INEXTENSIBLE FLOWS OF CURVES IN THE EQUIFORM GEOMETRY OF THE PSEUDO-GALILEAN SPACE G 1 3

Size: px
Start display at page:

Download "INEXTENSIBLE FLOWS OF CURVES IN THE EQUIFORM GEOMETRY OF THE PSEUDO-GALILEAN SPACE G 1 3"

Transcription

1 TWMS J. App. Eng. Math. V.6, N.2, 2016, pp INEXTENSIBLE FLOWS OF CURVES IN THE EQUIFORM GEOMETRY OF THE PSEUDO-GALILEAN SPACE G 1 3 HANDAN ÖZTEKIN 1, HÜLYA GÜN BOZOK 2, Abstract. In this paper, we study inextensible flows of curves in 3-dimensional pseudo- Galilean space. We give necessary and sufficient conditions for inextensible flows of curves according to equiform geometry in pseudo-galilean space. Keywords: inextensible flows, equiform differential geometry, Galilean space, pseudo- Galilean space. AMS Subject Classification: 53A35 1. Introduction The flow of a curve is said to be inextensible if its arclength is preserved. Physically, the inextensible curve flows give rise to motions in which no strain energy is induced. The flows of inextensible curve and surface are used to solve many problems in computer vision [8], [12], computer animation [1] and even structural mechanics [17]. Especially the methods used in this paper developed by Gage and Hamilton [6] and Grayson [7]. The differentiation between heat flows and inextensible flows of planar curves were elaborated in detail, and some examples of the latter were given by [10]. Also, a general formulation for inextensible flows of curves and developable surfaces in R 3 are exposed by [9]. Latifi et al.[11] studied inextensible flows of curves in Minkowski 3-space. Ogrenmis et al.[13] studied inextensible curves in the Galilean space G 3, moreover inelastic flows of curves according to equiform in Galilean space given in [18]. The curves and the surfaces in G 1 3 are described in [14, 2, 3, 4]. Theory of curves and the curves of constant curvature in the equiform differential geometry of the isotropic space I3 1 and I3 2 and the Galilean space G 3 are described in [15] and [16], respectively. Also, Divjak et al.[5] studied the equiform differential geometry of curves in the pseudo-galilean space. In this paper, we investigate inextensible flows of curves in the equiform geometry of the pseudo-galilean space G 1 3. Then we obtain partial differential equations in terms of inextensible flows of curves according to equiform in G Firat University, Faculty of Science, Department of Mathematics, Elazığ, Turkey. handanoztekin@gmail.com; 2 Osmaniye Korkut Ata University, Faculty of Arts and Sciences, Department of Mathematics, Osmaniye, Turkey. hulya-gun@hotmail.com; Manuscript received: June 10, 2014; accepted: December 15, TWMS Journal of Applied and Engineering Mathematics, Vol.6, No.2; c Işık University, Department of Mathematics, 2016; all rights reserved. 175

2 176 TWMS J. APP. ENG. MATH. V.6, N.2, Preliminaries The pseudo-galilean geometry is one of the real Cayley-Klein geometries of projective signature (0,0,+,-, explained in [3]. As in [3], pseudo-galilean inner product can be written as { x1 x v 1, v 2 2, if x 1 0 x 2 0 y 1 y 2 z 1 z 2, if x 1 0 x 2 0 where v 1 (x 1, y 1, z 1 and v 2 (x 2, y 2, z 2. The pseudo-galilean norm of the vector v (x, y, z defined by { x, if x 0 v y 2 z 2, if x 0 In pseudo-galilean space a curve is given by α : I G 1 3 α (t (x (t, y (t, z (t (1 where I R and x (t, y (t, z (t C 3. A curve α given by (1 is admissible if x (t 0 [3]. The curves in pseudo-galilean space are characterized as follows [2] An admissible curve in G 1 3 can be parametrized by arclength t s, given in coordinate form α (s (s, y (s, z (s. (2 For an admissible curve α : I R G 1 3, the curvature κ (s and the torsion τ (s are defined by κ (x y 2 z 2, (3 τ (s 1 κ 2 (s det ( α (s, α (s, α (s. (4 The associated trihedron is given by t(s α (s ( 1, y (s, z (s n(s b(s 1 κ (s α (s 1 ( 0, y (s, z (s (5 κ (s 1 ( 0, z (s, y (s κ (s [4]. The vectors t (s,n (s and b (s are called the vectors of tangent, principal normal and binormal line of α, respectively. The curve α given by (2 is timelike if n (s is spacelike vector. For derivatives of tangent vector t (s, principal normal vector n (s and binormal vector b (s, respectively, the following Frenet formulas hold t (s κ (s n (s, n (s τ (s b (s, (6 b (s τ (s n (s. If the admissible curve β is given by β (x (x, y (x, 0 and for this admissible curve the curvature κ (s and the torsion τ (s are defined by κ (x y (x τ (x a 2 (x a 3 (x

3 H. ÖZTEKIN, H. GÜN BOZOK, : INEXTENSIBLE FLOWS OF CURVES IN THE G where a (x (0, a 2 (x, a 3 (x. The associated trihedron is given by t (x ( 1, y (x, 0, n (x (0, a 2 (x, a 3 (x, b (x (0, a 3 (x, a 2 (x. For derivatives of tangent vector t (s, principal normal vector n (s and binormal vector b (s, respectively, the following Frenet formulas hold t (x κ (x (cosh φ (x n (x sinh φ (x b (x n (x τ (x b (x (7 b (x τ (x n (x where φ is the angle between a (x and the plane z 0 [4]. 3. Frenet Formulas in Equiform Geometry in G 1 3 Let α : I G 1 3 be an admissible curve. We define the equiform parameter of α by ds σ : ρ κds, for ρ 1 κ is the radius of curvature of the curve α. Then ds 1 ρ, i.e., ds ρ. (8 Let h be a homothety with the center in the origin and the coefficient λ. α h (α, we obtain s λs and ρ λρ If we put where s is the arclength parameter of α and ρ the radius of curvature of this curve. Then, σ is an equiform invariant parameter of α [5]. From now on, we define the Frenet formula of the curve α with respect to the equiform invariant parameter σ in G 1 3. The vector T dα ds is called a tangent vector of the curve α in the equiform geometry. Using (5 and (8 we have T dα ds ds ρ dα ds ρ t. (9 Also, we have the principal normal vector and binormal vector by N ρ n, B ρ b. (10 One can say that the trihedron {T, N, B} is an equiform invariant trihedron of the curve α. On the other hand, the derivations of these vectors with respect to σ are given by T dt N dn B db ρt + N, ρn + ρτb, ρb + ρτn.

4 178 TWMS J. APP. ENG. MATH. V.6, N.2, 2016 Definition 3.1. The function K : I R defined by K ρ is called the equiform curvature of the curve α. Definition 3.2. The function T : I R defined by T ρτ τ κ is called the equiform torsion of the curve α. Then we can write the Frenet formulas in the equiform geometry of the pseudo-galilean space as follows [5] dt dn db K.T + N, K.N + T.B (11 T.N + K.B 4. Inextensible Flows of Curves According to Equiform in pseudo-galilean Space G 1 3 Throughout this paper, we assume that F : [0, l] [0, w] G 1 3 is a one parameter family of smooth curves in pseudo-galilean space G 1 3, where l is the arclength of initial curve. Let u be the curve parametrization variable, 0 u l. We put v F u, from which the arclength of F is defined by s (u u 0 vdu. Also, the operator is given in terms of u by 1, and the arclength parameter v u is given by ds vdu. On the equiform invariant orthonormal frame {T, N, B} of a curve α in G 1 3 any flow of F can be written by F ft + gn + hb (12 for f, g, h are the tangential, principal normal, binormal speeds of the curve in G 1 3, respectively. We set s (u, t u 0 vdu, it is called the arclength variation of F. Then, the requirement that the curve not be subject to any elongation or compression can be expressed by the condition u v s (u, t du 0, (13 0 for all u [0, l]. Definition 4.1. A curve evolution F (u, tand its flow F in pseudo-galilean space G1 3 are said to be inextensible if F u 0.

5 H. ÖZTEKIN, H. GÜN BOZOK, : INEXTENSIBLE FLOWS OF CURVES IN THE G Lemma 4.1. Let F ft +gn +hb be a smooth flow of the curve α in pseudo-galilean space G 1 3. The flow is inextensible if and only if v f + fvk (14 u Proof. Let F be a smooth flow of the curve F in pseudo-galilean space G1 3. From the definition of v, we obtain v v F u, (ft + gn + hb. (15 u From (11 we obtain T, v ( f u + fvk If we make necessary calculations, we get (14. ( ( T + + fv + hvt + gvk N + + gvt + hvk B. u u Theorem 4.1. Suppose that F ft + gn + hb be a smooth flow of the curve F in pseudo-galilean space G 1 3. The flow is inextensible if and only if f u fk. Proof. Using (13, we have u v u ( f s (u, t du u + fvk 0. (16 Substituting (14 in (16 complete the proof of the theorem. 0 Suppose that, v 1 and the local coordinate u corresponds to the curve arc length s. Lemma 4.2. Let F ft +gn +hb be a smooth flow of the curve α in pseudo-galilean space G 1 3. Using (11 we have i if N, N 1 and B, B 1 we have ( ( T + f + gk + ht N + + gt + hk B (17 ( N + f + gk + ht T + ϕb (18 ( B + gt + hk T + ϕn (19 ii if N, N 1 and B, B 1 we have ( ( T + f + gk + ht N + + gt + hk B (20 ( N + f + gk + ht T ϕb (21 ( B + gt + hk T ϕn (22 N, B provided that 0 ( + f + gk + ht 0.

6 180 TWMS J. APP. ENG. MATH. V.6, N.2, 2016 Proof. Using definition of F, we have Using (11, we have T ( f + fk T F (ft + gn + hb. ( ( T + + f + gk + ht N + + gt + hk B (23 On the other hand using theorem 4.1. in (23, we get ( ( T + f + gk + ht N + + gt + hk B. i Now we differentiate the Frenet frame by t: 0 ( T, N + f + gk + ht 0 ( T, B + gt + hk + 0 N, B ϕ + N, B + T, B T, N Then, a straight forward computation using above system gives ( N + f + gk + ht T + ϕb ( B + gt + hk T + ϕn ( N, B provided that + f + gk + ht 0. So, we obtain the lemma 4.2. (i. ii Now we differentiate the Frenet frame by t: 0 ( T, N + f + gk + ht 0 ( T, B + gt + hk + 0 N, B ϕ + N, B + T, N T, B Then, a straight forward computation using above system gives ( N + f + gk + ht T ϕb ( B + gt + hk T ϕn ( N, B provided that + f + gk + ht 0. Thus, we obtain the lemma 4.2. (ii.

7 H. ÖZTEKIN, H. GÜN BOZOK, : INEXTENSIBLE FLOWS OF CURVES IN THE G Theorem 4.2. Let F be inextensible. Then, using (11, the following system of partial differential equations holds: i if N, N 1 and B, B 1 we have K T ϕ ii if N, N 1 and B, B 1 we have 0 ( + gt + hk + ϕ 2 + (gt + (hk K 0 ( T + gt + hk ϕ ϕ 2 + (gt + (hk ( N, B provided that + f + gk + ht 0. Proof. i Using (17, we have T [( ( ] + f + gk + ht N + + gt + hk B [( 2 g 2 + (f + (gk + ] (ht N ( + + f + gk + ht (KN + TB (gt + ( (hk B + + gt + hk (TN + KB On the other hand, from (11, we have T (KT + N K ( T + K ( + f + gk + ht + f + gk + ht T + ϕb Hence we see that K 0, and ϕ 2 + (gt + (hk. ( N, B provided that + f + gk + ht 0. ( N + K + gt + hk B

8 182 TWMS J. APP. ENG. MATH. V.6, N.2, 2016 Also, we have from lemma 4.2.(i B [ ( + gt + hk 2 + (gt + (hk + ϕ N + ϕ (KN + TB On the other hand, from (11, we have B Hence we see that (TN + KB ( T + Kϕ N + ( K + Tϕ B ] T + ϕn ( T + gt + hk (KT + N [ ( ( ] T + f + gk + ht K + gt + hk ( T + gt + hk + ϕ. ii Using (20, we have T [( + f + gk + ht [( 2 g 2 + (f + (gk + ] (ht (gt + (hk B + On the other hand, from (11, we have T Hence we see that and (KT + N K ( T + K ( + f + gk + ht ϕ N, B provided that ( ] N + + gt + hk B + f + gk + ht ( N + ( + gt + hk (TN + KB T ϕb K 0, 2 + (gt + (hk. ( + f + gk + ht 0 + f + gk + ht (KN + TB ( N + K + gt + hk B

9 H. ÖZTEKIN, H. GÜN BOZOK, : INEXTENSIBLE FLOWS OF CURVES IN THE G Also, we have from lemma 4.2.(ii B [( + gt + hk 2 + (gt + (hk ϕ N ϕ (KN + TB On the other hand, from (11, we have B (TN + KB ( T Kϕ N + ( K Tϕ B ] T ϕn ( T + + gt + hk (KT + N [ ( ( ] T + f + gk + ht + K + gt + hk Hence we see that ( T + gt + hk ϕ. Thus, we prove the theorem. References [1] Desbrun,M. and Cani-Gascuel,M.P., (1998, Active implicit surface for animation, Proc. Graphics Interface-Canadian Inf. Process. Soc., pp [2] Divjak,B., (2003, Special curves on ruled surfaces in Galilean and pseudo-galilean space, Acta Math. Hungar. 98(3, pp [3] Divjak,B., (1998, Curves in pseudo-galilean geometry, Annales Univ. Sci. Budapest, 41, pp [4] Divjak,B. and Milin-Sipus,Z., (2003, Special curves on the ruled surfaces in Galilean and pseudo- Galilean space, Acta Math. Hungar., 98(3, pp [5] Divjak,B. and Erjavec,Z., (2008, The equiform differential geometry of curves in the pseudo-galilean space, Mathematical Communitations, 13, pp [6] Gage,M. and Hamilton,R.S., (1986, The heat equation shrinking convex plane curves, J. Differential Geom., 23, pp [7] Grayson,M., (1987, The heat equation shrinks embedded plane curves to round points, J. Differential Geom., 26, pp [8] Kass,M., Witkin,A. and Terzopoulos,D., (1987, Snakes: active contour models, Proc. 1st Int. Conference on Computer Vision, pp [9] Kwon,D.Y., Park,F.C. and Chi,D.P., (2005, Inextensible flows of curves and developable surfaces, Applied Mathematics Letters, 18, pp [10] Kwon,D.Y. and Park,F.C., (1999, Evolution of inelastic plane curves, Appl. Math. Lett., 12 pp [11] Latifi,D. and Razavi,A., (2008, Inextensible flows of curves in Minkowskian Space, Adv. Studies Theor. Phys. 2(16, pp [12] Lu,H.Q., Todhunter,J.S. and Sze,T.W., (1993, Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP, Image Underst., 56, pp [13] Ogrenmis,A.O. and Yeneroglu,M., (2010, Inextensible curves in the Galilean space, International Journal of the Physical Sciences, 5(9,pp [14] Ogrenmis,A.O., Ergut,M. and Bektas,M., (2007, On the Helices in the Galilean Space G 3, Iran. J. Sci, Tech. Trans. A Sci., 31(2, pp

10 184 TWMS J. APP. ENG. MATH. V.6, N.2, 2016 [15] Pavkovic,B.J., (1986, Equiform geometry of curves in the isotropic space I 1 3 and I 2 3, Rad JAZU., pp [16] Pavkovic,B.J. and Kamenarovic,I., (1987,The equiform differential geometry of curves in the Galilean space G 3, Glasnik Mat. 22(42, pp [17] Unger,D.J., (1991, Developable surfaces in elastoplastic fracture mechanics, Int. J. Fract., 50, pp [18] Yoon,D.W., (2011, Inelastic flows of curves according to equiform in Galilean space, Journal of the Chungcheong Mathematical Society, 24(4. Handan Öztekin is currently working as an associate professor in the Department of Mathematics of Faculty of Science in Firat University, Turkey. She received her B.S. and M.S. degrees from Firat University. Her area of interest includes Lorentzian space and Galilean space. Hülya Gün Bozok is working as a research assistant in the Department of Mathematics of Faculty of Arts and Science in Osmaniye Korkut Ata University, Turkey. She received her Ph.D. degree from Firat University. Her area of interest includes Galilean space.

Inextensible Flows of Curves in Minkowskian Space

Inextensible Flows of Curves in Minkowskian Space Adv. Studies Theor. Phys., Vol. 2, 28, no. 16, 761-768 Inextensible Flows of Curves in Minkowskian Space Dariush Latifi Department of Mathematics, Faculty of Science University of Mohaghegh Ardabili P.O.

More information

Inelastic Admissible Curves in the Pseudo Galilean Space G 3

Inelastic Admissible Curves in the Pseudo Galilean Space G 3 Int. J. Open Problems Compt. Math., Vol. 4, No. 3, September 2011 ISSN 1998-6262; Copyright ICSRS Publication, 2011 www.i-csrs.org Inelastic Admissible Curves in the Pseudo Galilean Space G 3 1 Alper Osman

More information

A Note on Inextensible Flows of Partially & Pseudo Null Curves in E 4 1

A Note on Inextensible Flows of Partially & Pseudo Null Curves in E 4 1 Prespacetime Journal April 216 Volume 7 Issue 5 pp. 818 827 818 Article A Note on Inextensible Flows of Partially & Pseudo Null Curves in E 4 1 Zühal Küçükarslan Yüzbaşı 1 & & Mehmet Bektaş Firat University,

More information

The equiform differential geometry of curves in the pseudo-galilean space

The equiform differential geometry of curves in the pseudo-galilean space Mathematical Communications 13(2008), 321-332 321 The equiform differential geometry of curves in the pseudo-galilean space Zlatko Erjavec and Blaženka Divjak Abstract. In this paper the equiform differential

More information

Inextensible Flows of Curves in Lie Groups

Inextensible Flows of Curves in Lie Groups CJMS. 113, 3-3 Caspian Journal of Mathematical Sciences CJMS University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 1735-611 Inextensible Flows of Curves in Lie Groups Gökmen Yıldız a and

More information

Determination of the Position Vectors of Curves from Intrinsic Equations in G 3

Determination of the Position Vectors of Curves from Intrinsic Equations in G 3 Applied Mathematics Determination of the Position Vectors of Curves from Intrinsic Equations in G 3 Handan ÖZTEKIN * and Serpil TATLIPINAR Department of Mathematics, Firat University, Elazig, Turkey (

More information

The General Solutions of Frenet s System in the Equiform Geometry of the Galilean, Pseudo-Galilean, Simple Isotropic and Double Isotropic Space 1

The General Solutions of Frenet s System in the Equiform Geometry of the Galilean, Pseudo-Galilean, Simple Isotropic and Double Isotropic Space 1 International Mathematical Forum, Vol. 6, 2011, no. 17, 837-856 The General Solutions of Frenet s System in the Equiform Geometry of the Galilean, Pseudo-Galilean, Simple Isotropic and Double Isotropic

More information

The equiform differential geometry of curves in 4-dimensional galilean space G 4

The equiform differential geometry of curves in 4-dimensional galilean space G 4 Stud. Univ. Babeş-Bolyai Math. 582013, No. 3, 393 400 The equiform differential geometry of curves in 4-dimensional galilean space G 4 M. Evren Aydin and Mahmut Ergüt Abstract. In this paper, we establish

More information

THE CHARACTERIZATIONS OF GENERAL HELICES IN THE 3-DIMEMSIONAL PSEUDO-GALILEAN SPACE

THE CHARACTERIZATIONS OF GENERAL HELICES IN THE 3-DIMEMSIONAL PSEUDO-GALILEAN SPACE SOOCHOW JOURNAL OF MATHEMATICS Volume 31, No. 3, pp. 441-447, July 2005 THE CHARACTERIZATIONS OF GENERAL HELICES IN THE 3-DIMEMSIONAL PSEUDO-GALILEAN SPACE BY MEHMET BEKTAŞ Abstract. T. Ikawa obtained

More information

CERTAIN CLASSES OF RULED SURFACES IN 3-DIMENSIONAL ISOTROPIC SPACE

CERTAIN CLASSES OF RULED SURFACES IN 3-DIMENSIONAL ISOTROPIC SPACE Palestine Journal of Mathematics Vol. 7(1)(2018), 87 91 Palestine Polytechnic University-PPU 2018 CERTAIN CLASSES OF RULED SURFACES IN 3-DIMENSIONAL ISOTROPIC SPACE Alper Osman Ogrenmis Communicated by

More information

On T-slant, N-slant and B-slant Helices in Pseudo-Galilean Space G 1 3

On T-slant, N-slant and B-slant Helices in Pseudo-Galilean Space G 1 3 Filomat :1 (018), 45 5 https://doiorg/1098/fil180145o Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://wwwpmfniacrs/filomat On T-slant, N-slant and B-slant

More information

On a family of surfaces with common asymptotic curve in the Galilean space G 3

On a family of surfaces with common asymptotic curve in the Galilean space G 3 Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 9 2016), 518 523 Research Article On a family of surfaces with common asymptotic curve in the Galilean space G 3 Zühal Küçükarslan Yüzbaşı Fırat

More information

Smarandache Curves and Spherical Indicatrices in the Galilean. 3-Space

Smarandache Curves and Spherical Indicatrices in the Galilean. 3-Space arxiv:50.05245v [math.dg 2 Jan 205, 5 pages. DOI:0.528/zenodo.835456 Smarandache Curves and Spherical Indicatrices in the Galilean 3-Space H.S.Abdel-Aziz and M.Khalifa Saad Dept. of Math., Faculty of Science,

More information

Killing Magnetic Curves in Three Dimensional Isotropic Space

Killing Magnetic Curves in Three Dimensional Isotropic Space Prespacetime Journal December l 2016 Volume 7 Issue 15 pp. 2015 2022 2015 Killing Magnetic Curves in Three Dimensional Isotropic Space Alper O. Öğrenmiş1 Department of Mathematics, Faculty of Science,

More information

ON OSCULATING, NORMAL AND RECTIFYING BI-NULL CURVES IN R 5 2

ON OSCULATING, NORMAL AND RECTIFYING BI-NULL CURVES IN R 5 2 Novi Sad J. Math. Vol. 48, No. 1, 2018, 9-20 https://doi.org/10.30755/nsjom.05268 ON OSCULATING, NORMAL AND RECTIFYING BI-NULL CURVES IN R 5 2 Kazım İlarslan 1, Makoto Sakaki 2 and Ali Uçum 34 Abstract.

More information

THE NATURAL LIFT CURVES AND GEODESIC CURVATURES OF THE SPHERICAL INDICATRICES OF THE TIMELIKE BERTRAND CURVE COUPLE

THE NATURAL LIFT CURVES AND GEODESIC CURVATURES OF THE SPHERICAL INDICATRICES OF THE TIMELIKE BERTRAND CURVE COUPLE International Electronic Journal of Geometry Volume 6 No.2 pp. 88 99 (213) c IEJG THE NATURAL LIFT CURVES AND GEODESIC CURVATURES OF THE SPHERICAL INDICATRICES OF THE TIMELIKE BERTRAND CURVE COUPLE SÜLEYMAN

More information

Constant ratio timelike curves in pseudo-galilean 3-space G 1 3

Constant ratio timelike curves in pseudo-galilean 3-space G 1 3 CREAT MATH INFORM 7 018, No 1, 57-6 Online version at http://creative-mathematicsubmro/ Print Edition: ISSN 1584-86X Online Edition: ISSN 1843-441X Constant ratio timelike curves in pseudo-galilean 3-space

More information

Characterizations of a helix in the pseudo - Galilean space G

Characterizations of a helix in the pseudo - Galilean space G International Journal of the Phsical ciences Vol 59), pp 48-44, 8 August, 00 Available online at http://wwwacademicjournalsorg/ijp IN 99-950 00 Academic Journals Full Length Research Paper Characterizations

More information

SPLIT QUATERNIONS and CANAL SURFACES. in MINKOWSKI 3-SPACE

SPLIT QUATERNIONS and CANAL SURFACES. in MINKOWSKI 3-SPACE INTERNATIONAL JOURNAL OF GEOMETRY Vol. 5 (016, No., 51-61 SPLIT QUATERNIONS and CANAL SURFACES in MINKOWSKI 3-SPACE SELAHATTIN ASLAN and YUSUF YAYLI Abstract. A canal surface is the envelope of a one-parameter

More information

ON THE CURVATURE THEORY OF NON-NULL CYLINDRICAL SURFACES IN MINKOWSKI 3-SPACE

ON THE CURVATURE THEORY OF NON-NULL CYLINDRICAL SURFACES IN MINKOWSKI 3-SPACE TWMS J. App. Eng. Math. V.6, N.1, 2016, pp. 22-29. ON THE CURVATURE THEORY OF NON-NULL CYLINDRICAL SURFACES IN MINKOWSKI 3-SPACE BURAK SAHINER 1, MUSTAFA KAZAZ 1, HASAN HUSEYIN UGURLU 3, Abstract. This

More information

Non-null weakened Mannheim curves in Minkowski 3-space

Non-null weakened Mannheim curves in Minkowski 3-space An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) Tomul LXIII, 2017, f. 2 Non-null weakened Mannheim curves in Minkowski 3-space Yilmaz Tunçer Murat Kemal Karacan Dae Won Yoon Received: 23.IX.2013 / Revised:

More information

THE BERTRAND OFFSETS OF RULED SURFACES IN R Preliminaries. X,Y = x 1 y 1 + x 2 y 2 x 3 y 3.

THE BERTRAND OFFSETS OF RULED SURFACES IN R Preliminaries. X,Y = x 1 y 1 + x 2 y 2 x 3 y 3. ACTA MATHEMATICA VIETNAMICA 39 Volume 31, Number 1, 2006, pp. 39-48 THE BERTRAND OFFSETS OF RULED SURFACES IN R 3 1 E. KASAP AND N. KURUOĞLU Abstract. The problem of finding a curve whose principal normals

More information

ON THE PARALLEL SURFACES IN GALILEAN SPACE

ON THE PARALLEL SURFACES IN GALILEAN SPACE ON THE PARALLEL SURFACES IN GALILEAN SPACE Mustafa Dede 1, Cumali Ekici 2 and A. Ceylan Çöken 3 1 Kilis 7 Aral k University, Department of Mathematics, 79000, Kilis-TURKEY 2 Eskişehir Osmangazi University,

More information

BERTRAND CURVES IN GALILEAN SPACE AND THEIR CHARACTERIZATIONS. and Mahmut ERGÜT

BERTRAND CURVES IN GALILEAN SPACE AND THEIR CHARACTERIZATIONS. and Mahmut ERGÜT 139 Kragujevac J. Math. 32 (2009) 139 147. BERTRAND CURVES IN GALILEAN SPACE AND THEIR CHARACTERIZATIONS Alper Osman ÖĞRENMİŞ, Handan ÖZTEKİN and Mahmut ERGÜT Fırat University, Faculty of Arts and Science,

More information

BÄCKLUND TRANSFORMATIONS ACCORDING TO BISHOP FRAME IN EUCLIDEAN 3-SPACE

BÄCKLUND TRANSFORMATIONS ACCORDING TO BISHOP FRAME IN EUCLIDEAN 3-SPACE iauliai Math. Semin., 7 15), 2012, 4149 BÄCKLUND TRANSFORMATIONS ACCORDING TO BISHOP FRAME IN EUCLIDEAN 3-SPACE Murat Kemal KARACAN, Yilmaz TUNÇER Department of Mathematics, Usak University, 64200 Usak,

More information

Null Bertrand curves in Minkowski 3-space and their characterizations

Null Bertrand curves in Minkowski 3-space and their characterizations Note di Matematica 23, n. 1, 2004, 7 13. Null Bertrand curves in Minkowski 3-space and their characterizations Handan Balgetir Department of Mathematics, Firat University, 23119 Elazig, TURKEY hbalgetir@firat.edu.tr

More information

k type partially null and pseudo null slant helices in Minkowski 4-space

k type partially null and pseudo null slant helices in Minkowski 4-space MATHEMATICAL COMMUNICATIONS 93 Math. Commun. 17(1), 93 13 k type partially null and pseudo null slant helices in Minkowski 4-space Ahmad Tawfik Ali 1, Rafael López and Melih Turgut 3, 1 Department of Mathematics,

More information

On the Fundamental Forms of the B-scroll with Null Directrix and Cartan Frame in Minkowskian 3-Space

On the Fundamental Forms of the B-scroll with Null Directrix and Cartan Frame in Minkowskian 3-Space Applied Mathematical Sciences, Vol. 9, 015, no. 80, 3957-3965 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.015.5330 On the Fundamental Forms of the B-scroll with Null Directrix and Cartan

More information

SLANT HELICES IN MINKOWSKI SPACE E 3 1

SLANT HELICES IN MINKOWSKI SPACE E 3 1 J. Korean Math. Soc. 48 (2011), No. 1, pp. 159 167 DOI 10.4134/JKMS.2011.48.1.159 SLANT HELICES IN MINKOWSKI SPACE E 3 1 Ahmad T. Ali and Rafael López Abstract. We consider a curve α = α(s) in Minkowski

More information

On Natural Lift of a Curve

On Natural Lift of a Curve Pure Mathematical Sciences, Vol. 1, 2012, no. 2, 81-85 On Natural Lift of a Curve Evren ERGÜN Ondokuz Mayıs University, Faculty of Arts and Sciences Department of Mathematics, Samsun, Turkey eergun@omu.edu.tr

More information

On constant isotropic submanifold by generalized null cubic

On constant isotropic submanifold by generalized null cubic On constant isotropic submanifold by generalized null cubic Leyla Onat Abstract. In this paper we shall be concerned with curves in an Lorentzian submanifold M 1, and give a characterization of each constant

More information

A METHOD OF THE DETERMINATION OF A GEODESIC CURVE ON RULED SURFACE WITH TIME-LIKE RULINGS

A METHOD OF THE DETERMINATION OF A GEODESIC CURVE ON RULED SURFACE WITH TIME-LIKE RULINGS Novi Sad J. Math. Vol., No. 2, 200, 10-110 A METHOD OF THE DETERMINATION OF A GEODESIC CURVE ON RULED SURFACE WITH TIME-LIKE RULINGS Emin Kasap 1 Abstract. A non-linear differential equation is analyzed

More information

Transversal Surfaces of Timelike Ruled Surfaces in Minkowski 3-Space

Transversal Surfaces of Timelike Ruled Surfaces in Minkowski 3-Space Transversal Surfaces of Timelike Ruled Surfaces in Minkowski -Space Mehmet Önder Celal Bayar University, Faculty of Science and Arts, Department of Mathematics, Muradiye Campus, 45047, Muradiye, Manisa,

More information

An Optimal Control Problem for Rigid Body Motions in Minkowski Space

An Optimal Control Problem for Rigid Body Motions in Minkowski Space Applied Mathematical Sciences, Vol. 5, 011, no. 5, 559-569 An Optimal Control Problem for Rigid Body Motions in Minkowski Space Nemat Abazari Department of Mathematics, Ardabil Branch Islamic Azad University,

More information

ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3 SPACE. 1. Introduction

ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3 SPACE. 1. Introduction International Electronic Journal of Geometry Volume 6 No.2 pp. 110 117 (2013) c IEJG ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3 SPACE ŞEYDA KILIÇOĞLU, H. HILMI HACISALIHOĞLU

More information

1-TYPE AND BIHARMONIC FRENET CURVES IN LORENTZIAN 3-SPACE *

1-TYPE AND BIHARMONIC FRENET CURVES IN LORENTZIAN 3-SPACE * Iranian Journal of Science & Technology, Transaction A, ol., No. A Printed in the Islamic Republic of Iran, 009 Shiraz University -TYPE AND BIHARMONIC FRENET CURES IN LORENTZIAN -SPACE * H. KOCAYIGIT **

More information

SOME RELATIONS BETWEEN NORMAL AND RECTIFYING CURVES IN MINKOWSKI SPACE-TIME

SOME RELATIONS BETWEEN NORMAL AND RECTIFYING CURVES IN MINKOWSKI SPACE-TIME International Electronic Journal of Geometry Volume 7 No. 1 pp. 26-35 (2014) c IEJG SOME RELATIONS BETWEEN NORMAL AND RECTIFYING CURVES IN MINKOWSKI SPACE-TIME KAZIM İLARSLAN AND EMILIJA NEŠOVIĆ Dedicated

More information

A STUDY ON A RULED SURFACE WITH LIGHTLIKE RULING FOR A NULL CURVE WITH CARTAN FRAME

A STUDY ON A RULED SURFACE WITH LIGHTLIKE RULING FOR A NULL CURVE WITH CARTAN FRAME Bull. Korean Math. Soc. 49 (), No. 3, pp. 635 645 http://dx.doi.org/.434/bkms..49.3.635 A STUDY ON A RULED SURFACE WITH LIGHTLIKE RULING FOR A NULL CURVE WITH CARTAN FRAME N ihat Ayyildiz and Tunahan Turhan

More information

D Tangent Surfaces of Timelike Biharmonic D Helices according to Darboux Frame on Non-degenerate Timelike Surfaces in the Lorentzian Heisenberg GroupH

D Tangent Surfaces of Timelike Biharmonic D Helices according to Darboux Frame on Non-degenerate Timelike Surfaces in the Lorentzian Heisenberg GroupH Bol. Soc. Paran. Mat. (3s.) v. 32 1 (2014): 35 42. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v32i1.19035 D Tangent Surfaces of Timelike Biharmonic D

More information

The Natural Lift of the Fixed Centrode of a Non-null Curve in Minkowski 3-Space

The Natural Lift of the Fixed Centrode of a Non-null Curve in Minkowski 3-Space Malaya J Mat 4(3(016 338 348 The Natural Lift of the Fixed entrode of a Non-null urve in Minkowski 3-Space Mustafa Çalışkan a and Evren Ergün b a Faculty of Sciences epartment of Mathematics Gazi University

More information

PSEUDO-SPHERICAL EVOLUTES OF CURVES ON A TIMELIKE SURFACE IN THREE DIMENSIONAL LORENTZ-MINKOWSKI SPACE

PSEUDO-SPHERICAL EVOLUTES OF CURVES ON A TIMELIKE SURFACE IN THREE DIMENSIONAL LORENTZ-MINKOWSKI SPACE PSEUDO-SPHERICAL EVOLUTES OF CURVES ON A TIMELIKE SURFACE IN THREE DIMENSIONAL LORENTZ-MINKOWSKI SPACE S. IZUMIYA, A. C. NABARRO AND A. J. SACRAMENTO Abstract. In this paper we introduce the notion of

More information

CHARACTERIZATION OF SLANT HELIX İN GALILEAN AND PSEUDO-GALILEAN SPACES

CHARACTERIZATION OF SLANT HELIX İN GALILEAN AND PSEUDO-GALILEAN SPACES SAÜ Fen Edebiyat Dergisi (00-I) CHARACTERIZATION OF SLANT HELIX İN ALILEAN AND PSEUDO-ALILEAN SPACES Murat Kemal KARACAN * and Yılmaz TUNÇER ** *Usak University, Faculty of Sciences and Arts,Department

More information

Parallel Transport Frame in 4 dimensional Euclidean Space E 4

Parallel Transport Frame in 4 dimensional Euclidean Space E 4 Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 1735-0611 CJMS. 3(1)(2014), 91-103 Parallel Transport Frame in 4 dimensional Euclidean

More information

Natural Lifts and Curvatures, Arc-Lengths of the Spherical Indicatries of the Evolute Curve in E 3

Natural Lifts and Curvatures, Arc-Lengths of the Spherical Indicatries of the Evolute Curve in E 3 International Mathematical Forum, Vol. 9, 214, no. 18, 857-869 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/imf.214.448 Natural Lifts and Curvatures, Arc-Lengths of the Spherical Indicatries

More information

Section Arclength and Curvature. (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes.

Section Arclength and Curvature. (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes. Section 10.3 Arclength and Curvature (1) Arclength, (2) Parameterizing Curves by Arclength, (3) Curvature, (4) Osculating and Normal Planes. MATH 127 (Section 10.3) Arclength and Curvature The University

More information

Differential geometry of transversal intersection spacelike curve of two spacelike surfaces in Lorentz-Minkowski 3-Space L 3

Differential geometry of transversal intersection spacelike curve of two spacelike surfaces in Lorentz-Minkowski 3-Space L 3 Differential geometry of transversal intersection spacelike curve of two spacelike surfaces in Lorentz-Minkowski 3-Space L 3 Osmar Aléssio Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP

More information

Contents. 1. Introduction

Contents. 1. Introduction FUNDAMENTAL THEOREM OF THE LOCAL THEORY OF CURVES KAIXIN WANG Abstract. In this expository paper, we present the fundamental theorem of the local theory of curves along with a detailed proof. We first

More information

Existence Theorems for Timelike Ruled Surfaces in Minkowski 3-Space

Existence Theorems for Timelike Ruled Surfaces in Minkowski 3-Space Existence Theorems for Timelike Ruled Surfaces in Minkowski -Space Mehmet Önder Celal Bayar University, Faculty of Science and Arts, Department of Mathematics, Muradiye Campus, 45047 Muradiye, Manisa,

More information

arxiv: v1 [math.dg] 22 Aug 2015

arxiv: v1 [math.dg] 22 Aug 2015 arxiv:1508.05439v1 [math.dg] 22 Aug 2015 ON CHARACTERISTIC CURVES OF DEVELOPABLE SURFACES IN EUCLIDEAN 3-SPACE FATIH DOĞAN Abstract. We investigate the relationship among characteristic curves on developable

More information

On a Certain Class of Translation Surfaces in a Pseudo-Galilean Space

On a Certain Class of Translation Surfaces in a Pseudo-Galilean Space International Mathematical Forum, Vol. 6,, no. 3, 3-5 On a Certain Class of Translation Surfaces in a Pseudo-Galilean Space Željka Milin Šipuš Department of Mathematics Universit of Zagreb Bijenička cesta

More information

Eikonal slant helices and eikonal Darboux helices in 3-dimensional pseudo-riemannian manifolds

Eikonal slant helices and eikonal Darboux helices in 3-dimensional pseudo-riemannian manifolds Eikonal slant helices and eikonal Darboux helices in -dimensional pseudo-riemannian maniolds Mehmet Önder a, Evren Zıplar b a Celal Bayar University, Faculty o Arts and Sciences, Department o Mathematics,

More information

A Note On Bertrand Curves Of Constant Precession. Key Words: Curves of constant precession, Frenet formula, Bertrand curve.

A Note On Bertrand Curves Of Constant Precession. Key Words: Curves of constant precession, Frenet formula, Bertrand curve. Bol. Soc. Paran. Mat. (3s.) v. 36 3 (2018): 75 80. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v36i3.31280 A Note On Bertrand Curves Of Constant Precession

More information

SOME NEW ASSOCIATED CURVES OF AN ADMISSIBLE FRENET CURVE IN 3-DIMENSIONAL AND 4-DIMENSIONAL GALILEAN SPACES

SOME NEW ASSOCIATED CURVES OF AN ADMISSIBLE FRENET CURVE IN 3-DIMENSIONAL AND 4-DIMENSIONAL GALILEAN SPACES ROMANIAN JOURNAL OF MAHEMAICS AND COMPUER SCIENCE 27 VOLUME 7 ISSUE 2 p.-22 SOME NEW ASSOCIAED CURVES OF AN ADMISSIBLE FRENE CURVE IN 3-DIMENSIONAL AND 4-DIMENSIONAL GALILEAN SPACES N. MACI M.AKBIYIK S.

More information

The Ruled Surfaces According to Type-2 Bishop Frame in E 3

The Ruled Surfaces According to Type-2 Bishop Frame in E 3 International Mathematical Forum, Vol. 1, 017, no. 3, 133-143 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/imf.017.610131 The Ruled Surfaces According to Type- Bishop Frame in E 3 Esra Damar Department

More information

N C Smarandache Curve of Bertrand Curves Pair According to Frenet Frame

N C Smarandache Curve of Bertrand Curves Pair According to Frenet Frame International J.Math. Combin. Vol.1(016), 1-7 N C Smarandache Curve of Bertrand Curves Pair According to Frenet Frame Süleyman Şenyurt, Abdussamet Çalışkan and Ünzile Çelik (Faculty of Arts and Sciences,

More information

DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE

DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE International Electronic Journal of Geometry Volume 7 No. 1 pp. 44-107 (014) c IEJG DIFFERENTIAL GEOMETRY OF CURVES AND SURFACES IN LORENTZ-MINKOWSKI SPACE RAFAEL LÓPEZ Dedicated to memory of Proffessor

More information

Fathi M. Hamdoon and A. K. Omran

Fathi M. Hamdoon and A. K. Omran Korean J. Math. 4 (016), No. 4, pp. 613 66 https://doi.org/10.11568/kjm.016.4.4.613 STUDYING ON A SKEW RULED SURFACE BY USING THE GEODESIC FRENET TRIHEDRON OF ITS GENERATOR Fathi M. Hamdoon and A. K. Omran

More information

MINIMAL AFFINE TRANSLATION SURFACES IN HYPERBOLIC SPACE

MINIMAL AFFINE TRANSLATION SURFACES IN HYPERBOLIC SPACE Palestine Journal of Mathematics Vol. 7(1)(018), 57 61 Palestine Polytechnic University-PPU 018 MINIMAL AFFINE TRANSLATION SURFACES IN HYPERBOLIC SPACE Hülya Gün Bozok Mahmut Ergüt Communicated by Ayman

More information

Differential-Geometrical Conditions Between Geodesic Curves and Ruled Surfaces in the Lorentz Space

Differential-Geometrical Conditions Between Geodesic Curves and Ruled Surfaces in the Lorentz Space Differential-Geometrical Conditions Between Geodesic Curves and Ruled Surfaces in the Lorentz Space Nihat Ayyildiz, A. Ceylan Çöken, Ahmet Yücesan Abstract In this paper, a system of differential equations

More information

On the Dual Darboux Rotation Axis of the Timelike Dual Space Curve

On the Dual Darboux Rotation Axis of the Timelike Dual Space Curve On the Dual Darboux Rotation Axis of the Timelike Dual Space Curve Ahmet Yücesan, A. Ceylan Çöken and Nihat Ayyildiz Abstract In this paper, the Dual Darboux rotation axis for timelike dual space curve

More information

Linear Ordinary Differential Equations

Linear Ordinary Differential Equations MTH.B402; Sect. 1 20180703) 2 Linear Ordinary Differential Equations Preliminaries: Matrix Norms. Denote by M n R) the set of n n matrix with real components, which can be identified the vector space R

More information

The Frenet Serret formulas

The Frenet Serret formulas The Frenet Serret formulas Attila Máté Brooklyn College of the City University of New York January 19, 2017 Contents Contents 1 1 The Frenet Serret frame of a space curve 1 2 The Frenet Serret formulas

More information

Some Characterizations of Partially Null Curves in Semi-Euclidean Space

Some Characterizations of Partially Null Curves in Semi-Euclidean Space International Mathematical Forum, 3, 28, no. 32, 1569-1574 Some Characterizations of Partially Null Curves in Semi-Euclidean Space Melih Turgut Dokuz Eylul University, Buca Educational Faculty Department

More information

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana University of Groningen Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish

More information

arxiv: v1 [math.dg] 1 Oct 2018

arxiv: v1 [math.dg] 1 Oct 2018 ON SOME CURVES WITH MODIFIED ORTHOGONAL FRAME IN EUCLIDEAN 3-SPACE arxiv:181000557v1 [mathdg] 1 Oct 018 MOHAMD SALEEM LONE, HASAN ES, MURAT KEMAL KARACAN, AND BAHADDIN BUKCU Abstract In this paper, we

More information

CHARACTERIZATIONS OF SPACE CURVES WITH 1-TYPE DARBOUX INSTANTANEOUS ROTATION VECTOR

CHARACTERIZATIONS OF SPACE CURVES WITH 1-TYPE DARBOUX INSTANTANEOUS ROTATION VECTOR Commun. Korean Math. Soc. 31 016), No., pp. 379 388 http://dx.doi.org/10.4134/ckms.016.31..379 CHARACTERIZATIONS OF SPACE CURVES WITH 1-TYPE DARBOUX INSTANTANEOUS ROTATION VECTOR Kadri Arslan, Hüseyin

More information

T. Şahin, M. Yilmaz (Ondokuz Mayıs Univ., Turkey)

T. Şahin, M. Yilmaz (Ondokuz Mayıs Univ., Turkey) UDC 517.9 T. Şahin, M. Yilmaz Ondokuz Mayıs Univ., Turkey ON SINGULARITIES OF THE GALILEAN SPHERICAL DARBOUX RULED SURFACE OF A SPACE CURVE IN G 3 ПРО ОСОБЛИВОСТI СФЕРИЧНО-ГАЛIЛЕЄВОЇ ЛIНIЙЧАТОЇ ПОВЕРХНI

More information

Investigation of non-lightlike tubular surfaces with Darboux frame in Minkowski 3-space

Investigation of non-lightlike tubular surfaces with Darboux frame in Minkowski 3-space CMMA 1, No. 2, 58-65 (2016) 58 Communication in Mathematical Modeling and Applications http://ntmsci.com/cmma Investigation of non-lightlike tubular surfaces with Darboux frame in Minkowski 3-space Emad

More information

TIMELIKE BIHARMONIC CURVES ACCORDING TO FLAT METRIC IN LORENTZIAN HEISENBERG GROUP HEIS 3. Talat Korpinar, Essin Turhan, Iqbal H.

TIMELIKE BIHARMONIC CURVES ACCORDING TO FLAT METRIC IN LORENTZIAN HEISENBERG GROUP HEIS 3. Talat Korpinar, Essin Turhan, Iqbal H. Acta Universitatis Apulensis ISSN: 1582-5329 No. 29/2012 pp. 227-234 TIMELIKE BIHARMONIC CURVES ACCORDING TO FLAT METRIC IN LORENTZIAN HEISENBERG GROUP HEIS 3 Talat Korpinar, Essin Turhan, Iqbal H. Jebril

More information

Spherical Images and Characterizations of Time-like Curve According to New Version of the Bishop Frame in Minkowski 3-Space

Spherical Images and Characterizations of Time-like Curve According to New Version of the Bishop Frame in Minkowski 3-Space Prespacetime Journal January 016 Volume 7 Issue 1 pp. 163 176 163 Article Spherical Images and Characterizations of Time-like Curve According to New Version of the Umit Z. Savcı 1 Celal Bayar University,

More information

e 2 = e 1 = e 3 = v 1 (v 2 v 3 ) = det(v 1, v 2, v 3 ).

e 2 = e 1 = e 3 = v 1 (v 2 v 3 ) = det(v 1, v 2, v 3 ). 3. Frames In 3D space, a sequence of 3 linearly independent vectors v 1, v 2, v 3 is called a frame, since it gives a coordinate system (a frame of reference). Any vector v can be written as a linear combination

More information

Curves from the inside

Curves from the inside MATH 2401 - Harrell Curves from the inside Lecture 5 Copyright 2008 by Evans M. Harrell II. Who in the cast of characters might show up on the test? Curves r(t), velocity v(t). Tangent and normal lines.

More information

is constant [3]. In a recent work, T. IKAWA proved the following theorem for helices on a Lorentzian submanifold [1].

is constant [3]. In a recent work, T. IKAWA proved the following theorem for helices on a Lorentzian submanifold [1]. ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I.CUZA IAŞI Tomul XLVI, s.i a, Matematică, 2000, f.2. ON GENERAL HELICES AND SUBMANIFOLDS OF AN INDEFINITE RIEMANNIAN MANIFOLD BY N. EKMEKCI Introduction. A regular

More information

Timelike Rotational Surfaces of Elliptic, Hyperbolic and Parabolic Types in Minkowski Space E 4 with Pointwise 1-Type Gauss Map

Timelike Rotational Surfaces of Elliptic, Hyperbolic and Parabolic Types in Minkowski Space E 4 with Pointwise 1-Type Gauss Map Filomat 29:3 (205), 38 392 DOI 0.2298/FIL50338B Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Timelike Rotational Surfaces of

More information

Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere

Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES 4 () -3 (06) c MSAEN Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere Tanju Kahraman* and Hasan Hüseyin Uğurlu (Communicated

More information

Smarandache curves according to Sabban frame of fixed pole curve belonging to the Bertrand curves pair

Smarandache curves according to Sabban frame of fixed pole curve belonging to the Bertrand curves pair Smarandache curves according to Sabban frame of fixed pole curve belonging to the Bertrand curves pair Süleyman Şenyurt, Yasin Altun, and Ceyda Cevahir Citation: AIP Conference Proceedings 76, 00045 06;

More information

arxiv: v3 [math.gm] 5 Jan 2018

arxiv: v3 [math.gm] 5 Jan 2018 Submitted to doi:10.1017/s... arxiv:1707.03930v3 [math.gm] 5 Jan 2018 POSITION VECTORS OF CURVES WITH RECPECT TO DARBOUX FRAME IN THE GALILEAN SPACE G 3 TEVFİK ŞAHİN and BUKET CEYLAN DİRİŞEN Abstract In

More information

SPLIT QUATERNIONS AND SPACELIKE CONSTANT SLOPE SURFACES IN MINKOWSKI 3-SPACE

SPLIT QUATERNIONS AND SPACELIKE CONSTANT SLOPE SURFACES IN MINKOWSKI 3-SPACE INTERNATIONAL JOURNAL OF GEOMETRY Vol. (13), No. 1, 3-33 SPLIT QUATERNIONS AND SPACELIKE CONSTANT SLOPE SURFACES IN MINKOWSKI 3-SPACE MURAT BABAARSLAN AND YUSUF YAYLI Abstract. A spacelike surface in the

More information

Mannheim partner curves in 3-space

Mannheim partner curves in 3-space J. Geom. 88 (2008) 120 126 0047 2468/08/010120 7 Birkhäuser Verlag, Basel, 2008 DOI 10.1007/s00022-007-1949-0 Mannheim partner curves in 3-space Huili Liu and Fan Wang Abstract. In this paper, we study

More information

Lie Algebra of Unit Tangent Bundle in Minkowski 3-Space

Lie Algebra of Unit Tangent Bundle in Minkowski 3-Space INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY VOLUME 12 NO. 1 PAGE 1 (2019) Lie Algebra of Unit Tangent Bundle in Minkowski 3-Space Murat Bekar (Communicated by Levent Kula ) ABSTRACT In this paper, a one-to-one

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

THE FUNDAMENTAL THEOREM OF SPACE CURVES

THE FUNDAMENTAL THEOREM OF SPACE CURVES THE FUNDAMENTAL THEOREM OF SPACE CURVES JOSHUA CRUZ Abstract. In this paper, we show that curves in R 3 can be uniquely generated by their curvature and torsion. By finding conditions that guarantee the

More information

C-partner curves and their applications

C-partner curves and their applications C-partner curves and their applications O. Kaya and M. Önder Abstract. In this study, we define a new type of partner curves called C- partner curves and give some theorems characterizing C-partner curves.

More information

THE DARBOUX TRIHEDRONS OF REGULAR CURVES ON A REGULAR SURFACE

THE DARBOUX TRIHEDRONS OF REGULAR CURVES ON A REGULAR SURFACE International lectronic Journal of eometry Volume 7 No 2 pp 61-71 (2014) c IJ TH DARBOUX TRIHDRONS OF RULAR CURVS ON A RULAR SURFAC MRAH TUNÇ AND MİN OZYILMAZ (Communicated by Levent KULA) Abstract In

More information

Solutions for Math 348 Assignment #4 1

Solutions for Math 348 Assignment #4 1 Solutions for Math 348 Assignment #4 1 (1) Do the following: (a) Show that the intersection of two spheres S 1 = {(x, y, z) : (x x 1 ) 2 + (y y 1 ) 2 + (z z 1 ) 2 = r 2 1} S 2 = {(x, y, z) : (x x 2 ) 2

More information

Abstract. In this paper we give the Euler theorem and Dupin indicatrix for surfaces at a

Abstract. In this paper we give the Euler theorem and Dupin indicatrix for surfaces at a MATEMATIQKI VESNIK 65, 2 (2013), 242 249 June 2013 originalni nauqni rad research paper THE EULER THEOREM AND DUPIN INDICATRIX FOR SURFACES AT A CONSTANT DISTANCE FROM EDGE OF REGRESSION ON A SURFACE IN

More information

Geometry of Cylindrical Curves over Plane Curves

Geometry of Cylindrical Curves over Plane Curves Applied Mathematical Sciences, Vol 9, 015, no 113, 5637-5649 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/101988/ams01556456 Geometry of Cylindrical Curves over Plane Curves Georgi Hristov Georgiev, Radostina

More information

On the Invariants of Mannheim Offsets of Timelike Ruled Surfaces with Timelike Rulings

On the Invariants of Mannheim Offsets of Timelike Ruled Surfaces with Timelike Rulings Gen Math Notes, Vol, No, June 04, pp 0- ISSN 9-784; Copyright ICSRS Publication, 04 wwwi-csrsorg Available free online at http://wwwgemanin On the Invariants of Mannheim Offsets of Timelike Ruled Surfaces

More information

B is Galilean transformation group which

B is Galilean transformation group which Proceedins of IAM V.5 N. 06 pp.98-09 NORMAL AND RECTIFYING CURVES IN GALILEAN SPACE G Handan Öztekin Department of Mathematics Firat University Elazığ Turkey e-mail: handanoztekin@mail.com Abstract. In

More information

Classifications of Special Curves in the Three-Dimensional Lie Group

Classifications of Special Curves in the Three-Dimensional Lie Group International Journal of Mathematical Analysis Vol. 10, 2016, no. 11, 503-514 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2016.6230 Classifications of Special Curves in the Three-Dimensional

More information

arxiv:gr-qc/ v1 31 Dec 2005

arxiv:gr-qc/ v1 31 Dec 2005 On the differential geometry of curves in Minkowski space arxiv:gr-qc/0601002v1 31 Dec 2005 J. B. Formiga and C. Romero Departamento de Física, Universidade Federal da Paraíba, C.Postal 5008, 58051-970

More information

8. THE FARY-MILNOR THEOREM

8. THE FARY-MILNOR THEOREM Math 501 - Differential Geometry Herman Gluck Tuesday April 17, 2012 8. THE FARY-MILNOR THEOREM The curvature of a smooth curve in 3-space is 0 by definition, and its integral w.r.t. arc length, (s) ds,

More information

GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE. 1. Introduction

GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE. 1. Introduction ACTA MATHEMATICA VIETNAMICA 205 Volume 29, Number 2, 2004, pp. 205-216 GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE HANDAN BALGETIR AND MAHMUT ERGÜT Abstract. In this paper, we define

More information

On the Inclined Curves in Galilean 4-Space

On the Inclined Curves in Galilean 4-Space Applie Mathematical Sciences Vol. 7 2013 no. 44 2193-2199 HIKARI Lt www.m-hikari.com On the Incline Curves in Galilean 4-Space Dae Won Yoon Department of Mathematics Eucation an RINS Gyeongsang National

More information

M -geodesic in [5]. The anologue of the theorem of Sivridağ and Çalışkan was given in Minkowski 3-space by Ergün

M -geodesic in [5]. The anologue of the theorem of Sivridağ and Çalışkan was given in Minkowski 3-space by Ergün Scholars Journal of Phsics Mathematics Statistics Sch. J. Phs. Math. Stat. 5; ():- Scholars Academic Scientific Publishers (SAS Publishers) (An International Publisher for Academic Scientific Resources)

More information

Week 3: Differential Geometry of Curves

Week 3: Differential Geometry of Curves Week 3: Differential Geometry of Curves Introduction We now know how to differentiate and integrate along curves. This week we explore some of the geometrical properties of curves that can be addressed

More information

Tangent and Normal Vector - (11.5)

Tangent and Normal Vector - (11.5) Tangent and Normal Vector - (.5). Principal Unit Normal Vector Let C be the curve traced out bythe vector-valued function r!!t # f!t, g!t, h!t $. The vector T!!t r! % r! %!t!t is the unit tangent vector

More information

The moving trihedron and all that

The moving trihedron and all that MATH 2411 - Harrell The moving trihedron and all that B Lecture 5 T N Copyright 2013 by Evans M. Harrell II. This week s learning plan You will be tested on the mathematics of curves. You will think about

More information

ON HELICES AND BERTRAND CURVES IN EUCLIDEAN 3-SPACE. Murat Babaarslan 1 and Yusuf Yayli 2

ON HELICES AND BERTRAND CURVES IN EUCLIDEAN 3-SPACE. Murat Babaarslan 1 and Yusuf Yayli 2 ON HELICES AND BERTRAND CURVES IN EUCLIDEAN 3-SPACE Murat Babaarslan 1 and Yusuf Yayli 1 Department of Mathematics, Faculty of Arts and Sciences Bozok University, Yozgat, Turkey murat.babaarslan@bozok.edu.tr

More information

THE PLANAR FILAMENT EQUATION. Dept. of Mathematics, Case Western Reserve University Dept. of Mathematics and Computer Science, Drexel University

THE PLANAR FILAMENT EQUATION. Dept. of Mathematics, Case Western Reserve University Dept. of Mathematics and Computer Science, Drexel University THE PLANAR FILAMENT EQUATION Joel Langer and Ron Perline arxiv:solv-int/9431v1 25 Mar 1994 Dept. of Mathematics, Case Western Reserve University Dept. of Mathematics and Computer Science, Drexel University

More information