PARTIAL RIDGE REGRESSION 1

Size: px
Start display at page:

Download "PARTIAL RIDGE REGRESSION 1"

Transcription

1 1 2 This work was supported by NSF Grants GU-2059 and GU and by U.S. Air Force Grant No. AFOSR On leave from Punjab Agricultural University (India). Reproduction in whole or in part is permitted for any purpose of the United States Government PARTIAL RIDGE REGRESSION 1 by D: Raghavarao 2 and K.J. C. Smith Department of Statistics University of North CaroUna at Chapel. HiU Institute of Statistics Himeo Series No. 863 February, 1973

2 PARTIAL RIDGE REGRESSION~ by 2 D. Raghavarao and K.J.C. Smith Department of Statistics University of North CaroZina at ChapeZ BiZZ ABSTRACT A partial ridge estimator is proposed as a modification of the Hoerl and Kennard ridge regression estimator. It is shown that the proposed estimator has certain advantages over the ridge estimator. The problem of taking an additional observation to meet certain optimality criteria is also discussed. 1 This work was supported by NSF Grants GU-2059 and GU and by U~S. Air Force Grant No. AFOSR-68-l4l5. 2 On leave from Punjab Agricultural University (India)

3 1. Introduction. Consider the problem of fitting a linear model z. = X.. + f.., where z.' "" (Yl'Y2' "'Yn) is a vector of n observations on the dependent variable; X = (X ij ) is an n x p matrix of rank p, ~ "" (xil,xiz""'xip) being the vector of i-th observations on the independent variables (i "" 1,2,..,n); ~' "" (Sl'SZ""'Sp) is the vector of parameters to be estimated; and E' is an n-dimensional vector of random errors assumed to be distributed with mean vector QI and dispersion matrix 2 a In' Q being a zero vector and In the identity matrix of order n. Without loss of generality we assume that the dependent and independent variables are standardized so that XiX is a correlation matrix. Let Al ~ A2~.. ~ A p be the eigenvalues of XIX and let ~1'~2""'~ be a set of ortho-normal eigenvectors associated with the eigenvalues Ai (i = 1,2,...,p). Let a =~! S for i -'1.- i = 1,2,,p. The usual least squares estimator of ~ is given by (1.1) i = (X I X) -1 XI y.. and has the unsatisfactory property, when X'X differs substantially from an identity matrix, that the mean squared error or expected squared distance from! to! tends to be large compared to that of an orthogonal system. Often an investigator is interested in obtaining a variance balanced design in which each parameter Si is estimated with equal precision. The departure of a design from variance balancedness increases the more XIX differs from an identity matrix. The ridge regression method proposed by Hoerl and Kennerd (1970) estimates ~ by the ridge estimator given by (1. 2) _ 8* = (XiX + ki p.j... )-~'v,

4 where k is a positive real number satisfying 2 (1.3) 2 2 k < (1 la == max a max being the maximum of ai(i = 1,2,... p). The estimator A f* is a biased estimator of ~ but has a smaller mean squared error than the least squares estimator!. We propose here as an alternative to the ridge estimator estimator i*, the (1.4) where (1.5) This estimator may be called the partial ridge estimator of ~. We show e in Section 2 that the partial ridge estimator estimates ~! (wit:h minimum mean squared error and estimates the..ilg) (i = 1,'::,,p-1) unbiasedly. In Section 3 we consider the problem of ta~ing e.g a,~ditio:l",l observation so as to rel'~ove the bias of t~e ~rtia1.riqge'2~timatorand to attain certain optimality criteria. 2. Partial Ridge Estimator. To control the mean squared error of the estimator of the coefficient vector ~ in the model y.. = X! 4-, Hoer1 and Kennard (1970) proposed a ridge estimator, s*, defined by (1.2) and showed that the mean squared error of S* was less than that of the least squares estimator ~ of ~. Specifically. the mean squared error of e* is (2.1) [[(e* = (12! Ai i=l (A i +k)2 = y1 (k) + Y2 (k) + i=l! (A.+k) 2 1. say,

5 where E[] denotes the expected value of the term in braces. The term 3 Y l (k) is the sum of the variances of the components of e* and the term y 2 (k) is the bias component of the mean squared error. When k = 0, the ridge estimator coincides with the least squares estimator. We propose as an alternative to the ridge estimator of! a partial ridge estimator of!, denoted by S, defined by (1.4). The partial -p ridge estimator has the following property: Theorem 2.1. The partial ridge estimator S = (X'X + k ~ ~,)-l X'v, wh ere 1 2/ 2, ~ = 0 a, is such that ~ S p P --PI' with minimum mean squared error and estimator of ~~ 8 (i = 1,2,,p-l). -:L - ~'8,-p I' P'"""P""""'P..lis the linear estimator of ~' 8 1'- is the best linear unbiased Proof. Since ~l' ~2""'~ are a set of ortho-normal eigenvectors - - """'"P associated with the eigen values A >A >... >A 1 = 2 = = p of X'X; will be eigenvectors associated with the eigenvalues of xx' (i = 1,2,...p). Let.!ll' n Z ',.!:lq._p be a set of orthogonal eigenvectors associated with the zero eigen value of multiplicity n-p of XX'. The vectors x~ (i = 1,2,...,p) and.!:lj (j = 1,2,., n-p) form a basis of an n-dimensional vector space. Without loss of generality any linear estimator of t = ~! can be taken to be (2.2) where and ~ n-p R: = 2.c i s-i x' y +.L d j ~ Y., i=1 J=l J are scalars. The mean squared error of as an estimator of t can be shown to be '" 2 p-l A _1)2a C A 2 n-p (2.3) E[(t-t) ] = ) c 0 d 2 2 i (Ai a. + o Ai) + (c + I 0 J. J.=l P P P P P j=l J Minimizing (2.3) with respect to the coefficients c i and d. we have J

6 (2.4) =... = c 1 p- d n-p = 0, c p = 1 2 A+~ P 2 a p Choosing k = a la,the linear estimator of ~'e with least mean squared p p -p - error is given by (A + k )-1 ~' X'y. The best linear unbiased estimators p p t' of ~! are the least squares estimators 1\i,-1 2..i..J.. ~'X'v (i =" 1 2,p- 1) ~laking a 1-1 correspondence of estimators of ~! with estimators of Si' the required estimator ~ of ~ is given by p-l = (I c ~ ti + A +k ~ ~)X'y i=l ~ P P = (X'X + k E; ~,)-lx'y. P --p --p This completes the proof of Theorem 2.1. The problem of estimating k can be solved either by graphical or p iterative procedures as described by Hoerl and Kennard (1970). From (2.1) and (2.3) we note that the bias component in the mean squared error of the partial ridge estimator is smaller than that of the ridge estimator. 3. Optimum choice of an additional observation. The equation (1.4) defining the partial ridge estimator suggests taking an additional observation Yn+l on the dependent variable corresponding to some choice of values of the independent variables. Let us assume without loss of generality that the design matrix with an additional observation is (3.1) x J x' - n+l

7 where ~+l ~+l = 1 and w is a non-zero scalar. The least squares 5 estimator of ~ using the additional observation is (3.2) (X 'X + ' )-1 X' = w ~+l ~+l 1 which is an unbiased estimator of ~. Before discussing the optimal choice of the additional observation, we shall introduce the following: Definition 3.1 Let Al ~ A 2 ~ ~ A p be the eigenvalues of X'X, where X is a n x p design matrix. The departure from variance balanced- e (3.3) ness of the design X is measured by An equivalent expression for Q(X) is (3.4) where tr[a] denotes the trace of the matrix A. Definition 3.2. [Kiefer (1959)] Of the class of all n x p design matrices X, the design X is A-optimal if tr[(x,x)-l] is minimum. Definition 3.3. [Kiefer (1959)] Of the class of all n x p design matrices X, the design X is D-optimal if det[(x'x)-l] is minimum, where det[ ] denotes the determinant of the matrix in braces

8 The following theorem gives the optimum choice of w and ~+1 for an- 6 additional observation: Theorem 3.1. Given the n x p design matrix X, among possible choices of w and ~l in (3.1), the design (3.5) X = * J~ X ~, 1- - t> p has the following properties: (i) Q,(X*) < Q(X) (ii) Among the class of designs Xl in (3.1), Q(X *) ~ Q(X ) 1 (iii) Among the class of designs Xl in (3.1) and subject to Q(X ) 1 minimum, X* is A- and D-optimal. Proof. For the design Xl of (3.1), 2 1 = Q(X) + 2w ~+l X'X ~+l+ w (1 - p) - 2w A The quadratic form ~+l (XiX)~+1 is minimized when ~+l = ~ and the minimum value is A p Substituting this least value of ~+lx'x ~+1 in (3.6) and minimizing with respect to w, we obtain the stationary value of w (3.7) to be A - A P w = 1 1 p

9 Substituting into (3.6), the minimum value of Q(X l ) is * (r _A )2 (3.8) ~in(xl) = Q(X) = Q(X) - 1 _ rp Thus Q(X) * < Q(X). Moreover Q(X) * is the minimum value of Q(X ) 1 Now 7 (3.9) = det[(x'x) ] (1 + w ~+l (XiX) ~+l) The maximum value of I (' )-1 ~+l X X ~+l is minimized with respect is lla for Xl = ~I P -0+1 '"'""P order that Q(X 1 ) be least, w must be given by (3.7). Hence Hence to ~+l when ~+l =~. In X* is D-optimal among the class of designs Xl with minimum Q(X ). 1 To prove the A-optimality of X* among the class of designs Xl with minimum (3.10) Q(X l ), we observe that I (I ) w ~+l X X ~+l tr[(xi X1 )- ] 1 = tr[(xix)- ] - I,-1 1+w?S.n+1 (X X)?S.n+1 The maximum value of the second term on the right hand side of (3.10) is the maximum of 1 (3.11) )J =, A (~+ 1) w where A's are the eigenvalues of XiX. In order that Q(X l ) is least, w is given by (3.7) and the maximum )J x' = ~ I Thus X* -0+1 '"'""P minimum Q(X l ) is attained when A = A and p is A-optimal among the class of Xl matrices with

10 References 8 Hoer1, Arthur E. and Kennard, Robert lot. (1970). "Ridge Regression: Biased Estimation for Non-orthogonal Problems. II TeC!hnometriC!s, 12, Kiefer, J. (1959). "Optimum Experimental Designs." J. Roy. Statist. SoC!., 21B,

Ridge Regression and Ill-Conditioning

Ridge Regression and Ill-Conditioning Journal of Modern Applied Statistical Methods Volume 3 Issue Article 8-04 Ridge Regression and Ill-Conditioning Ghadban Khalaf King Khalid University, Saudi Arabia, albadran50@yahoo.com Mohamed Iguernane

More information

Introduction to Matrix Algebra

Introduction to Matrix Algebra Introduction to Matrix Algebra August 18, 2010 1 Vectors 1.1 Notations A p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the line. When p

More information

Wiley. Methods and Applications of Linear Models. Regression and the Analysis. of Variance. Third Edition. Ishpeming, Michigan RONALD R.

Wiley. Methods and Applications of Linear Models. Regression and the Analysis. of Variance. Third Edition. Ishpeming, Michigan RONALD R. Methods and Applications of Linear Models Regression and the Analysis of Variance Third Edition RONALD R. HOCKING PenHock Statistical Consultants Ishpeming, Michigan Wiley Contents Preface to the Third

More information

APPLICATION OF RIDGE REGRESSION TO MULTICOLLINEAR DATA

APPLICATION OF RIDGE REGRESSION TO MULTICOLLINEAR DATA Journal of Research (Science), Bahauddin Zakariya University, Multan, Pakistan. Vol.15, No.1, June 2004, pp. 97-106 ISSN 1021-1012 APPLICATION OF RIDGE REGRESSION TO MULTICOLLINEAR DATA G. R. Pasha 1 and

More information

Improved Ridge Estimator in Linear Regression with Multicollinearity, Heteroscedastic Errors and Outliers

Improved Ridge Estimator in Linear Regression with Multicollinearity, Heteroscedastic Errors and Outliers Journal of Modern Applied Statistical Methods Volume 15 Issue 2 Article 23 11-1-2016 Improved Ridge Estimator in Linear Regression with Multicollinearity, Heteroscedastic Errors and Outliers Ashok Vithoba

More information

Ridge Regression Revisited

Ridge Regression Revisited Ridge Regression Revisited Paul M.C. de Boer Christian M. Hafner Econometric Institute Report EI 2005-29 In general ridge (GR) regression p ridge parameters have to be determined, whereas simple ridge

More information

Multicollinearity and A Ridge Parameter Estimation Approach

Multicollinearity and A Ridge Parameter Estimation Approach Journal of Modern Applied Statistical Methods Volume 15 Issue Article 5 11-1-016 Multicollinearity and A Ridge Parameter Estimation Approach Ghadban Khalaf King Khalid University, albadran50@yahoo.com

More information

Statistics 910, #5 1. Regression Methods

Statistics 910, #5 1. Regression Methods Statistics 910, #5 1 Overview Regression Methods 1. Idea: effects of dependence 2. Examples of estimation (in R) 3. Review of regression 4. Comparisons and relative efficiencies Idea Decomposition Well-known

More information

Properties of Matrices and Operations on Matrices

Properties of Matrices and Operations on Matrices Properties of Matrices and Operations on Matrices A common data structure for statistical analysis is a rectangular array or matris. Rows represent individual observational units, or just observations,

More information

Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then

Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then Lecture 2 - Unconstrained Optimization Definition[Global Minimum and Maximum]Let f : S R be defined on a set S R n. Then 1. x S is a global minimum point of f over S if f (x) f (x ) for any x S. 2. x S

More information

Fundamentals of Matrices

Fundamentals of Matrices Maschinelles Lernen II Fundamentals of Matrices Christoph Sawade/Niels Landwehr/Blaine Nelson Tobias Scheffer Matrix Examples Recap: Data Linear Model: f i x = w i T x Let X = x x n be the data matrix

More information

Evaluation of a New Estimator

Evaluation of a New Estimator Pertanika J. Sci. & Technol. 16 (2): 107-117 (2008) ISSN: 0128-7680 Universiti Putra Malaysia Press Evaluation of a New Estimator Ng Set Foong 1 *, Low Heng Chin 2 and Quah Soon Hoe 3 1 Department of Information

More information

Alternative Biased Estimator Based on Least. Trimmed Squares for Handling Collinear. Leverage Data Points

Alternative Biased Estimator Based on Least. Trimmed Squares for Handling Collinear. Leverage Data Points International Journal of Contemporary Mathematical Sciences Vol. 13, 018, no. 4, 177-189 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ijcms.018.8616 Alternative Biased Estimator Based on Least

More information

Relationship between ridge regression estimator and sample size when multicollinearity present among regressors

Relationship between ridge regression estimator and sample size when multicollinearity present among regressors Available online at www.worldscientificnews.com WSN 59 (016) 1-3 EISSN 39-19 elationship between ridge regression estimator and sample size when multicollinearity present among regressors ABSTACT M. C.

More information

X -1 -balance of some partially balanced experimental designs with particular emphasis on block and row-column designs

X -1 -balance of some partially balanced experimental designs with particular emphasis on block and row-column designs DOI:.55/bile-5- Biometrical Letters Vol. 5 (5), No., - X - -balance of some partially balanced experimental designs with particular emphasis on block and row-column designs Ryszard Walkowiak Department

More information

Lecture 10 - Eigenvalues problem

Lecture 10 - Eigenvalues problem Lecture 10 - Eigenvalues problem Department of Computer Science University of Houston February 28, 2008 1 Lecture 10 - Eigenvalues problem Introduction Eigenvalue problems form an important class of problems

More information

STK-IN4300 Statistical Learning Methods in Data Science

STK-IN4300 Statistical Learning Methods in Data Science Outline of the lecture STK-I4300 Statistical Learning Methods in Data Science Riccardo De Bin debin@math.uio.no Model Assessment and Selection Cross-Validation Bootstrap Methods Methods using Derived Input

More information

Improved Liu Estimators for the Poisson Regression Model

Improved Liu Estimators for the Poisson Regression Model www.ccsenet.org/isp International Journal of Statistics and Probability Vol., No. ; May 202 Improved Liu Estimators for the Poisson Regression Model Kristofer Mansson B. M. Golam Kibria Corresponding author

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

A Comparison between Biased and Unbiased Estimators in Ordinary Least Squares Regression

A Comparison between Biased and Unbiased Estimators in Ordinary Least Squares Regression Journal of Modern Alied Statistical Methods Volume Issue Article 7 --03 A Comarison between Biased and Unbiased Estimators in Ordinary Least Squares Regression Ghadban Khalaf King Khalid University, Saudi

More information

Econ Slides from Lecture 8

Econ Slides from Lecture 8 Econ 205 Sobel Econ 205 - Slides from Lecture 8 Joel Sobel September 1, 2010 Computational Facts 1. det AB = det BA = det A det B 2. If D is a diagonal matrix, then det D is equal to the product of its

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

COMBINING THE LIU-TYPE ESTIMATOR AND THE PRINCIPAL COMPONENT REGRESSION ESTIMATOR

COMBINING THE LIU-TYPE ESTIMATOR AND THE PRINCIPAL COMPONENT REGRESSION ESTIMATOR Noname manuscript No. (will be inserted by the editor) COMBINING THE LIU-TYPE ESTIMATOR AND THE PRINCIPAL COMPONENT REGRESSION ESTIMATOR Deniz Inan Received: date / Accepted: date Abstract In this study

More information

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p

Math Bootcamp An p-dimensional vector is p numbers put together. Written as. x 1 x =. x p Math Bootcamp 2012 1 Review of matrix algebra 1.1 Vectors and rules of operations An p-dimensional vector is p numbers put together. Written as x 1 x =. x p. When p = 1, this represents a point in the

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maximum Likelihood Estimation Merlise Clyde STA721 Linear Models Duke University August 31, 2017 Outline Topics Likelihood Function Projections Maximum Likelihood Estimates Readings: Christensen Chapter

More information

ge-k ) ECONOMETRIC INSTITUTE

ge-k ) ECONOMETRIC INSTITUTE ge-k ) ECONOMETRIC INSTITUTE GIANN:NFC AGRICULTURA 7:)T,4 OF NZ? THE EXACT MSE EFFICIENCY OF THE GENERAL RIDGE ESTIMATOR RELATIVE TO OLS R. TEEKENS and P.M.C. DE BOER otiv"--9 REPORT 770/ES ERASMUS UNIVERSITY

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 2: Direct Methods PD Dr.

More information

ON THE COMPARISON OF BOUNDARY AND INTERIOR SUPPORT POINTS OF A RESPONSE SURFACE UNDER OPTIMALITY CRITERIA. Cross River State, Nigeria

ON THE COMPARISON OF BOUNDARY AND INTERIOR SUPPORT POINTS OF A RESPONSE SURFACE UNDER OPTIMALITY CRITERIA. Cross River State, Nigeria ON THE COMPARISON OF BOUNDARY AND INTERIOR SUPPORT POINTS OF A RESPONSE SURFACE UNDER OPTIMALITY CRITERIA Thomas Adidaume Uge and Stephen Seastian Akpan, Department Of Mathematics/Statistics And Computer

More information

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1).

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1). Regression and PCA Classification The goal: map from input X to a label Y. Y has a discrete set of possible values We focused on binary Y (values 0 or 1). But we also discussed larger number of classes

More information

SOME RESULTS ON THE MULTIPLE GROUP DISCRIMINANT PROBLEM. Peter A. Lachenbruch

SOME RESULTS ON THE MULTIPLE GROUP DISCRIMINANT PROBLEM. Peter A. Lachenbruch .; SOME RESULTS ON THE MULTIPLE GROUP DISCRIMINANT PROBLEM By Peter A. Lachenbruch Department of Biostatistics University of North Carolina, Chapel Hill, N.C. Institute of Statistics Mimeo Series No. 829

More information

STAT200C: Review of Linear Algebra

STAT200C: Review of Linear Algebra Stat200C Instructor: Zhaoxia Yu STAT200C: Review of Linear Algebra 1 Review of Linear Algebra 1.1 Vector Spaces, Rank, Trace, and Linear Equations 1.1.1 Rank and Vector Spaces Definition A vector whose

More information

Research Article An Unbiased Two-Parameter Estimation with Prior Information in Linear Regression Model

Research Article An Unbiased Two-Parameter Estimation with Prior Information in Linear Regression Model e Scientific World Journal, Article ID 206943, 8 pages http://dx.doi.org/10.1155/2014/206943 Research Article An Unbiased Two-Parameter Estimation with Prior Information in Linear Regression Model Jibo

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Numerous alications in statistics, articularly in the fitting of linear models. Notation and conventions: Elements of a matrix A are denoted by a ij, where i indexes the rows and

More information

Ridge Regression: Biased Estimation for Nonorthogonal Problems

Ridge Regression: Biased Estimation for Nonorthogonal Problems TECHNOMETRICS VOL. 12, No. 1 FEBRUARY 1970 Ridge Regression: Biased Estimation for Nonorthogonal Problems ARTHUR E. HOERL AND ROBERT W. KENNARD University of Delaware and E. 1. du Pont de Nemours & Co.

More information

Comparison of Some Improved Estimators for Linear Regression Model under Different Conditions

Comparison of Some Improved Estimators for Linear Regression Model under Different Conditions Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 3-24-2015 Comparison of Some Improved Estimators for Linear Regression Model under

More information

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions

YORK UNIVERSITY. Faculty of Science Department of Mathematics and Statistics MATH M Test #1. July 11, 2013 Solutions YORK UNIVERSITY Faculty of Science Department of Mathematics and Statistics MATH 222 3. M Test # July, 23 Solutions. For each statement indicate whether it is always TRUE or sometimes FALSE. Note: For

More information

Eigenvalues and diagonalization

Eigenvalues and diagonalization Eigenvalues and diagonalization Patrick Breheny November 15 Patrick Breheny BST 764: Applied Statistical Modeling 1/20 Introduction The next topic in our course, principal components analysis, revolves

More information

ELEC633: Graphical Models

ELEC633: Graphical Models ELEC633: Graphical Models Tahira isa Saleem Scribe from 7 October 2008 References: Casella and George Exploring the Gibbs sampler (1992) Chib and Greenberg Understanding the Metropolis-Hastings algorithm

More information

Research Article On the Stochastic Restricted r-k Class Estimator and Stochastic Restricted r-d Class Estimator in Linear Regression Model

Research Article On the Stochastic Restricted r-k Class Estimator and Stochastic Restricted r-d Class Estimator in Linear Regression Model Applied Mathematics, Article ID 173836, 6 pages http://dx.doi.org/10.1155/2014/173836 Research Article On the Stochastic Restricted r-k Class Estimator and Stochastic Restricted r-d Class Estimator in

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Linear Regression Models. Based on Chapter 3 of Hastie, Tibshirani and Friedman

Linear Regression Models. Based on Chapter 3 of Hastie, Tibshirani and Friedman Linear Regression Models Based on Chapter 3 of Hastie, ibshirani and Friedman Linear Regression Models Here the X s might be: p f ( X = " + " 0 j= 1 X j Raw predictor variables (continuous or coded-categorical

More information

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review

PHYS 705: Classical Mechanics. Rigid Body Motion Introduction + Math Review 1 PHYS 705: Classical Mechanics Rigid Body Motion Introduction + Math Review 2 How to describe a rigid body? Rigid Body - a system of point particles fixed in space i r ij j subject to a holonomic constraint:

More information

Study Notes on Matrices & Determinants for GATE 2017

Study Notes on Matrices & Determinants for GATE 2017 Study Notes on Matrices & Determinants for GATE 2017 Matrices and Determinates are undoubtedly one of the most scoring and high yielding topics in GATE. At least 3-4 questions are always anticipated from

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Review of Linear Algebra Denis Helic KTI, TU Graz Oct 9, 2014 Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 1 / 74 Big picture: KDDM Probability Theory

More information

Performance Surfaces and Optimum Points

Performance Surfaces and Optimum Points CSC 302 1.5 Neural Networks Performance Surfaces and Optimum Points 1 Entrance Performance learning is another important class of learning law. Network parameters are adjusted to optimize the performance

More information

Matrix Algebra, part 2

Matrix Algebra, part 2 Matrix Algebra, part 2 Ming-Ching Luoh 2005.9.12 1 / 38 Diagonalization and Spectral Decomposition of a Matrix Optimization 2 / 38 Diagonalization and Spectral Decomposition of a Matrix Also called Eigenvalues

More information

Exam questions with full solutions

Exam questions with full solutions Exam questions with full solutions MH11 Linear Algebra II May 1 QUESTION 1 Let C be the set of complex numbers. (i) Consider C as an R-vector space with the operations of addition of complex numbers and

More information

Linear Models 1. Isfahan University of Technology Fall Semester, 2014

Linear Models 1. Isfahan University of Technology Fall Semester, 2014 Linear Models 1 Isfahan University of Technology Fall Semester, 2014 References: [1] G. A. F., Seber and A. J. Lee (2003). Linear Regression Analysis (2nd ed.). Hoboken, NJ: Wiley. [2] A. C. Rencher and

More information

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1

Inverse of a Square Matrix. For an N N square matrix A, the inverse of A, 1 Inverse of a Square Matrix For an N N square matrix A, the inverse of A, 1 A, exists if and only if A is of full rank, i.e., if and only if no column of A is a linear combination 1 of the others. A is

More information

1 Data Arrays and Decompositions

1 Data Arrays and Decompositions 1 Data Arrays and Decompositions 1.1 Variance Matrices and Eigenstructure Consider a p p positive definite and symmetric matrix V - a model parameter or a sample variance matrix. The eigenstructure is

More information

Matrix Algebra: Summary

Matrix Algebra: Summary May, 27 Appendix E Matrix Algebra: Summary ontents E. Vectors and Matrtices.......................... 2 E.. Notation.................................. 2 E..2 Special Types of Vectors.........................

More information

Singular Value Decomposition Compared to cross Product Matrix in an ill Conditioned Regression Model

Singular Value Decomposition Compared to cross Product Matrix in an ill Conditioned Regression Model International Journal of Statistics and Applications 04, 4(): 4-33 DOI: 0.593/j.statistics.04040.07 Singular Value Decomposition Compared to cross Product Matrix in an ill Conditioned Regression Model

More information

Symmetric matrices and dot products

Symmetric matrices and dot products Symmetric matrices and dot products Proposition An n n matrix A is symmetric iff, for all x, y in R n, (Ax) y = x (Ay). Proof. If A is symmetric, then (Ax) y = x T A T y = x T Ay = x (Ay). If equality

More information

Response Surface Methodology III

Response Surface Methodology III LECTURE 7 Response Surface Methodology III 1. Canonical Form of Response Surface Models To examine the estimated regression model we have several choices. First, we could plot response contours. Remember

More information

The Use of Multiple Measurements to Monitor Protocol. Adherence in Epidemiological Studies*

The Use of Multiple Measurements to Monitor Protocol. Adherence in Epidemiological Studies* The Use of Multiple Measurements to Monitor Protocol Adherence in Epidemiological Studies* H. M. Schey and C. E. Davis Department of Biostatistics, University of North Carolina Chapel Hill, North Carolina

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

Appendix A: Matrices

Appendix A: Matrices Appendix A: Matrices A matrix is a rectangular array of numbers Such arrays have rows and columns The numbers of rows and columns are referred to as the dimensions of a matrix A matrix with, say, 5 rows

More information

ƒ f(x)dx ~ X) ^i,nf(%i,n) -1 *=1 are the zeros of P«(#) and where the num

ƒ f(x)dx ~ X) ^i,nf(%i,n) -1 *=1 are the zeros of P«(#) and where the num ZEROS OF THE HERMITE POLYNOMIALS AND WEIGHTS FOR GAUSS' MECHANICAL QUADRATURE FORMULA ROBERT E. GREENWOOD AND J. J. MILLER In the numerical integration of a function ƒ (x) it is very desirable to choose

More information

SOME NEW PROPOSED RIDGE PARAMETERS FOR THE LOGISTIC REGRESSION MODEL

SOME NEW PROPOSED RIDGE PARAMETERS FOR THE LOGISTIC REGRESSION MODEL IMPACT: International Journal of Research in Applied, Natural and Social Sciences (IMPACT: IJRANSS) ISSN(E): 2321-8851; ISSN(P): 2347-4580 Vol. 3, Issue 1, Jan 2015, 67-82 Impact Journals SOME NEW PROPOSED

More information

Measuring Local Influential Observations in Modified Ridge Regression

Measuring Local Influential Observations in Modified Ridge Regression Journal of Data Science 9(2011), 359-372 Measuring Local Influential Observations in Modified Ridge Regression Aboobacker Jahufer 1 and Jianbao Chen 2 1 South Eastern University and 2 Xiamen University

More information

EIGENVALUES IN LINEAR ALGEBRA *

EIGENVALUES IN LINEAR ALGEBRA * EIGENVALUES IN LINEAR ALGEBRA * P. F. Leung National University of Singapore. General discussion In this talk, we shall present an elementary study of eigenvalues in linear algebra. Very often in various

More information

Math 423/533: The Main Theoretical Topics

Math 423/533: The Main Theoretical Topics Math 423/533: The Main Theoretical Topics Notation sample size n, data index i number of predictors, p (p = 2 for simple linear regression) y i : response for individual i x i = (x i1,..., x ip ) (1 p)

More information

Spectral inequalities and equalities involving products of matrices

Spectral inequalities and equalities involving products of matrices Spectral inequalities and equalities involving products of matrices Chi-Kwong Li 1 Department of Mathematics, College of William & Mary, Williamsburg, Virginia 23187 (ckli@math.wm.edu) Yiu-Tung Poon Department

More information

A NOTE ON CONFIDENCE BOUNDS CONNECTED WITH ANOVA AND MANOVA FOR BALANCED AND PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS. v. P.

A NOTE ON CONFIDENCE BOUNDS CONNECTED WITH ANOVA AND MANOVA FOR BALANCED AND PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS. v. P. ... --... I. A NOTE ON CONFIDENCE BOUNDS CONNECTED WITH ANOVA AND MANOVA FOR BALANCED AND PARTIALLY BALANCED INCOMPLETE BLOCK DESIGNS by :}I v. P. Bhapkar University of North Carolina. '".". This research

More information

ON EFFICIENT FORECASTING IN LINEAR REGRESSION MODELS

ON EFFICIENT FORECASTING IN LINEAR REGRESSION MODELS Journal of Quantitative Economics, Vol. 13, No.2 (July 1997 133-140 ON EFFICIENT FORECASTING IN LINEAR REGRESSION MODELS SHALABH Department of Statistics, University of Jammu, Jammu-180004, India In this

More information

Draft of an article prepared for the Encyclopedia of Social Science Research Methods, Sage Publications. Copyright by John Fox 2002

Draft of an article prepared for the Encyclopedia of Social Science Research Methods, Sage Publications. Copyright by John Fox 2002 Draft of an article prepared for the Encyclopedia of Social Science Research Methods, Sage Publications. Copyright by John Fox 00 Please do not quote without permission Variance Inflation Factors. Variance

More information

Minimax design criterion for fractional factorial designs

Minimax design criterion for fractional factorial designs Ann Inst Stat Math 205 67:673 685 DOI 0.007/s0463-04-0470-0 Minimax design criterion for fractional factorial designs Yue Yin Julie Zhou Received: 2 November 203 / Revised: 5 March 204 / Published online:

More information

https://goo.gl/kfxweg KYOTO UNIVERSITY Statistical Machine Learning Theory Sparsity Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY 1 KYOTO UNIVERSITY Topics:

More information

EFFICIENCY of the PRINCIPAL COMPONENT LIU- TYPE ESTIMATOR in LOGISTIC REGRESSION

EFFICIENCY of the PRINCIPAL COMPONENT LIU- TYPE ESTIMATOR in LOGISTIC REGRESSION EFFICIENCY of the PRINCIPAL COMPONEN LIU- YPE ESIMAOR in LOGISIC REGRESSION Authors: Jibo Wu School of Mathematics and Finance, Chongqing University of Arts and Sciences, Chongqing, China, linfen52@126.com

More information

Covariance to PCA. CS 510 Lecture #8 February 17, 2014

Covariance to PCA. CS 510 Lecture #8 February 17, 2014 Covariance to PCA CS 510 Lecture 8 February 17, 2014 Status Update Programming Assignment 2 is due March 7 th Expect questions about your progress at the start of class I still owe you Assignment 1 back

More information

Conjugate Gradient (CG) Method

Conjugate Gradient (CG) Method Conjugate Gradient (CG) Method by K. Ozawa 1 Introduction In the series of this lecture, I will introduce the conjugate gradient method, which solves efficiently large scale sparse linear simultaneous

More information

A Practical Guide for Creating Monte Carlo Simulation Studies Using R

A Practical Guide for Creating Monte Carlo Simulation Studies Using R International Journal of Mathematics and Computational Science Vol. 4, No. 1, 2018, pp. 18-33 http://www.aiscience.org/journal/ijmcs ISSN: 2381-7011 (Print); ISSN: 2381-702X (Online) A Practical Guide

More information

More Linear Algebra. Edps/Soc 584, Psych 594. Carolyn J. Anderson

More Linear Algebra. Edps/Soc 584, Psych 594. Carolyn J. Anderson More Linear Algebra Edps/Soc 584, Psych 594 Carolyn J. Anderson Department of Educational Psychology I L L I N O I S university of illinois at urbana-champaign c Board of Trustees, University of Illinois

More information

Linear Algebra Practice Final

Linear Algebra Practice Final . Let (a) First, Linear Algebra Practice Final Summer 3 3 A = 5 3 3 rref([a ) = 5 so if we let x 5 = t, then x 4 = t, x 3 =, x = t, and x = t, so that t t x = t = t t whence ker A = span(,,,, ) and a basis

More information

Ridge Estimator in Logistic Regression under Stochastic Linear Restrictions

Ridge Estimator in Logistic Regression under Stochastic Linear Restrictions British Journal of Mathematics & Computer Science 15(3): 1-14, 2016, Article no.bjmcs.24585 ISSN: 2231-0851 SCIENCEDOMAIN international www.sciencedomain.org Ridge Estimator in Logistic Regression under

More information

Economics 620, Lecture 4: The K-Varable Linear Model I

Economics 620, Lecture 4: The K-Varable Linear Model I Economics 620, Lecture 4: The K-Varable Linear Model I Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 4: The K-Varable Linear Model I 1 / 20 Consider the system

More information

Exam Study Questions for PS10-11 (*=solutions given in the back of the textbook)

Exam Study Questions for PS10-11 (*=solutions given in the back of the textbook) Exam Study Questions for PS0- (*=solutions given in the back of the textbook) p 59, Problem p 59 Problem 3 (a)*, 3(b) 3(c) p 55, Problem p547, verify the solutions Eq (8) to the Marcov Processes being

More information

EE263: Introduction to Linear Dynamical Systems Review Session 5

EE263: Introduction to Linear Dynamical Systems Review Session 5 EE263: Introduction to Linear Dynamical Systems Review Session 5 Outline eigenvalues and eigenvectors diagonalization matrix exponential EE263 RS5 1 Eigenvalues and eigenvectors we say that λ C is an eigenvalue

More information

MLES & Multivariate Normal Theory

MLES & Multivariate Normal Theory Merlise Clyde September 6, 2016 Outline Expectations of Quadratic Forms Distribution Linear Transformations Distribution of estimates under normality Properties of MLE s Recap Ŷ = ˆµ is an unbiased estimate

More information

Two Posts to Fill On School Board

Two Posts to Fill On School Board Y Y 9 86 4 4 qz 86 x : ( ) z 7 854 Y x 4 z z x x 4 87 88 Y 5 x q x 8 Y 8 x x : 6 ; : 5 x ; 4 ( z ; ( ) ) x ; z 94 ; x 3 3 3 5 94 ; ; ; ; 3 x : 5 89 q ; ; x ; x ; ; x : ; ; ; ; ; ; 87 47% : () : / : 83

More information

Assignment 11 (C + C ) = (C + C ) = (C + C) i(c C ) ] = i(c C) (AB) = (AB) = B A = BA 0 = [A, B] = [A, B] = (AB BA) = (AB) AB

Assignment 11 (C + C ) = (C + C ) = (C + C) i(c C ) ] = i(c C) (AB) = (AB) = B A = BA 0 = [A, B] = [A, B] = (AB BA) = (AB) AB Arfken 3.4.6 Matrix C is not Hermition. But which is Hermitian. Likewise, Assignment 11 (C + C ) = (C + C ) = (C + C) [ i(c C ) ] = i(c C ) = i(c C) = i ( C C ) Arfken 3.4.9 The matrices A and B are both

More information

Regression coefficients may even have a different sign from the expected.

Regression coefficients may even have a different sign from the expected. Multicolinearity Diagnostics : Some of the diagnostics e have just discussed are sensitive to multicolinearity. For example, e kno that ith multicolinearity, additions and deletions of data cause shifts

More information

Stat 206: Linear algebra

Stat 206: Linear algebra Stat 206: Linear algebra James Johndrow (adapted from Iain Johnstone s notes) 2016-11-02 Vectors We have already been working with vectors, but let s review a few more concepts. The inner product of two

More information

Covariance to PCA. CS 510 Lecture #14 February 23, 2018

Covariance to PCA. CS 510 Lecture #14 February 23, 2018 Covariance to PCA CS 510 Lecture 14 February 23, 2018 Overview: Goal Assume you have a gallery (database) of images, and a probe (test) image. The goal is to find the database image that is most similar

More information

Using Ridge Least Median Squares to Estimate the Parameter by Solving Multicollinearity and Outliers Problems

Using Ridge Least Median Squares to Estimate the Parameter by Solving Multicollinearity and Outliers Problems Modern Applied Science; Vol. 9, No. ; 05 ISSN 9-844 E-ISSN 9-85 Published by Canadian Center of Science and Education Using Ridge Least Median Squares to Estimate the Parameter by Solving Multicollinearity

More information

Computational Methods CMSC/AMSC/MAPL 460. Eigenvalues and Eigenvectors. Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Eigenvalues and Eigenvectors. Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Eigenvalues and Eigenvectors Ramani Duraiswami, Dept. of Computer Science Eigen Values of a Matrix Recap: A N N matrix A has an eigenvector x (non-zero) with corresponding

More information

16.584: Random Vectors

16.584: Random Vectors 1 16.584: Random Vectors Define X : (X 1, X 2,..X n ) T : n-dimensional Random Vector X 1 : X(t 1 ): May correspond to samples/measurements Generalize definition of PDF: F X (x) = P[X 1 x 1, X 2 x 2,...X

More information

CAAM 335 Matrix Analysis

CAAM 335 Matrix Analysis CAAM 335 Matrix Analysis Solutions to Homework 8 Problem (5+5+5=5 points The partial fraction expansion of the resolvent for the matrix B = is given by (si B = s } {{ } =P + s + } {{ } =P + (s (5 points

More information

Linear Algebra Formulas. Ben Lee

Linear Algebra Formulas. Ben Lee Linear Algebra Formulas Ben Lee January 27, 2016 Definitions and Terms Diagonal: Diagonal of matrix A is a collection of entries A ij where i = j. Diagonal Matrix: A matrix (usually square), where entries

More information

Exercise Sheet 1.

Exercise Sheet 1. Exercise Sheet 1 You can download my lecture and exercise sheets at the address http://sami.hust.edu.vn/giang-vien/?name=huynt 1) Let A, B be sets. What does the statement "A is not a subset of B " mean?

More information

Positive definite preserving linear transformations on symmetric matrix spaces

Positive definite preserving linear transformations on symmetric matrix spaces Positive definite preserving linear transformations on symmetric matrix spaces arxiv:1008.1347v1 [math.ra] 7 Aug 2010 Huynh Dinh Tuan-Tran Thi Nha Trang-Doan The Hieu Hue Geometry Group College of Education,

More information

Simultaneous Optimization of Incomplete Multi-Response Experiments

Simultaneous Optimization of Incomplete Multi-Response Experiments Open Journal of Statistics, 05, 5, 430-444 Published Online August 05 in SciRes. http://www.scirp.org/journal/ojs http://dx.doi.org/0.436/ojs.05.55045 Simultaneous Optimization of Incomplete Multi-Response

More information

Matrix Factorizations

Matrix Factorizations 1 Stat 540, Matrix Factorizations Matrix Factorizations LU Factorization Definition... Given a square k k matrix S, the LU factorization (or decomposition) represents S as the product of two triangular

More information

Applications of Fisher Information

Applications of Fisher Information Applications of Fisher Information MarvinH.J. Gruber School of Mathematical Sciences Rochester Institute of Technology 85 Lomb Memorial Drive Rochester,NY 14623 jgsma@rit.edu www.people.rit.edu/mjgsma/syracuse/talk.html

More information

Linear Models in Statistics

Linear Models in Statistics Linear Models in Statistics ALVIN C. RENCHER Department of Statistics Brigham Young University Provo, Utah A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane

More information

Bayesian Estimation of Regression Coefficients Under Extended Balanced Loss Function

Bayesian Estimation of Regression Coefficients Under Extended Balanced Loss Function Communications in Statistics Theory and Methods, 43: 4253 4264, 2014 Copyright Taylor & Francis Group, LLC ISSN: 0361-0926 print / 1532-415X online DOI: 10.1080/03610926.2012.725498 Bayesian Estimation

More information

No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question.

No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question. Math 304 Final Exam (May 8) Spring 206 No books, no notes, no calculators. You must show work, unless the question is a true/false, yes/no, or fill-in-the-blank question. Name: Section: Question Points

More information

Multivariate Gaussian Analysis

Multivariate Gaussian Analysis BS2 Statistical Inference, Lecture 7, Hilary Term 2009 February 13, 2009 Marginal and conditional distributions For a positive definite covariance matrix Σ, the multivariate Gaussian distribution has density

More information

Response Surface Methodology

Response Surface Methodology Response Surface Methodology Process and Product Optimization Using Designed Experiments Second Edition RAYMOND H. MYERS Virginia Polytechnic Institute and State University DOUGLAS C. MONTGOMERY Arizona

More information

Efficient Choice of Biasing Constant. for Ridge Regression

Efficient Choice of Biasing Constant. for Ridge Regression Int. J. Contemp. Math. Sciences, Vol. 3, 008, no., 57-536 Efficient Choice of Biasing Constant for Ridge Regression Sona Mardikyan* and Eyüp Çetin Department of Management Information Systems, School of

More information