAs and Invariant PDEs

CGAs and Invariant PDEs CGAs and Invariant PDEs Francesco Toppan TEO, CBPF (MCTI) Rio de Janeiro, Brazil Talk at Workshop on NCFT & G, Corfu, Sep. 2015 Francesco Toppan (CBPF) CGAs & PDEs NCFT & G, Corfu 2015 1 / 32 Based on:

More information

Six-point gluon scattering amplitudes from -symmetric integrable model

Six-point gluon scattering amplitudes from -symmetric integrable model YITP Workshop 2010 Six-point gluon scattering amplitudes from -symmetric integrable model Yasuyuki Hatsuda (YITP) Based on arxiv:1005.4487 [hep-th] in collaboration with K. Ito (TITECH), K. Sakai (Keio

More information

Integrability of spectrum of N=4 SYM theory

Integrability of spectrum of N=4 SYM theory Todai/Riken joint workshop on Super Yang-Mills, solvable systems and related subjects University of Tokyo, October 23, 2013 Integrability of spectrum of N=4 SYM theory Vladimir Kazakov (ENS, Paris) Collaborations

More information

Towards solution of string theory in AdS3 x S 3

Towards solution of string theory in AdS3 x S 3 Towards solution of string theory in AdS3 x S 3 Arkady Tseytlin based on work with Ben Hoare: arxiv:1303.1037, 1304.4099 Introduction / Review S-matrix for string in AdS3 x S3 x T4 with RR and NSNS flux

More information

Jordan normal form notes (version date: 11/21/07)

Jordan normal form notes (version date: 11/21/07) Jordan normal form notes (version date: /2/7) If A has an eigenbasis {u,, u n }, ie a basis made up of eigenvectors, so that Au j = λ j u j, then A is diagonal with respect to that basis To see this, let

More information

Generators of affine W-algebras

Generators of affine W-algebras 1 Generators of affine W-algebras Alexander Molev University of Sydney 2 The W-algebras first appeared as certain symmetry algebras in conformal field theory. 2 The W-algebras first appeared as certain

More information

Harmonic Oscillator Lie Bialgebras and their Quantization

Harmonic Oscillator Lie Bialgebras and their Quantization Harmonic Oscillator Lie Bialgebras and their Quantization arxiv:q-alg/9701027v1 27 Jan 1997 Angel Ballesteros and Francisco J. Herranz Departamento de Física, Universidad de Burgos Pza. Misael Bañuelos,

More information

Integrability of the planar N = 4 gauge theory. and the Hubbard model. A. Rej, M. Staudacher AEI Golm D. Serban SPhT Saclay

Integrability of the planar N = 4 gauge theory. and the Hubbard model. A. Rej, M. Staudacher AEI Golm D. Serban SPhT Saclay Integrability of the planar N = 4 gauge theory and the Hubbard model A. Rej, M. Staudacher AEI Golm D. Serban SPhT Saclay Banff, February 16, 2006 Overview Integrability of the All loop integrability and

More information

Snyder noncommutative space-time from two-time physics

Snyder noncommutative space-time from two-time physics arxiv:hep-th/0408193v1 25 Aug 2004 Snyder noncommutative space-time from two-time physics Juan M. Romero and Adolfo Zamora Instituto de Ciencias Nucleares Universidad Nacional Autónoma de México Apartado

More information

SUSY Breaking in Gauge Theories

SUSY Breaking in Gauge Theories SUSY Breaking in Gauge Theories Joshua Berger With the Witten index constraint on SUSY breaking having been introduced in last week s Journal club, we proceed to explicitly determine the constraints on

More information

Space from Superstring Bits 1. Charles Thorn

Space from Superstring Bits 1. Charles Thorn Space from Superstring Bits 1 Charles Thorn University of Florida Miami 2014 1 Much of this work in collaboration with Songge Sun A single superstring bit: quantum system with finite # of states Superstring

More information

Integrable defects: an algebraic approach

Integrable defects: an algebraic approach University of Patras Bologna, September 2011 Based on arxiv:1106.1602. To appear in NPB. General frame Integrable defects (quantum level) impose severe constraints on relevant algebraic and physical quantities

More information

Density and current profiles for U q (A (1) 2) zero range process

Density and current profiles for U q (A (1) 2) zero range process Density and current profiles for U q (A (1) 2) zero range process Atsuo Kuniba (Univ. Tokyo) Based on [K & Mangazeev, arxiv:1705.10979, NPB in press] Matrix Program: Integrability in low-dimensional quantum

More information

Canonicity of Bäcklund transformation: r-matrix approach. I. arxiv:solv-int/ v1 25 Mar 1999

Canonicity of Bäcklund transformation: r-matrix approach. I. arxiv:solv-int/ v1 25 Mar 1999 LPENSL-Th 05/99 solv-int/990306 Canonicity of Bäcklund transformation: r-matrix approach. I. arxiv:solv-int/990306v 25 Mar 999 E K Sklyanin Laboratoire de Physique 2, Groupe de Physique Théorique, ENS

More information

arxiv: v1 [math-ph] 30 Jul 2018

arxiv: v1 [math-ph] 30 Jul 2018 LPENSL-TH-08-18 On quantum separation of variables arxiv:1807.11572v1 [math-ph] 30 Jul 2018 J. M. Maillet 1 and G. Niccoli 2 Dedicated to the memory of L. D. Faddeev Abstract. We present a new approach

More information

Scaling dimensions at small spin

Scaling dimensions at small spin Princeton Center for Theoretical Science Princeton University March 2, 2012 Great Lakes String Conference, Purdue University arxiv:1109.3154 Spectral problem and AdS/CFT correspondence Spectral problem

More information

Negative anomalous dimensions in N=4 SYM

Negative anomalous dimensions in N=4 SYM 13 Nov., 2015, YITP Workshop - Developments in String Theory and Quantum Field Theory Negative anomalous dimensions in N=4 SYM Yusuke Kimura (OIQP) 1503.0621 [hep-th] with Ryo Suzuki 1 1. Introduction

More information

RECENT DEVELOPMENTS IN STRING THEORY International Conference Ascona, July Quantum spectral curve of N=4 SYM and its BFKL limit

RECENT DEVELOPMENTS IN STRING THEORY International Conference Ascona, July Quantum spectral curve of N=4 SYM and its BFKL limit RECENT DEVELOPMENTS IN STRING THEORY International Conference Ascona, 21 25 July 2014 Quantum spectral curve of N=4 SYM and its BFKL limit Vladimir Kazakov (ENS, Paris) Collaborations with: Nikolay Gromov

More information

Lecture 10: A (Brief) Introduction to Group Theory (See Chapter 3.13 in Boas, 3rd Edition)

Lecture 10: A (Brief) Introduction to Group Theory (See Chapter 3.13 in Boas, 3rd Edition) Lecture 0: A (Brief) Introduction to Group heory (See Chapter 3.3 in Boas, 3rd Edition) Having gained some new experience with matrices, which provide us with representations of groups, and because symmetries

More information

arxiv:hep-th/ v1 7 Nov 1998

arxiv:hep-th/ v1 7 Nov 1998 SOGANG-HEP 249/98 Consistent Dirac Quantization of SU(2) Skyrmion equivalent to BFT Scheme arxiv:hep-th/9811066v1 7 Nov 1998 Soon-Tae Hong 1, Yong-Wan Kim 1,2 and Young-Jai Park 1 1 Department of Physics

More information

Magnon kinematics in planar N = 4 Yang-Mills

Magnon kinematics in planar N = 4 Yang-Mills Magnon kinematics in planar N = 4 Yang-Mills Rafael Hernández, IFT-Madrid Collaboration with N. Beisert, C. Gómez and E. López Outline Introduction Integrability in the AdS/CFT correspondence The quantum

More information

Kentaroh Yoshida (Kyoto Univ.)

Kentaroh Yoshida (Kyoto Univ.) 2014/03/04 ``Progress in the synthesis of integrabilities arising from gauge string duality Recent progress on q deformations of the AdS 5 5 x S superstring Kentaroh Yoshida (Kyoto Univ.) In collaboration

More information

By following steps analogous to those that led to (20.177), one may show (exercise 20.30) that in Feynman s gauge, = 1, the photon propagator is

By following steps analogous to those that led to (20.177), one may show (exercise 20.30) that in Feynman s gauge, = 1, the photon propagator is 20.2 Fermionic path integrals 74 factor, which cancels. But if before integrating over all gauge transformations, we shift so that 4 changes to 4 A 0, then the exponential factor is exp[ i 2 R ( A 0 4

More information