DYNAMICS,OF DISCHARGE-EXCITED CO 2 lasers ~~.~.~,-

Size: px
Start display at page:

Download "DYNAMICS,OF DISCHARGE-EXCITED CO 2 lasers ~~.~.~,-"

Transcription

1 " I / J.;, ",' '....~.' ';I: DYNAMICS,OF DISCHARGE-EXCITED CO 2 lasers \ '. " CHINH BY liang, B'.Sc., M.Sc. ".' ~~.~.~,",- '~ ~ ; /' '\. \ -l.~ / \ -'( ',--_./, A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements "Y',.)for the Degree Doctor of P~ilosOR~,. ' -, ',J McMaster University October 19M2

2 ),. '. -~ '~.. "'-, " \,,/.,'\.~ 0- ( ~ " ~...., ~,, ~ I, '{)yn~ic~?f'disc~arge-e:cp~d~ers \,..., - \' \ l, ~ ~, ", ", ~'- r... - /l / ",.-J :. ".. " ~',., i 1 I

3 ..../ ~ DOCTOR OF PHILOSOPHY (Physics) 1. ~.. ). TITLE: ~namics (.~ p~ ~ of Discharg~-Excite~)C02Lasers McMAST~ UNIVERSITY Hamilto~, Ontario AUTHOR: Chinh Dang, B.Sc. (Universi1;e d~ Sherbrooke) \ M.Sc. (McMaster University). -" SUPERVISORS: Professor B.K. Garside, Professor J. Reid \ NUMBER OF pages: xiv. 132 ) \ ---. \.... / i i 1!,

4 ---~.., ABSTRACT.. ' A tunable diode laser (TOLl 'operating in the region of 2150 to -1 -, 2350 cm wavenumber is used in this work to investigate the dynamics of level pop'ulations in CO 2 lasers. The wide tunability ~f'the TOL is exploited in determfning the populations in any level of the CO 2 molecule. Thus, the vibrational populat3on distributions in a CW CO 2 laser d1s- -/ charge under both lasing and n~n-lasi~g conditions are measured and~., compared with the mode temperature model...,. The relaxation processes associated with the upper and lower;)' levels of CO 2 las~rs are also investigated. In particular, the electron excitation and de-excitation rat sof ~he upper las,er }evel 'i~ypic ',' r : CO 2, tlischargesare determined ~dir ctly from the experiment, and' ;\..,is shown that electron de-~xcitation is responsible for the saturation of ~, the V3 mode' temperature in e~ectric~d CO 2 lasers at high discharge currents, and imposes 'a~damental limitation on the gain attainable 'i n cb 2 1asers. / /' The relaxation of the lower laser leve~ 'is complicated by t~e occurrence of several competitive vibration-vibr~v-v) processes. The TOL measurements enable us, for the irs~ time, to monitor separately 'the population in all levels of cone rn t~ the relaxation of the lower laser level and to determine th rate constant of each of the available 2 \. decay channels. It is shown that the 02 level plays an important role in the relaxation of the lower laser, level. iii I 0' "

5 .;r-- (J ACKNOWLEDGEMENTS, '. '\ ~/ I would lik~"to'express my deep appreciation to my 'supervisors, Dr. 'B.K. Garsidi:-~'nd Dr. J. Reid"jor their helpful'advitee\thr.oughout (/. "'-\, the course'~f thi s work. ' It is ~y Dr. J.S. C~ang pleasure to thank each of the following people: for the loan'bf the storage scope used in the experiment; Mr. R.K. Brimacombe fo~ ~is Ctiticai~~i~g. ~his ~anuscript; ~~d Mrs. G. Wang for her excellent typing of this thesis., ~ At last, to my parents, a very special thank-you for everything.. that they have done and given 0&0 me, throughout my 1He. J. > iv "

6 .. ABSTRACT ACKNOWLEDGEMENTS CHAPTER TABLE of' CONTE~S 1.,INTRODUCTION 2. ENERGY:TRANSFER PROCESSES IN CO 2 LASERS 2.1 Introduction 2.2 CO Laser Transitions 2.3 El~ctron-Molecule Collisional Processes 2.4 Molecule-Molecule Collisional Processes 2.5 Radiation and Diffusion Ral~xation Processes 2.6, Sunrnary.l:--," f ' ".' 3. VIBRATIONAL POPULA1ION DISTRIBUTIONS IN CO 2 GLOW, DISCHARGES" ', , j Introduction Experimental Approac~ Theoretical Models,. 3.3.~ Boltimann Distribution Treanor.Distribution Measurements in a'.cw CO 2 Las~r AmPl(fier) Experimental Technique ( Vibrational Distributions CO? Dissociation Conclusion,Measurements 1n a CW CO - 2 Laser Oscillator Experimental Apparatus Vibrational Distributions Small-Signal Gain and Saturated G~in Vibrational Temperatur~ of CO ' Summary, v.. '. ' PAGE ii i iv "' -----, ":-- l.

7 -'0 TABLE OF CONTENTS (Cont'd) -, CHAPTER 4. VIBRATION~ RELAXATION OF THE CO 2 UPPER LASER LEVEL 4.1 Introduction 4.2 Relaxation Model for the Upper Laser Level 4.3 Relationships Between Relaxation Rates and Electron Excitation and De-Excitation'Rates 4.4 Experimental Apparatus,f 4.5 Relaxation Rates of the v1 Mode in Pure CO 2 and in CO~:N2:He Mixtures in Thermal Equilibrium Pure CO 2. ' ~.5.2 CO,:N,: He Mlxtures Temper~ture Dependence of 00 1 PAGE, Relaxation Rates ~~ 4.6, Relaxation Rates of the v 3 Mode in a Discharge CO 2 :He Mixt~re C02:~:He Mlxture 4.7 Summary, " VIBRATIONAL RELAXATION.OF THE COol LOWER LASER,' LEVELS ~.1 Introduction 5.2 Experimental Apparatus 5.3, Relaxation Rate Measurements in the v l and v 2 Modes of CO 5.4 Six-L~Ye1 Kinetic Model 5.5 Determination of the V-V Rate Constants 5.6 Discussion and Conclusions' 5.7 Summary 6. CONCLUSIONS,. " APPENDIX A. RELATIONSHIp BETWEEN ABSORPTION COEFFICIENT ANBJVtBRATIONAL LEVEL POPULATIONS 123, CURRENT DENSITY DISTRIBUTION IN A CYLINDRIGAL DISCHARGE TUBE ' 126 REFE ENCES 128 vi

8 ( " \" FIGURE LIST OF FIGURES PAGE 2.1 Detailed transition diagram of laser oscillation in the 10.4 pm and 9.4 urn regular laser bands of CO 2, Summary of the collisional relaxation rates in a laser discharge of,lo% CO?:lO% N 2 :80% He mixture~at 20'Torr with an electron density ot 1010OR~3. The solid ~ arrowed lines indicate molecule-molecule collisional processes whereas the dashed arrowed lines represent the electron-molecule collisional processes. Also shown are the regular and sequence 10 urn laser transitions.' Simplified vibrational energy level diagram of CO showing the three fundamental modes with their 2 associated mode temperatures. Also show~ are some, typical transition bands in the 2300 cm- region which are probed with the tunable diode. laser. 21 ' 3.2 Photograph of the mounting of the tunable diode laser inside the cold head chamber Schematic diagram'of the apparatus. 27.; Typical TDl 'scans taken with the laser beam focussed through the discharge tube. The upper scan is taken with no discharge current, while the lower scan corresponds to a current of 10 rna in a 10% CO~:38% N~: 52% He mixture at 15 Torr. The more impo tant a sorption lines are labelled beneath the traces Vibrational population distributions in the v 3 mode of CO at discharge currents of 5 and 25 mao Data point& are experimental measurements made with the TDl, while the solid lines are calculated Treanor distributions. The dashed line represents a Boltzmann distribution at 1600 K, and appears as' a straight. line in this semi-log plot Repeat of Fig. 3.5 for*a 2% CO 2 :20% N 2 :78% He mixture. Note the increase in T 3 which occurs as the CO 2 34 ' content is decreased from 10% in Fig. 3.5., vii 1_..

9 , I LIST OF FIGURES (Cont'd).. FIGURE PAGE / 3.7 " Vibrational populafi~~ lstributions in the 'v l and v 2 modes of CO 2.at di scharge currents of. 5 and 25 mao Data points are experimental. measurements for the levels indicated in the figure while the solid lines represent Boltzmann distributions for given T l '= T 2 tempera:ures. 36, Vibrational pop~lation distributions in the combination levels Ollk, 02 0 k and look with k =0 to'3 at 25 mao The mode temperatures as indicated in the figure are dedu~d from the~combination levels shown. A good agr~ment with T 3 = 2250 K in Fig. 3.5 is clear~ seen. Experimental values of T, T (= T ) and T as a function of discharge cu~ren~. ThJ various measurements of T represent results calculated from different pairs of vibrational-rotational transitions in two different vibrational bands ~hematic diagram of the apparatus used to study vibrational populations in the presence of a strong laser field. The solid line indicates the path of the tunable diode laser beam, whereas the dashed line represents the CO? laser beam. The CO 2 laser cavity is formed by th~ grating G, and two highly reflecting 10 ~m mjrrors, M] and M 2.. The small absorber cell selectively adsorbs the 10 ~m radiation and prevents it from reaching the dqode ~., 43 \ Typical TDL laser scans showing the effect of 10 ~m laser radiation on the vibrational populations. lasing and no lasing refer; to the presence or absence of a saturating HI ~m P(22) field with intensity of 560 W/cm z. M0E)0f (the absorpti on lines are identified at the bottom f the fi~ure. Lines A and Bare associated with ~3.mode (upper 10 ~m laser level), while line C is coupled to the tower laser level. The short discharge tube contained a 9.2% CO 2 :1l%'N 2 :79,8% He mixture at 19.4 Torr total pressure. The dtscharge current was 10 mao ~.12 Vibrational populationjdistributions in the v 3 mode of CO for a discharg~-current of 25 mao Lasing and no la~ing refer.0 the presence or absence of a saturating 10 ~m P(22) field with intensity of 560 W/cm z. The dramatic reduction of the v3 mode level populations with lasing is clearly display~d. 46 vi i i 45

10 FIGURE LIST OF FIGURES (Cont'd).. PAGE 3.13 Vibrational population distributions in the v1 and v modes of CO at discharge current of 25 mao Again, l~sing and no fasing refer to the presence or absence of a saturating 10 pm P(22) field with intensity of 560 W/cm 2 Only a small increase of level populations is observed upon lasing Repeat of Fig with a much lower gas'pressure for two cases: (a) no laser field is present; (b) a 10 pm P(22) field with intensity of 500 W/cm 2 is present. Note that the upper laser level, , has a population smaller than that expected from a Boltzmann distribution Repeat of Fig with a much lower 9as pressure for three cases: (a) no laser field is present; (b) a 10 pm P(22) field with inten~ity of 500 W/cm 2 is present; (c) a 9 pm P(22) field with intensity of lob W/cm 2 is present. Note that the lower laser levels, and , have anomalously hi9h pop~ under the 10 pm and 9 pm 1asings respectively Vibrational and rotaticna1 temperatures as a function of discharge current in the presence of an intense 10 pm field with intensity of 560 W/cm B : Vibrational and rotational temperatures as a function of discharge current in the absence of ~ laser field. Note the saturation of T 3 at high discharge current. -~ Calculated small signal gain, Yo' and satur ed gao, Ys' as a function of discharge current using the red temperatures displayed in Figs and Also shown is the power density, P., extracted from the' short discharge due to stimu1~ted emission at 10 pm. Measured "values 'Of T::l and Tc; as ~'function of discharge current with and witnout the pre ence of a 10 pm laser field. Note the substantial cha ge in T::l with lasing; whereas T5 is only reduced by a ~ a11 amount. Compari son between Tin a CO : CO :He mi xture and Tin a CO 2 :N 2 :He mixture. 3 Note th~t the T 3 temperature~ in a CO:N:H mixture are clearly higher than those in a CO~:C~:H$ mixture for both lasing and no lasing conditions. ix ] ' ".:{ I,

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

HIGH SPEED INTERDIGITAL MSM PHOTODIODES. RICHARD JOHN SEYMOUR, B.Sc., M.Eng. A Thesis. Submitted to the School of Graduate Studies

HIGH SPEED INTERDIGITAL MSM PHOTODIODES. RICHARD JOHN SEYMOUR, B.Sc., M.Eng. A Thesis. Submitted to the School of Graduate Studies HIGH SPEED INTERDIGITAL MSM PHOTODIODES '.S) By RICHARD JOHN SEYMOUR, B.Sc., M.Eng. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the degree Doctor

More information

THE DECO~WOSITION OF AMMONIA ON TUNGSTEN SURFACES

THE DECO~WOSITION OF AMMONIA ON TUNGSTEN SURFACES THE DECO~WOSITION OF AMMONIA ON TUNGSTEN SURFACES THE DECOMPOSITION OF AMMONIA ON TUNGSTEN SURFACES by YU.KWANG PENG, DIPL. CHEM. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment

More information

SCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGEN-IODINE LASERS

SCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGEN-IODINE LASERS SCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGEN-IODINE LASERS D. Shane Stafford and Mark J. Kushner Department of Electrical and Computer Engineering Urbana, IL 61801 http://uigelz.ece.uiuc.edu

More information

SPECTRAL PROPERTIES OF m InGaAsP SEMICONDUCTOR DIODE LASERS JOSEPH EDWARD HAYWARD, B.ENG, M.ENG. A Thesis

SPECTRAL PROPERTIES OF m InGaAsP SEMICONDUCTOR DIODE LASERS JOSEPH EDWARD HAYWARD, B.ENG, M.ENG. A Thesis SPECTRAL PROPERTIES OF 1.3 11m InGaAsP SEMICONDUCTOR DIODE LASERS By JOSEPH EDWARD HAYWARD, B.ENG, M.ENG A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for

More information

Optical Gain and Multi-Quantum Excitation in Optically Pumped Alkali Atom Rare Gas Mixtures

Optical Gain and Multi-Quantum Excitation in Optically Pumped Alkali Atom Rare Gas Mixtures Physical Sciences Inc. Optical Gain and Multi-Quantum Excitation in Optically Pumped Alkali Atom Rare Gas Mixtures Kristin L. Galbally-Kinney, Wilson T. Rawlins, and Steven J. Davis 20 New England Business

More information

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX Abstract... I Acknowledgements... III Table of Content... V List of Tables... VIII List of Figures... IX Chapter One IR-VUV Photoionization Spectroscopy 1.1 Introduction... 1 1.2 Vacuum-Ultraviolet-Ionization

More information

THE CLEANING OF lop SUBSTRATES FOR GROWTH BY MBE. PETER HOFSTRA, B.Sc. A Thesis. Submitted to the School of Graduate Studies

THE CLEANING OF lop SUBSTRATES FOR GROWTH BY MBE. PETER HOFSTRA, B.Sc. A Thesis. Submitted to the School of Graduate Studies THE CLEANING OF lop SUBSTRATES FOR GROWTH BY MBE By PETER HOFSTRA, B.Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy

More information

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Chemistry Instrumental Analysis Lecture 5. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 5 Light Amplification by Stimulated Emission of Radiation High Intensities Narrow Bandwidths Coherent Outputs Applications CD/DVD Readers Fiber Optics Spectroscopy

More information

Chapter-4 Stimulated emission devices LASERS

Chapter-4 Stimulated emission devices LASERS Semiconductor Laser Diodes Chapter-4 Stimulated emission devices LASERS The Road Ahead Lasers Basic Principles Applications Gas Lasers Semiconductor Lasers Semiconductor Lasers in Optical Networks Improvement

More information

Chapter 13. Phys 322 Lecture 34. Modern optics

Chapter 13. Phys 322 Lecture 34. Modern optics Chapter 13 Phys 3 Lecture 34 Modern optics Blackbodies and Lasers* Blackbodies Stimulated Emission Gain and Inversion The Laser Four-level System Threshold Some lasers Pump Fast decay Laser Fast decay

More information

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected Semiconductor Lasers Comparison with LEDs The light emitted by a laser is generally more directional, more intense and has a narrower frequency distribution than light from an LED. The external efficiency

More information

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1

More information

Laser Excitation Dynamics of Argon Metastables Generated in Atmospheric Pressure Flows by Microwave Frequency Microplasma Arrays

Laser Excitation Dynamics of Argon Metastables Generated in Atmospheric Pressure Flows by Microwave Frequency Microplasma Arrays Physical Sciences Inc. Laser Excitation Dynamics of Argon Metastables Generated in Atmospheric Pressure Flows by Microwave Frequency Microplasma Arrays W.T. Rawlins, K.L. Galbally-Kinney, S.J. Davis Physical

More information

Comments to Atkins: Physical chemistry, 7th edition.

Comments to Atkins: Physical chemistry, 7th edition. Comments to Atkins: Physical chemistry, 7th edition. Chapter 16: p. 483, Eq. (16.1). The definition that the wave number is the inverse of the wave length should be used. That is much smarter. p. 483-484.

More information

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Chapter 7 EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Hot dense plasma lasing medium d θ λ λ Visible laser pump Ch07_00VG.ai The Processes of Absorption, Spontaneous Emission, and Stimulated Emission Absorption

More information

Supporting Materials

Supporting Materials Supporting Materials Figure S1 Experimental Setup Page Figure S (a) (b) (c) Feynman Diagrams Page 3-6 Figure S3 D IR Spectra Page 7 Figure S4 Kinetic Model Page 8 Figure S5 Van t Hoff Plots Page 9 1 k

More information

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state Lecture 15 Stimulated Emission Devices- Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

Chemistry 524--Final Exam--Keiderling Dec. 12, pm SES

Chemistry 524--Final Exam--Keiderling Dec. 12, pm SES Chemistry 524--Final Exam--Keiderling Dec. 12, 2002 --4-8 pm -- 238 SES Please answer all questions in the answer book provided. Calculators, rulers, pens and pencils are permitted plus one 8.5 x 11 sheet

More information

LASERS. Amplifiers: Broad-band communications (avoid down-conversion)

LASERS. Amplifiers: Broad-band communications (avoid down-conversion) L- LASERS Representative applications: Amplifiers: Broad-band communications (avoid down-conversion) Oscillators: Blasting: Energy States: Hydrogen atom Frequency/distance reference, local oscillators,

More information

CHAPTER 8. SUMMARY AND OUTLOOK 90 Under the operational conditions used in the present work the translation temperatures can be obtained from the Dopp

CHAPTER 8. SUMMARY AND OUTLOOK 90 Under the operational conditions used in the present work the translation temperatures can be obtained from the Dopp Chapter 8 Summary and outlook In the present work reactive plasmas have been investigated by comparing experimentally obtained densities with the results from a simple chemical model. The studies have

More information

, MODELLING AND CONTROL OF SUSTAINED OSCILLATIONS IN THE CONTINUOUS EMULSION POLYMERIZATION OF VINYL ACETATE. by Mark James Pollock

, MODELLING AND CONTROL OF SUSTAINED OSCILLATIONS IN THE CONTINUOUS EMULSION POLYMERIZATION OF VINYL ACETATE. by Mark James Pollock , MODELLING AND CONTROL OF SUSTAINED OSCILLATIONS IN THE CONTINUOUS EMULSION POLYMERIZATION OF VINYL ACETATE by Mark James Pollock A Thesi s Submitted to the Schoo~ of Graduate Studies in Partial Fulfilment

More information

Observing the Doppler Absorption of Rubidium Using a Tunable Laser Diode System

Observing the Doppler Absorption of Rubidium Using a Tunable Laser Diode System Observing the Doppler Absorption of Rubidium Using a Tunable Laser Diode System Ryan Prenger 5/5/00 Final Submission Purdue University Physics Department Abstract Using a tunable laser diode, Doppler absorption

More information

Excimer Lasers Currently best UV laser sources Consist two atom types which repel each other eg nobel gas and halide or oxide which normally do not

Excimer Lasers Currently best UV laser sources Consist two atom types which repel each other eg nobel gas and halide or oxide which normally do not Excimer Lasers Currently best UV laser sources Consist two atom types which repel each other eg nobel gas and halide or oxide which normally do not bond But when excited/ionized these atoms attract Bound

More information

Light Emission. Today s Topics. Excitation/De-Excitation 10/26/2008. Excitation Emission Spectra Incandescence

Light Emission. Today s Topics. Excitation/De-Excitation 10/26/2008. Excitation Emission Spectra Incandescence Light Emission Excitation Emission Spectra Incandescence Absorption Spectra Today s Topics Excitation/De-Excitation Electron raised to higher energy level Electron emits photon when it drops back down

More information

Laser Induced Fluorescence of Iodine

Laser Induced Fluorescence of Iodine Laser Induced Fluorescence of Iodine (Last revised: FMH 29 Sep 2009) 1. Introduction In this experiment we are going to study the laser induced fluorescence of iodine in the gas phase. The aim of the study

More information

Eximer Lasers UV laser sources Consist two atom types which repel each other eg nobel gas and halide or oxide When excited/ionized atoms attract

Eximer Lasers UV laser sources Consist two atom types which repel each other eg nobel gas and halide or oxide When excited/ionized atoms attract Eximer Lasers UV laser sources Consist two atom types which repel each other eg nobel gas and halide or oxide When excited/ionized atoms attract Bound together separated by short distance Call this Excited

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

VIBRATORY STRESS ANALYSIS AND FATIGUE LIFE ESTIMATION OF TURBINE BLADE

VIBRATORY STRESS ANALYSIS AND FATIGUE LIFE ESTIMATION OF TURBINE BLADE VIBRATORY STRESS ANALYSIS AND FATIGUE LIFE ESTIMATION OF TURBINE BLADE By NALINAKSH S. VYAS A Thesis Submitted in fulfilment of the requirments of the degree of DOCTOR OF PHILOSOPHY. Z a xi UTE OR r o

More information

Analytical Spectroscopy Review

Analytical Spectroscopy Review Analytical Spectroscopy Review λ = wavelength ν = frequency V = velocity = ν x λ = 2.998 x 10 8 m/sec = c (in a vacuum) ν is determined by source and does not change as wave propogates, but V can change

More information

LASER. Light Amplification by Stimulated Emission of Radiation

LASER. Light Amplification by Stimulated Emission of Radiation LASER Light Amplification by Stimulated Emission of Radiation Laser Fundamentals The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light

More information

PHYSICAL VAPOR DEPOSITION OF THIN FILMS

PHYSICAL VAPOR DEPOSITION OF THIN FILMS PHYSICAL VAPOR DEPOSITION OF THIN FILMS JOHN E. MAHAN Colorado State University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

Figure 1 Relaxation processes within an excited state or the ground state.

Figure 1 Relaxation processes within an excited state or the ground state. Excited State Processes and Application to Lasers The technology of the laser (Light Amplified by Stimulated Emission of Radiation) was developed in the early 1960s. The technology is based on an understanding

More information

FLUIDELASTIC INSTABILITY OF HEAT EXCHANGER TUBE ARRAYS

FLUIDELASTIC INSTABILITY OF HEAT EXCHANGER TUBE ARRAYS FLUIDELASTIC INSTABILITY OF HEAT EXCHANGER TUBE ARRAYS by METIN YETISIR, B.Sc., M.Eng. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor

More information

22. Lasers. Stimulated Emission: Gain. Population Inversion. Rate equation analysis. Two-level, three-level, and four-level systems

22. Lasers. Stimulated Emission: Gain. Population Inversion. Rate equation analysis. Two-level, three-level, and four-level systems . Lasers Stimulated Emission: Gain Population Inversion Rate equation analysis Two-level, three-level, and four-level systems What is a laser? LASER: Light Amplification by Stimulated Emission of Radiation

More information

Phys 2310 Mon. Dec. 4, 2017 Today s Topics. Begin supplementary material: Lasers Reading for Next Time

Phys 2310 Mon. Dec. 4, 2017 Today s Topics. Begin supplementary material: Lasers Reading for Next Time Phys 2310 Mon. Dec. 4, 2017 Today s Topics Begin supplementary material: Lasers Reading for Next Time 1 By Wed.: Reading this Week Lasers, Holography 2 Homework this Week No Homework this chapter. Finish

More information

Molecular spectroscopy

Molecular spectroscopy Molecular spectroscopy Origin of spectral lines = absorption, emission and scattering of a photon when the energy of a molecule changes: rad( ) M M * rad( ' ) ' v' 0 0 absorption( ) emission ( ) scattering

More information

Phys 2310 Fri. Dec. 12, 2014 Today s Topics. Begin Chapter 13: Lasers Reading for Next Time

Phys 2310 Fri. Dec. 12, 2014 Today s Topics. Begin Chapter 13: Lasers Reading for Next Time Phys 2310 Fri. Dec. 12, 2014 Today s Topics Begin Chapter 13: Lasers Reading for Next Time 1 Reading this Week By Fri.: Ch. 13 (13.1, 13.3) Lasers, Holography 2 Homework this Week No Homework this chapter.

More information

X-Rays From Laser Plasmas

X-Rays From Laser Plasmas X-Rays From Laser Plasmas Generation and Applications I. C. E. TURCU CLRC Rutherford Appleton Laboratory, UK and J. B. DANCE JOHN WILEY & SONS Chichester New York Weinheim Brisbane Singapore Toronto Contents

More information

Plasma Chamber. Fortgeschrittenes Praktikum I. Supervisors: Baran Eren, Dr. Marco Wisse, Dr. Laurent Marot. Abstract

Plasma Chamber. Fortgeschrittenes Praktikum I. Supervisors: Baran Eren, Dr. Marco Wisse, Dr. Laurent Marot. Abstract Plasma Chamber Fortgeschrittenes Praktikum I Supervisors: Baran Eren, Dr. Marco Wisse, Dr. Laurent Marot Abstract The aims of this experiment are to be familiar with a vacuum chamber, to understand what

More information

The Generation of Ultrashort Laser Pulses

The Generation of Ultrashort Laser Pulses The Generation of Ultrashort Laser Pulses The importance of bandwidth More than just a light bulb Two, three, and four levels rate equations Gain and saturation But first: the progress has been amazing!

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

Ar and Kr ion lasers

Ar and Kr ion lasers Types of Lasers Ar and Kr ion lasers Nd:YAG and Nd:YLF lasers CO 2 lasers Excimer lasers Dye lasers Transition metal lasers Optical parametric amplification Ar and Kr ion lasers Noble gas ions are created

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

Small Signal Gain in DPAL Systems

Small Signal Gain in DPAL Systems Physical Sciences Inc. VG11-010 Small Signal Gain in DPAL Systems Kristin L. Galbally-Kinney, Daniel L. Maser, William J. Kessler, Wilson T. Rawlins, and Steven J. Davis 20 New England Business Center

More information

Control of gas discharge plasma properties utilizing nonlocal electron energy distribution functions DOE-OFS Plasma Science Center

Control of gas discharge plasma properties utilizing nonlocal electron energy distribution functions DOE-OFS Plasma Science Center 1 Control of gas discharge plasma properties utilizing nonlocal electron energy distribution functions DOE-OFS Vladimir Demidov Current cooperation with: Mark Koepke (WVU), Igor Kaganovich (PPPL), Yevgeny

More information

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission. Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

Measuring State Parameters of the Atmosphere

Measuring State Parameters of the Atmosphere Measuring State Parameters of the Atmosphere Some Applications of Atmospheric Thermodynamics Earth Observing Laboratory, NCAR IDEAS-4 Tutorial Introduction Goals of This Presentation Present two complementary

More information

Temperature time-history measurements in a shock tube using diode laser absorption of CO 2 near 2.7 µm

Temperature time-history measurements in a shock tube using diode laser absorption of CO 2 near 2.7 µm 23 rd ICDERS July 24-29, 2011 Irvine, USA Temperature time-history measurements in a shock tube using diode laser absorption of CO 2 near 2.7 µm Wei Ren, Sijie Li, David F Davidson, and Ronald K Hanson

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

PH300 Spring Homework 06

PH300 Spring Homework 06 PH300 Spring 2011 Homework 06 Total Points: 30 1. (1 Point) Each week you should review both your answers and the solutions for the previous week's homework to make sure that you understand all the questions

More information

Nonequilibrium discharges in air and nitrogen plasmas at atmospheric pressure*

Nonequilibrium discharges in air and nitrogen plasmas at atmospheric pressure* Pure Appl. Chem., Vol. 74, No. 3, pp. 337 347, 2002. 2002 IUPAC Nonequilibrium discharges in air and nitrogen plasmas at atmospheric pressure* Charles H. Kruger, Christophe O. Laux, Lan Yu, Denis M. Packan,

More information

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light What are Lasers? What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light emitted in a directed beam Light is coherenent

More information

FATIGUE BEHAVIOUR OF OFFSHORE STEEL JACKET PLATFORMS

FATIGUE BEHAVIOUR OF OFFSHORE STEEL JACKET PLATFORMS FATIGUE BEHAVIOUR OF OFFSHORE STEEL JACKET PLATFORMS by ASHOK GUPTA THESIS SUBMITTED TO THE INDIAN INSTITUTE OF TECHNOLOGY, DELHI FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY Department of Civil

More information

Instructor: Welcome to. Phys 774: Principles of Spectroscopy. Fall How can we produce EM waves? Spectrum of Electromagnetic Radiation and Light

Instructor: Welcome to. Phys 774: Principles of Spectroscopy. Fall How can we produce EM waves? Spectrum of Electromagnetic Radiation and Light Welcome to Phys 774: Principles of Spectroscopy Fall 2007 Instructor: Andrei Sirenko Associate Professor at the Dept. of Physics, NJIT http://web.njit.edu/~sirenko 476 Tiernan Office hours: After the classes

More information

LASERS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam

LASERS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam LASERS Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam General Objective To understand the principle, characteristics and types

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

FLow VISUALI ZATI ON AND DYNAMI CS

FLow VISUALI ZATI ON AND DYNAMI CS ,- FLow VISUALI ZATI ON AND DYNAMI CS, OF HEAT EXCHANGER TUBE' ARRAYS IN WATER CROSS-~LOW y by AH~IED ALI ABD-RABBO, B.Sc., H~A:SC.,, A Thesis,,, Submitted to the School of Graduate Studies in Partial

More information

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 161 CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 7.1 SUMMARY OF THE PRESENT WORK Nonlinear optical materials are required in a wide range of important applications, such as optical

More information

ESS15 Lecture 7. The Greenhouse effect.

ESS15 Lecture 7. The Greenhouse effect. ESS15 Lecture 7 The Greenhouse effect. Housekeeping. First midterm is in one week. Open book, open notes. Covers material through end of Friday s lecture Including today s lecture (greenhouse effect) And

More information

LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: Next Up: Cameras and optics Eyes to web: Final Project Info

LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: Next Up: Cameras and optics Eyes to web: Final Project Info LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: 14.3 Next Up: Cameras and optics Eyes to web: Final Project Info 1 Group Exercise Your pennies will simulate a two state atom; tails = ground state,

More information

Quantum Electronics Laser Physics. Chapter 5. The Laser Amplifier

Quantum Electronics Laser Physics. Chapter 5. The Laser Amplifier Quantum Electronics Laser Physics Chapter 5. The Laser Amplifier 1 The laser amplifier 5.1 Amplifier Gain 5.2 Amplifier Bandwidth 5.3 Amplifier Phase-Shift 5.4 Amplifier Power source and rate equations

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Spectroscopic investigations of Rb- and Cs- rare gas systems

Spectroscopic investigations of Rb- and Cs- rare gas systems Spectroscopic investigations of Rb- and Cs- rare gas systems S. J. Davis *, W. T. Rawlins, K. L. Galbally-Kinney, and W.J. Kessler Physical Sciences Inc., 20 New England Business Center, Andover, MA 01810

More information

EXPERIMENT #5 The Franck-Hertz Experiment: Electron Collisions with Mercury

EXPERIMENT #5 The Franck-Hertz Experiment: Electron Collisions with Mercury EXPERIMENT #5 The Franck-Hertz Experiment: Electron Collisions with Mercury GOALS Physics Measure the energy difference between the ground state and the first excited state in mercury atoms, and conclude

More information

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones

OPTI 511, Spring 2016 Problem Set 9 Prof. R. J. Jones OPTI 5, Spring 206 Problem Set 9 Prof. R. J. Jones Due Friday, April 29. Absorption and thermal distributions in a 2-level system Consider a collection of identical two-level atoms in thermal equilibrium.

More information

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes Authors: Nathaniel. M. Gabor 1,*, Zhaohui Zhong 2, Ken Bosnick 3, Paul L.

More information

Two-electron systems

Two-electron systems Two-electron systems Laboratory exercise for FYSC11 Instructor: Hampus Nilsson hampus.nilsson@astro.lu.se Lund Observatory Lund University September 12, 2016 Goal In this laboration we will make use of

More information

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING

PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING PRINCIPLES OF PLASMA DISCHARGES AND MATERIALS PROCESSING Second Edition MICHAEL A. LIEBERMAN ALLAN J, LICHTENBERG WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC PUBLICATION CONTENTS PREFACE xrrii PREFACE

More information

Review: Conduction. Breaking News

Review: Conduction. Breaking News CH EN 3453 Heat Transfer Review: Conduction Breaking News No more homework (yay!) Final project reports due today by 8:00 PM Email PDF version to report@chen3453.com Review grading rubric on Project page

More information

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240 John D. Williams, Ph.D. Department of Electrical and Computer Engineering 406 Optics Building - UAHuntsville,

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful Main Requirements of the Laser Optical Resonator Cavity Laser Gain Medium of 2, 3 or 4 level types in the Cavity Sufficient means of Excitation (called pumping) eg. light, current, chemical reaction Population

More information

SCINTILLATION DETECTORS AND PM TUBES

SCINTILLATION DETECTORS AND PM TUBES SCINTILLATION DETECTORS AND PM TUBES General Characteristics Introduction Luminescence Light emission without heat generation Scintillation Luminescence by radiation Scintillation detector Radiation detector

More information

Atomic Emission Spectra

Atomic Emission Spectra Atomic Emission Spectra Objectives The objectives of this laboratory are as follows: To build and calibrate a simple meter-stick spectroscope that is capable of measuring wavelengths of visible light.

More information

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

STUDIES OF SOMEd-l,3,4-0XADIAZOLINES -OXADIAZOLINONES

STUDIES OF SOMEd-l,3,4-0XADIAZOLINES -OXADIAZOLINONES STUDIES OF SOMEd-l,3,4-0XADIAZOLINES AND -OXADIAZOLINONES THE SYNTHESIS AND THERMAL DECOMPOSITION OF OXADIAZOLINES AND 5,5-DIPHENYL-2-(ARYLIMINO)-~-l,3,4 5,5-DIALKYL-~-l,3,4- OXADIAZOLIN-2-0NES by AUDREY

More information

Laser Dissociation of Protonated PAHs

Laser Dissociation of Protonated PAHs 100 Chapter 5 Laser Dissociation of Protonated PAHs 5.1 Experiments The photodissociation experiments were performed with protonated PAHs using different laser sources. The calculations from Chapter 3

More information

Academic and Research Staff. Prof. R. Weiss. Graduate Students. G. D. Blum T. R. Brown S. Ezekiel

Academic and Research Staff. Prof. R. Weiss. Graduate Students. G. D. Blum T. R. Brown S. Ezekiel VII. GRAVITATION RESEARCH Academic and Research Staff Prof. R. Weiss Graduate Students G. D. Blum T. R. Brown S. Ezekiel RESEARCH OBJECTIVES Research in this group is concerned with an experimental investigation

More information

Pulsed Laser Deposition; laser ablation. Final apresentation for TPPM Diogo Canavarro, MEFT

Pulsed Laser Deposition; laser ablation. Final apresentation for TPPM Diogo Canavarro, MEFT Pulsed Laser Deposition; laser ablation Final apresentation for TPPM Diogo Canavarro, 56112 MEFT Summary What is PLD? What is the purpose of PLD? How PLD works? Experimental Setup Processes in PLD The

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title STABLE 1 --> 0 CARBON MONOXIDE LASER Permalink https://escholarship.org/uc/item/4w1948z8 Author Gerlach, R. Publication

More information

Theory of Gas Discharge

Theory of Gas Discharge Boris M. Smirnov Theory of Gas Discharge Plasma l Springer Contents 1 Introduction 1 Part I Processes in Gas Discharge Plasma 2 Properties of Gas Discharge Plasma 13 2.1 Equilibria and Distributions of

More information

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Time-resolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy

More information

Interested in exploring science or math teaching as a career?

Interested in exploring science or math teaching as a career? Interested in exploring science or math teaching as a career? Start with Step 1: EDUC 2020 (1 credit) Real experience teaching real kids! No commitment to continue with education courses Registration priority

More information

Wolfgang Demtroder. Laser Spectroscopy. Basic Concepts and Instrumentation. Second Enlarged Edition With 644 Figures and 91 Problems.

Wolfgang Demtroder. Laser Spectroscopy. Basic Concepts and Instrumentation. Second Enlarged Edition With 644 Figures and 91 Problems. Wolfgang Demtroder Laser Spectroscopy Basic Concepts and Instrumentation Second Enlarged Edition With 644 Figures and 91 Problems Springer Contents 1. Introduction 1 2. Absorption and Emission of Light

More information

Laser Absorption Spectroscopy in Inductive Plasma Generator Flows

Laser Absorption Spectroscopy in Inductive Plasma Generator Flows nd AIAA Aerospace Sciences Meeting and Exhibit -8 January, Reno, Nevada AIAA - AIAA - Laser Absorption Spectroscopy in Inductive Plasma Generator Flows Makoto Matsui, Georg Herdrich, Monika Auweter-Kurtz,

More information

Infrared Spectroscopy: Identification of Unknown Substances

Infrared Spectroscopy: Identification of Unknown Substances Infrared Spectroscopy: Identification of Unknown Substances Suppose a white powder is one of the four following molecules. How can they be differentiated? H N N H H H H Na H H H H H A technique that is

More information

Vibrational Spectroscopy of Molecules on Surfaces

Vibrational Spectroscopy of Molecules on Surfaces Vibrational Spectroscopy of Molecules on Surfaces Edited by John T. Yates, Jr. University of Pittsburgh Pittsburgh, Pennsylvania and Theodore E. Madey National Bureau of Standards Gaithersburg, Maryland

More information

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography

Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography Study on Semiconductor Lasers of Circular Structures Fabricated by EB Lithography Ashim Kumar Saha (D3) Supervisor: Prof. Toshiaki Suhara Doctoral Thesis Defense Quantum Engineering Design Course Graduate

More information

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmon Amplification by Stimulated Emission of Radiation By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmons (SPs) Quanta of electron oscillations in a plasma. o Electron gas in

More information

high energy state for the electron in the atom low energy state for the electron in the atom

high energy state for the electron in the atom low energy state for the electron in the atom Atomic Spectra Objectives The objectives of this experiment are to: 1) Build and calibrate a simple spectroscope capable of measuring wavelengths of visible light. 2) Measure several wavelengths of light

More information

Quadrupole Storage Mass Spectrometry

Quadrupole Storage Mass Spectrometry Quadrupole Storage Mass Spectrometry RAYMOND E. MARCH AND RICHARD J. HUGHES Trent University Peterborough, Ontario, Canada with a historical review by John F. J. Tbdd University of Kent Canterbury, Kent,

More information

PSEUDO-DIFFERENTIAL OPERATORS WITH ROUGH COEFFICIENTS

PSEUDO-DIFFERENTIAL OPERATORS WITH ROUGH COEFFICIENTS PSEUDO-DIFFERENTIAL OPERATORS WITH ROUGH COEFFICIENTS By LUQIWANG B.Sc., M.Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

08 - Miscellaneous and historical detectors

08 - Miscellaneous and historical detectors 08 - Miscellaneous and historical detectors Jaroslav Adam Czech Technical University in Prague Version 2 Jaroslav Adam (CTU, Prague) DPD_08, Miscellaneous and historical detectors Version 2 1 / 25 Streamer

More information

Supplementary Figures

Supplementary Figures Supplementary Figures iso ( =2900 cm -1 ) 1.0 0.8 0.6 0.4 0.2 0.0-0.2-0.4 pump cm -1 3450 cm -1 cm -1 cm -1-0.5 0.0 0.5 1.0 1.5 2.0 2.5 delay [ps] Supplementary Figure 1: Raw infrared pump-probe traces.

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

Investigation of Water Fragments

Investigation of Water Fragments National Nuclear Research University MEPhI Federal State Autonomous Institution for Higher Education 31 Kashirskoe shosse 115409 Moscow, Russia VAT registration number, 7724068140 REG. No 1037739366477

More information

Chapter 28 Assignment Solutions

Chapter 28 Assignment Solutions Chapter 28 Assignment Solutions Page 770 #23-26, 29-30, 43-48, 55 23) Complete the following concept map using these terms: energy levels, fixed electron radii, Bohr model, photon emission and absorption,

More information

[2] (b) An electron is accelerated from rest through a potential difference of 300 V.

[2] (b) An electron is accelerated from rest through a potential difference of 300 V. 1 (a) In atomic physics electron energies are often stated in electronvolts (ev) Define the electronvolt. State its value in joule.. [2] (b) An electron is accelerated from rest through a potential difference

More information