Inextensible Flows of Curves in Minkowskian Space

Size: px
Start display at page:

Download "Inextensible Flows of Curves in Minkowskian Space"

Transcription

1 Adv. Studies Theor. Phys., Vol. 2, 28, no. 16, Inextensible Flows of Curves in Minkowskian Space Dariush Latifi Department of Mathematics, Faculty of Science University of Mohaghegh Ardabili P.O. Box , Ardabil, Iran Asadollah Razavi Faculty of Mathematics and Computer Science Amirkabir University of Technology No. 424, Hafez Ave., Tehran, Iran Abstract In this paper we investigate inextensible flow of curves in Minkowski 3-space. Necessary and sufficient conditions for an inextensible curve flow are expressed as a partial differential equation involving the curvature and torsion. Mathematics Subject Classification: 53C44; 53A4; 53A5 Keywords: Minkowski plane curve, Heat flow, Curvature flow, Inextensible 1 Introduction It is well known that many nonlinear phenomena in physics, chemistry and biology are described by dynamics of shapes, such as curves and surfaces, and the evolution of curve and surface has significant applications in computer vision and image processing [15]. It has been known that a great number of nonlinear evolution equations are related to motion of curves in certain geometries [14, 13]. For instance, the Mullins s nonlinear diffusion model of groove development [13] describes the curve shortening problem. Hasimoto [7] showed that the Schrödinger equation arises from motion of inextensible curves in R 3.

2 762 D. Latifi and A. Razavi The flow of a curve is said to be inextensible if the arclength is preserved. Physically, inextensible curve flows give rise to motions in which no strain energy is induced. The swinging motion of a cord of fixed length, for example can be described by inextensible curve flows. Such motions arise quite naturally in a wide range of physical applications. For example, both Chirikjian and Burdick [1] and Mochiyama et al. [12] study the shape control of hyper-redundant, or snake-like, robots. Inextensible curve flows also arise in the context of many problem in computer vision [8, 11] and computer animation [2], and even structural mechanics [16]. What the above problems share in common is the need to mathematically describe the inextensible time evolution of curves. There have been numerous studies in the literature on plane curve flows, particularly on evolving curves in the direction of their curvature vector field. Particularly relevant to this paper are the methods developed by Gage and Hamilton [4] and Grayson [6] for studying the shrinking of closed plane curves to a circle via the heat equation. In [5] Gage also studies area-preserving evolutions of plane curves. In [9, 1] Kwon et al. study inextensible flows of curves and developable surface in R 3. In this paper we investigate inextensible flow of curves in Minkowski 3-space. Necessary and sufficient conditions for an inextensible curve flow are expressed as a partial differential equation involving the curvature and torsion. We use some idea from [9, 1] in this paper. 2 Inextensible curve flows in Minkowski space Let V 3 define a three-dimensional flat space with the line element ds 2 = η μν dx μ dx ν, 1 where μ, ν =1, 2, 3,, x μ =x, y, z and η μν = dig1,ɛ,ɛ. If ɛ =1, then V 3 = E 3 is a Euclidean 3 space and if ɛ = 1 then V 3 = M 3 is a Minkowskian 3 space. Hence, Eq.1 explicitly takes the form ds 2 = dx 2 + ɛdy 2 + ɛdz 2. Let C be a curve on V 3 defined by α : I V 3 and parameterized by its arc length s I. An orthonormal frame T μ,n μ,b μ at each point of C is defined by η μν T μ T ν =1, η μν N μ N ν = ɛ, η μν B μ B ν = ɛ,

3 Inextensible flows of curves in Minkowskian space 763 where T = dα, all the other products vanish. ds The Serret-Frenet equations are dt μ ds = knμ, dn μ ds = ɛkt μ τb μ, db μ ds = τnμ, where k and τ are the curvature and the torsion scalar of the curve C at any point s. The vectors T,N,and B are, respectively, the tangent, normal and bi-normal vectors to the curve at any point s [3]. If ɛ = 1 then we write <v,w>for the value ηv, w. A curve C, locally parameterized by α : I R M 3, is said to be timelike, spacelike, or null curve if < dα, dα > is positive, negative, or zero, respectively. dt dt Throughout this article, we assume that F :[,l] [,ω] M 3 is a oneparameter family of smooth timelike curves in Minkowski space, where l is the arclength of the initial curve. Let u be the curve parametrization variable, u l. The arclength of F is given by where F su = u F du = < F, F > 1 2. The operator = 1 v, is given in terms of u by where v = F. The arclength parameter is ds = vdu. Any flow of F can be represented as F = ft + gn + hb. Letting the arclength variation be su, t = u vdu, in the Euclidean space the requirement that the curve not be subject to any elongation or compression can be expressed by the condition su, t = u vdu = for all u [,l]. Definition 2.1 A curve evolution F u, t and its flow F in M 3 are said to be inextensible if F =. The necessary and sufficient conditions for inextensible flow in M 3 are then given by the following theorem.

4 764 D. Latifi and A. Razavi Theorem 2.1 Let F = ft + gn + hb be a smooth flow of the timelike curve F. The flow is inextensible if and only if f = gk. Proof: Since F is timelike we have v 2 =< F, F >. and commute since u and t are independent coordinates. So we have 2v v Thus we get Now let F = F, F F = 2, F F = 2, ft + gn + hb = 2v T, f g T + fvkn + f = 2v + gvk N + gkvt vτb+ h B + hvτn v = f + gvk 2 be extensible. From 2 we have su, t = = = u u v du f + gvk du for all u [,l]. This implies that f f = gvk, or = gk. The argument can be reversed to show sufficiency, completing the proof. We now restrict ourselves to arclength parameterized curves. That is, v = 1, and the local coordinate u corresponds to the curve arclength s. We require the following lemma. Lemma 2.1 T = fk + g + hτ N + gτ + h B, N = fk + g + hτ T + ψb, B h = gτ T ψn, where ψ = N,B.

5 Inextensible flows of curves in Minkowskian space 765 Proof: Using the Frenet-Serret equations and Theorem 2.1, we calculate T = F = ft + gn + hb = f g T + fkn + = fk + g + hτ N + gkt τb+ h B + hτn N + gτ + h B. Now differentiate the Frenet frame by t: = T T,N =,N + T, N = fk + g = T T,B =,B + T, B = gτ h + = N N,B =,B + N, B = ψ + N, B + hτ T, B, +, T, N, From the above we obtain N = fk + g + hτ T +ψb and B = h gτ T ψn, since N,N = B,B =. The following theorem states the conditions on the curvature and torsion for the curve flow F s, t to be inextensible. Theorem 2.2 Suppose the curve flow F = ft + gn + hb is inextensible. Then the following system of partial differential equations holds: Proof: Noting that T T k = g fk hτ gτ2 + τ h τ = k h ψ gτ kψ = τfk + g + hτ h gτ+ 2 2 = T, = [ fk + g h + hτn + gτ + g = fk hτ N + + gτ+ 2 h 2 B + gτ + h ] B fk + g τn, + hτ kt τb

6 766 D. Latifi and A. Razavi while T = kn = k N + k [ fk + g ] + hτt + ψb Hence we see that k = g fk hτ gτ2 + τ h and kψ = τ fk + g + hτ h gτ Since B while = B, we have B = = [ h 2 h 2 gτ ] gτt ψn T + ψ N ψkt τb, h gτ kn B = τn = τ N + τ [ fk + g ] + hτt + ψb. Thus τ h = k gτ ψ No other new formulas are obtained from the relation N = N. 3 Inextensible flows of Minkowski plane curves Let us investigate with more details the case of torsionless timelike inextensible flows in Minkowski space. for the sake of simplicity, let us chose our coordinate system such that the

7 Inextensible flows of curves in Minkowskian space 767 curve evolution F s, t takes place in the x, y plane. Then, the Serret-Frenet equations yields dt ds dn ds db ds = kn = kt 3 = Choosing B as the usual unit vector k in the z direction, it remains to solve the two-dimensional system of differential equation for T and N. As it can easily be verified, the general solution of 3 is given by s s F s, t = coshθsds + a, sinhθsds+, where the function θs is given in terms of the curvature k = ks byθs = ksds + φ, with a, b and φ being arbitrary constants. s References [1] G. Chirikjian, J. Burdick, A modal approach to hyper-redundant manipulator kinematics, IEEE Trans. Robot. Autom [2] M. Desbrun, M.-P. Cani-Gascuel, Active implicit surface for animation, in: Proc. Graphics Interface Canadian Inf. Process. Soc., 1998, pp [3] M. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Englewood Cliffs, [4] M. Gage, R.S. Hamilton, The heat equation shrinking convex plane curves, J. Differential Geom [5] M. Gage, On an area-preserving evolution equation for plane curves, Contemp. Math [6] M. Grayson, The heat equation shrinks embedded plane cures to round points, J. Differential Geom [7] H. Hasimoto, A soliton on a vortex filament, J. Fluid. Mech [8] M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, in: Proc. 1st Int. Conference on Computer Vision, 1987, pp

8 768 D. Latifi and A. Razavi [9] D. Y. Kwon, F.C. Park, Evolution of inelastic plane curves, Appl. Math. Lett [1] D. Y. Kwon, F.C. Park, D.P. Chi, Inextensible flows of curves and developable surfaces, Appl. Math. Lett [11] H.Q. Lu, J.S. Todhunter, T.W. Sze, Congruence conditions for nonplanar developable surfaces and their application to surface recognition, CVGIP, Image Udrest [12] H. Mochiyama, E. Shimemura, H. Kobayashi, Shape control of manipulators with hyper degrees of freedom, Int. J. Robot. Res [13] W.W. Mullins, Theory of thermal grooving, J. Appl. Phys [14] Pj. Olver, Equivalence, invariants and symmetry. Cambridge: Cambridge Univ. Press; [15] G. Sapiro, Geometric partial differential equations and image analysis. Cambridge: Cambridge Univ. Press; 21. [16] D.J. Unger, Developable surfaces in elastoplastic fracture mechanics, Int. J. Fract Received: February 18, 28

Inextensible Flows of Curves in Lie Groups

Inextensible Flows of Curves in Lie Groups CJMS. 113, 3-3 Caspian Journal of Mathematical Sciences CJMS University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 1735-611 Inextensible Flows of Curves in Lie Groups Gökmen Yıldız a and

More information

A Note on Inextensible Flows of Partially & Pseudo Null Curves in E 4 1

A Note on Inextensible Flows of Partially & Pseudo Null Curves in E 4 1 Prespacetime Journal April 216 Volume 7 Issue 5 pp. 818 827 818 Article A Note on Inextensible Flows of Partially & Pseudo Null Curves in E 4 1 Zühal Küçükarslan Yüzbaşı 1 & & Mehmet Bektaş Firat University,

More information

INEXTENSIBLE FLOWS OF CURVES IN THE EQUIFORM GEOMETRY OF THE PSEUDO-GALILEAN SPACE G 1 3

INEXTENSIBLE FLOWS OF CURVES IN THE EQUIFORM GEOMETRY OF THE PSEUDO-GALILEAN SPACE G 1 3 TWMS J. App. Eng. Math. V.6, N.2, 2016, pp. 175-184 INEXTENSIBLE FLOWS OF CURVES IN THE EQUIFORM GEOMETRY OF THE PSEUDO-GALILEAN SPACE G 1 3 HANDAN ÖZTEKIN 1, HÜLYA GÜN BOZOK 2, Abstract. In this paper,

More information

Inelastic Admissible Curves in the Pseudo Galilean Space G 3

Inelastic Admissible Curves in the Pseudo Galilean Space G 3 Int. J. Open Problems Compt. Math., Vol. 4, No. 3, September 2011 ISSN 1998-6262; Copyright ICSRS Publication, 2011 www.i-csrs.org Inelastic Admissible Curves in the Pseudo Galilean Space G 3 1 Alper Osman

More information

arxiv:gr-qc/ v1 31 Dec 2005

arxiv:gr-qc/ v1 31 Dec 2005 On the differential geometry of curves in Minkowski space arxiv:gr-qc/0601002v1 31 Dec 2005 J. B. Formiga and C. Romero Departamento de Física, Universidade Federal da Paraíba, C.Postal 5008, 58051-970

More information

SLANT HELICES IN MINKOWSKI SPACE E 3 1

SLANT HELICES IN MINKOWSKI SPACE E 3 1 J. Korean Math. Soc. 48 (2011), No. 1, pp. 159 167 DOI 10.4134/JKMS.2011.48.1.159 SLANT HELICES IN MINKOWSKI SPACE E 3 1 Ahmad T. Ali and Rafael López Abstract. We consider a curve α = α(s) in Minkowski

More information

On Natural Lift of a Curve

On Natural Lift of a Curve Pure Mathematical Sciences, Vol. 1, 2012, no. 2, 81-85 On Natural Lift of a Curve Evren ERGÜN Ondokuz Mayıs University, Faculty of Arts and Sciences Department of Mathematics, Samsun, Turkey eergun@omu.edu.tr

More information

Differential geometry of transversal intersection spacelike curve of two spacelike surfaces in Lorentz-Minkowski 3-Space L 3

Differential geometry of transversal intersection spacelike curve of two spacelike surfaces in Lorentz-Minkowski 3-Space L 3 Differential geometry of transversal intersection spacelike curve of two spacelike surfaces in Lorentz-Minkowski 3-Space L 3 Osmar Aléssio Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP

More information

Investigation of non-lightlike tubular surfaces with Darboux frame in Minkowski 3-space

Investigation of non-lightlike tubular surfaces with Darboux frame in Minkowski 3-space CMMA 1, No. 2, 58-65 (2016) 58 Communication in Mathematical Modeling and Applications http://ntmsci.com/cmma Investigation of non-lightlike tubular surfaces with Darboux frame in Minkowski 3-space Emad

More information

Homogeneous Geodesics of Left Invariant Randers Metrics on a Three-Dimensional Lie Group

Homogeneous Geodesics of Left Invariant Randers Metrics on a Three-Dimensional Lie Group Int. J. Contemp. Math. Sciences, Vol. 4, 009, no. 18, 873-881 Homogeneous Geodesics of Left Invariant Randers Metrics on a Three-Dimensional Lie Group Dariush Latifi Department of Mathematics Universit

More information

The Ruled Surfaces According to Type-2 Bishop Frame in E 3

The Ruled Surfaces According to Type-2 Bishop Frame in E 3 International Mathematical Forum, Vol. 1, 017, no. 3, 133-143 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/imf.017.610131 The Ruled Surfaces According to Type- Bishop Frame in E 3 Esra Damar Department

More information

BÄCKLUND TRANSFORMATIONS ACCORDING TO BISHOP FRAME IN EUCLIDEAN 3-SPACE

BÄCKLUND TRANSFORMATIONS ACCORDING TO BISHOP FRAME IN EUCLIDEAN 3-SPACE iauliai Math. Semin., 7 15), 2012, 4149 BÄCKLUND TRANSFORMATIONS ACCORDING TO BISHOP FRAME IN EUCLIDEAN 3-SPACE Murat Kemal KARACAN, Yilmaz TUNÇER Department of Mathematics, Usak University, 64200 Usak,

More information

THE PLANAR FILAMENT EQUATION. Dept. of Mathematics, Case Western Reserve University Dept. of Mathematics and Computer Science, Drexel University

THE PLANAR FILAMENT EQUATION. Dept. of Mathematics, Case Western Reserve University Dept. of Mathematics and Computer Science, Drexel University THE PLANAR FILAMENT EQUATION Joel Langer and Ron Perline arxiv:solv-int/9431v1 25 Mar 1994 Dept. of Mathematics, Case Western Reserve University Dept. of Mathematics and Computer Science, Drexel University

More information

A STUDY ON A RULED SURFACE WITH LIGHTLIKE RULING FOR A NULL CURVE WITH CARTAN FRAME

A STUDY ON A RULED SURFACE WITH LIGHTLIKE RULING FOR A NULL CURVE WITH CARTAN FRAME Bull. Korean Math. Soc. 49 (), No. 3, pp. 635 645 http://dx.doi.org/.434/bkms..49.3.635 A STUDY ON A RULED SURFACE WITH LIGHTLIKE RULING FOR A NULL CURVE WITH CARTAN FRAME N ihat Ayyildiz and Tunahan Turhan

More information

On Affine Geometry of Space Curves

On Affine Geometry of Space Curves On Affine Geometry of Space Curves Ali Mahdipour Shirayeh Abstract In this expository paper, we explain equivalence problem of space curves under affine transformations to complete the method of Spivak

More information

SPLIT QUATERNIONS and CANAL SURFACES. in MINKOWSKI 3-SPACE

SPLIT QUATERNIONS and CANAL SURFACES. in MINKOWSKI 3-SPACE INTERNATIONAL JOURNAL OF GEOMETRY Vol. 5 (016, No., 51-61 SPLIT QUATERNIONS and CANAL SURFACES in MINKOWSKI 3-SPACE SELAHATTIN ASLAN and YUSUF YAYLI Abstract. A canal surface is the envelope of a one-parameter

More information

Parallel Transport Frame in 4 dimensional Euclidean Space E 4

Parallel Transport Frame in 4 dimensional Euclidean Space E 4 Caspian Journal of Mathematical Sciences (CJMS) University of Mazandaran, Iran http://cjms.journals.umz.ac.ir ISSN: 1735-0611 CJMS. 3(1)(2014), 91-103 Parallel Transport Frame in 4 dimensional Euclidean

More information

On the Fundamental Forms of the B-scroll with Null Directrix and Cartan Frame in Minkowskian 3-Space

On the Fundamental Forms of the B-scroll with Null Directrix and Cartan Frame in Minkowskian 3-Space Applied Mathematical Sciences, Vol. 9, 015, no. 80, 3957-3965 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ams.015.5330 On the Fundamental Forms of the B-scroll with Null Directrix and Cartan

More information

ON OSCULATING, NORMAL AND RECTIFYING BI-NULL CURVES IN R 5 2

ON OSCULATING, NORMAL AND RECTIFYING BI-NULL CURVES IN R 5 2 Novi Sad J. Math. Vol. 48, No. 1, 2018, 9-20 https://doi.org/10.30755/nsjom.05268 ON OSCULATING, NORMAL AND RECTIFYING BI-NULL CURVES IN R 5 2 Kazım İlarslan 1, Makoto Sakaki 2 and Ali Uçum 34 Abstract.

More information

UNIVERSITY OF DUBLIN

UNIVERSITY OF DUBLIN UNIVERSITY OF DUBLIN TRINITY COLLEGE JS & SS Mathematics SS Theoretical Physics SS TSM Mathematics Faculty of Engineering, Mathematics and Science school of mathematics Trinity Term 2015 Module MA3429

More information

arxiv: v1 [math.dg] 22 Aug 2015

arxiv: v1 [math.dg] 22 Aug 2015 arxiv:1508.05439v1 [math.dg] 22 Aug 2015 ON CHARACTERISTIC CURVES OF DEVELOPABLE SURFACES IN EUCLIDEAN 3-SPACE FATIH DOĞAN Abstract. We investigate the relationship among characteristic curves on developable

More information

Smarandache Curves and Spherical Indicatrices in the Galilean. 3-Space

Smarandache Curves and Spherical Indicatrices in the Galilean. 3-Space arxiv:50.05245v [math.dg 2 Jan 205, 5 pages. DOI:0.528/zenodo.835456 Smarandache Curves and Spherical Indicatrices in the Galilean 3-Space H.S.Abdel-Aziz and M.Khalifa Saad Dept. of Math., Faculty of Science,

More information

Smarandache Curves In Terms of Sabban Frame of Fixed Pole Curve. Key Words: Smarandache Curves, Sabban Frame, Geodesic Curvature, Fixed Pole Curve

Smarandache Curves In Terms of Sabban Frame of Fixed Pole Curve. Key Words: Smarandache Curves, Sabban Frame, Geodesic Curvature, Fixed Pole Curve Bol. Soc. Paran. Mat. s. v. 4 06: 5 6. c SPM ISSN-75-88 on line ISSN-00787 in press SPM: www.spm.uem.br/bspm doi:0.569/bspm.v4i.75 Smarandache Curves In Terms of Sabban Frame of Fixed Pole Curve Süleyman

More information

1-TYPE AND BIHARMONIC FRENET CURVES IN LORENTZIAN 3-SPACE *

1-TYPE AND BIHARMONIC FRENET CURVES IN LORENTZIAN 3-SPACE * Iranian Journal of Science & Technology, Transaction A, ol., No. A Printed in the Islamic Republic of Iran, 009 Shiraz University -TYPE AND BIHARMONIC FRENET CURES IN LORENTZIAN -SPACE * H. KOCAYIGIT **

More information

MHD dynamo generation via Riemannian soliton theory

MHD dynamo generation via Riemannian soliton theory arxiv:physics/0510057v1 [physics.plasm-ph] 7 Oct 2005 MHD dynamo generation via Riemannian soliton theory L.C. Garcia de Andrade 1 Abstract Heisenberg spin equation equivalence to nonlinear Schrödinger

More information

k type partially null and pseudo null slant helices in Minkowski 4-space

k type partially null and pseudo null slant helices in Minkowski 4-space MATHEMATICAL COMMUNICATIONS 93 Math. Commun. 17(1), 93 13 k type partially null and pseudo null slant helices in Minkowski 4-space Ahmad Tawfik Ali 1, Rafael López and Melih Turgut 3, 1 Department of Mathematics,

More information

PSEUDO-SPHERICAL EVOLUTES OF CURVES ON A TIMELIKE SURFACE IN THREE DIMENSIONAL LORENTZ-MINKOWSKI SPACE

PSEUDO-SPHERICAL EVOLUTES OF CURVES ON A TIMELIKE SURFACE IN THREE DIMENSIONAL LORENTZ-MINKOWSKI SPACE PSEUDO-SPHERICAL EVOLUTES OF CURVES ON A TIMELIKE SURFACE IN THREE DIMENSIONAL LORENTZ-MINKOWSKI SPACE S. IZUMIYA, A. C. NABARRO AND A. J. SACRAMENTO Abstract. In this paper we introduce the notion of

More information

How big is the family of stationary null scrolls?

How big is the family of stationary null scrolls? How big is the family of stationary null scrolls? Manuel Barros 1 and Angel Ferrández 2 1 Departamento de Geometría y Topología, Facultad de Ciencias Universidad de Granada, 1807 Granada, Spain. E-mail

More information

An Optimal Control Problem for Rigid Body Motions in Minkowski Space

An Optimal Control Problem for Rigid Body Motions in Minkowski Space Applied Mathematical Sciences, Vol. 5, 011, no. 5, 559-569 An Optimal Control Problem for Rigid Body Motions in Minkowski Space Nemat Abazari Department of Mathematics, Ardabil Branch Islamic Azad University,

More information

ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3 SPACE. 1. Introduction

ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3 SPACE. 1. Introduction International Electronic Journal of Geometry Volume 6 No.2 pp. 110 117 (2013) c IEJG ON THE RULED SURFACES WHOSE FRAME IS THE BISHOP FRAME IN THE EUCLIDEAN 3 SPACE ŞEYDA KILIÇOĞLU, H. HILMI HACISALIHOĞLU

More information

Fathi M. Hamdoon and A. K. Omran

Fathi M. Hamdoon and A. K. Omran Korean J. Math. 4 (016), No. 4, pp. 613 66 https://doi.org/10.11568/kjm.016.4.4.613 STUDYING ON A SKEW RULED SURFACE BY USING THE GEODESIC FRENET TRIHEDRON OF ITS GENERATOR Fathi M. Hamdoon and A. K. Omran

More information

On a family of surfaces with common asymptotic curve in the Galilean space G 3

On a family of surfaces with common asymptotic curve in the Galilean space G 3 Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 9 2016), 518 523 Research Article On a family of surfaces with common asymptotic curve in the Galilean space G 3 Zühal Küçükarslan Yüzbaşı Fırat

More information

THE DARBOUX TRIHEDRONS OF REGULAR CURVES ON A REGULAR SURFACE

THE DARBOUX TRIHEDRONS OF REGULAR CURVES ON A REGULAR SURFACE International lectronic Journal of eometry Volume 7 No 2 pp 61-71 (2014) c IJ TH DARBOUX TRIHDRONS OF RULAR CURVS ON A RULAR SURFAC MRAH TUNÇ AND MİN OZYILMAZ (Communicated by Levent KULA) Abstract In

More information

Null Bertrand curves in Minkowski 3-space and their characterizations

Null Bertrand curves in Minkowski 3-space and their characterizations Note di Matematica 23, n. 1, 2004, 7 13. Null Bertrand curves in Minkowski 3-space and their characterizations Handan Balgetir Department of Mathematics, Firat University, 23119 Elazig, TURKEY hbalgetir@firat.edu.tr

More information

arxiv: v1 [math.dg] 4 Sep 2009

arxiv: v1 [math.dg] 4 Sep 2009 SOME ESTIMATES OF WANG-YAU QUASILOCAL ENERGY arxiv:0909.0880v1 [math.dg] 4 Sep 2009 PENGZI MIAO 1, LUEN-FAI TAM 2 AND NAQING XIE 3 Abstract. Given a spacelike 2-surface in a spacetime N and a constant

More information

Math 32A Discussion Session Week 5 Notes November 7 and 9, 2017

Math 32A Discussion Session Week 5 Notes November 7 and 9, 2017 Math 32A Discussion Session Week 5 Notes November 7 and 9, 2017 This week we want to talk about curvature and osculating circles. You might notice that these notes contain a lot of the same theory or proofs

More information

Solutions for Math 348 Assignment #4 1

Solutions for Math 348 Assignment #4 1 Solutions for Math 348 Assignment #4 1 (1) Do the following: (a) Show that the intersection of two spheres S 1 = {(x, y, z) : (x x 1 ) 2 + (y y 1 ) 2 + (z z 1 ) 2 = r 2 1} S 2 = {(x, y, z) : (x x 2 ) 2

More information

Ancient solutions to Geometric Flows Lecture No 2

Ancient solutions to Geometric Flows Lecture No 2 Ancient solutions to Geometric Flows Lecture No 2 Panagiota Daskalopoulos Columbia University Frontiers of Mathematics and Applications IV UIMP 2015 July 20-24, 2015 Topics to be discussed In this lecture

More information

What is a Space Curve?

What is a Space Curve? What is a Space Curve? A space curve is a smooth map γ : I R R 3. In our analysis of defining the curvature for space curves we will be able to take the inclusion (γ, 0) and have that the curvature of

More information

CS 468. Differential Geometry for Computer Science. Lecture 17 Surface Deformation

CS 468. Differential Geometry for Computer Science. Lecture 17 Surface Deformation CS 468 Differential Geometry for Computer Science Lecture 17 Surface Deformation Outline Fundamental theorem of surface geometry. Some terminology: embeddings, isometries, deformations. Curvature flows

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

Week 3: Differential Geometry of Curves

Week 3: Differential Geometry of Curves Week 3: Differential Geometry of Curves Introduction We now know how to differentiate and integrate along curves. This week we explore some of the geometrical properties of curves that can be addressed

More information

Timelike Rotational Surfaces of Elliptic, Hyperbolic and Parabolic Types in Minkowski Space E 4 with Pointwise 1-Type Gauss Map

Timelike Rotational Surfaces of Elliptic, Hyperbolic and Parabolic Types in Minkowski Space E 4 with Pointwise 1-Type Gauss Map Filomat 29:3 (205), 38 392 DOI 0.2298/FIL50338B Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Timelike Rotational Surfaces of

More information

e 2 = e 1 = e 3 = v 1 (v 2 v 3 ) = det(v 1, v 2, v 3 ).

e 2 = e 1 = e 3 = v 1 (v 2 v 3 ) = det(v 1, v 2, v 3 ). 3. Frames In 3D space, a sequence of 3 linearly independent vectors v 1, v 2, v 3 is called a frame, since it gives a coordinate system (a frame of reference). Any vector v can be written as a linear combination

More information

A Simple Proof of the Generalized Cauchy s Theorem

A Simple Proof of the Generalized Cauchy s Theorem A Simple Proof of the Generalized Cauchy s Theorem Mojtaba Mahzoon, Hamed Razavi Abstract The Cauchy s theorem for balance laws is proved in a general context using a simpler and more natural method in

More information

THE NATURAL LIFT CURVES AND GEODESIC CURVATURES OF THE SPHERICAL INDICATRICES OF THE TIMELIKE BERTRAND CURVE COUPLE

THE NATURAL LIFT CURVES AND GEODESIC CURVATURES OF THE SPHERICAL INDICATRICES OF THE TIMELIKE BERTRAND CURVE COUPLE International Electronic Journal of Geometry Volume 6 No.2 pp. 88 99 (213) c IEJG THE NATURAL LIFT CURVES AND GEODESIC CURVATURES OF THE SPHERICAL INDICATRICES OF THE TIMELIKE BERTRAND CURVE COUPLE SÜLEYMAN

More information

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana

Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana University of Groningen Geometric approximation of curves and singularities of secant maps Ghosh, Sunayana IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish

More information

Some Characterizations of Partially Null Curves in Semi-Euclidean Space

Some Characterizations of Partially Null Curves in Semi-Euclidean Space International Mathematical Forum, 3, 28, no. 32, 1569-1574 Some Characterizations of Partially Null Curves in Semi-Euclidean Space Melih Turgut Dokuz Eylul University, Buca Educational Faculty Department

More information

Non-null weakened Mannheim curves in Minkowski 3-space

Non-null weakened Mannheim curves in Minkowski 3-space An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) Tomul LXIII, 2017, f. 2 Non-null weakened Mannheim curves in Minkowski 3-space Yilmaz Tunçer Murat Kemal Karacan Dae Won Yoon Received: 23.IX.2013 / Revised:

More information

SOME RELATIONS BETWEEN NORMAL AND RECTIFYING CURVES IN MINKOWSKI SPACE-TIME

SOME RELATIONS BETWEEN NORMAL AND RECTIFYING CURVES IN MINKOWSKI SPACE-TIME International Electronic Journal of Geometry Volume 7 No. 1 pp. 26-35 (2014) c IEJG SOME RELATIONS BETWEEN NORMAL AND RECTIFYING CURVES IN MINKOWSKI SPACE-TIME KAZIM İLARSLAN AND EMILIJA NEŠOVIĆ Dedicated

More information

Null-curves in R 2,n as flat dynamical systems

Null-curves in R 2,n as flat dynamical systems Null-curves in R 2,n as flat dynamical systems A. M. Latyshev, S. L. Lyakhovich and A. A. Sharapov arxiv:1510.08608v1 [math-ph] 29 Oct 2015 Physics Faculty, Tomsk State University, Tomsk 634050, Russia

More information

Contents. 1. Introduction

Contents. 1. Introduction FUNDAMENTAL THEOREM OF THE LOCAL THEORY OF CURVES KAIXIN WANG Abstract. In this expository paper, we present the fundamental theorem of the local theory of curves along with a detailed proof. We first

More information

Initial-Value Problems in General Relativity

Initial-Value Problems in General Relativity Initial-Value Problems in General Relativity Michael Horbatsch March 30, 2006 1 Introduction In this paper the initial-value formulation of general relativity is reviewed. In section (2) domains of dependence,

More information

Determination of the Position Vectors of Curves from Intrinsic Equations in G 3

Determination of the Position Vectors of Curves from Intrinsic Equations in G 3 Applied Mathematics Determination of the Position Vectors of Curves from Intrinsic Equations in G 3 Handan ÖZTEKIN * and Serpil TATLIPINAR Department of Mathematics, Firat University, Elazig, Turkey (

More information

On Berwald Spaces which Satisfy the Relation Γ k ij = p k g ij for Some Functions p k on TM

On Berwald Spaces which Satisfy the Relation Γ k ij = p k g ij for Some Functions p k on TM International Mathematical Forum, 2, 2007, no. 67, 3331-3338 On Berwald Spaces which Satisfy the Relation Γ k ij = p k g ij for Some Functions p k on TM Dariush Latifi and Asadollah Razavi Faculty of Mathematics

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Find parametric equations for the tangent line of the graph of r(t) = (t, t + 1, /t) when t = 1. Solution: A point on this line is r(1) = (1,,

More information

A Short Note on Gage s Isoperimetric Inequality

A Short Note on Gage s Isoperimetric Inequality A Short Note on Gage s Isoperimetric Inequality Hong Lu Shengliang Pan Department of Mathematics, East China Normal University, Shanghai, 262, P. R. China email: slpan@math.ecnu.edu.cn December 7, 24 Abstract

More information

D Tangent Surfaces of Timelike Biharmonic D Helices according to Darboux Frame on Non-degenerate Timelike Surfaces in the Lorentzian Heisenberg GroupH

D Tangent Surfaces of Timelike Biharmonic D Helices according to Darboux Frame on Non-degenerate Timelike Surfaces in the Lorentzian Heisenberg GroupH Bol. Soc. Paran. Mat. (3s.) v. 32 1 (2014): 35 42. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v32i1.19035 D Tangent Surfaces of Timelike Biharmonic D

More information

CHARACTERIZATION OF SLANT HELIX İN GALILEAN AND PSEUDO-GALILEAN SPACES

CHARACTERIZATION OF SLANT HELIX İN GALILEAN AND PSEUDO-GALILEAN SPACES SAÜ Fen Edebiyat Dergisi (00-I) CHARACTERIZATION OF SLANT HELIX İN ALILEAN AND PSEUDO-ALILEAN SPACES Murat Kemal KARACAN * and Yılmaz TUNÇER ** *Usak University, Faculty of Sciences and Arts,Department

More information

The Awesome Averaging Power of Heat. Heat in Geometry

The Awesome Averaging Power of Heat. Heat in Geometry The Awesome Averaging Power of Heat in Geometry exemplified by the curve shortening flow PUMS lecture 17 October 2012 1 The Heat Equation 2 The Curve Shortening Flow 3 Proof of Grayson s Theorem 4 Postscript

More information

THE FUNDAMENTAL THEOREM OF SPACE CURVES

THE FUNDAMENTAL THEOREM OF SPACE CURVES THE FUNDAMENTAL THEOREM OF SPACE CURVES JOSHUA CRUZ Abstract. In this paper, we show that curves in R 3 can be uniquely generated by their curvature and torsion. By finding conditions that guarantee the

More information

On constant isotropic submanifold by generalized null cubic

On constant isotropic submanifold by generalized null cubic On constant isotropic submanifold by generalized null cubic Leyla Onat Abstract. In this paper we shall be concerned with curves in an Lorentzian submanifold M 1, and give a characterization of each constant

More information

Eikonal slant helices and eikonal Darboux helices in 3-dimensional pseudo-riemannian manifolds

Eikonal slant helices and eikonal Darboux helices in 3-dimensional pseudo-riemannian manifolds Eikonal slant helices and eikonal Darboux helices in -dimensional pseudo-riemannian maniolds Mehmet Önder a, Evren Zıplar b a Celal Bayar University, Faculty o Arts and Sciences, Department o Mathematics,

More information

The equiform differential geometry of curves in 4-dimensional galilean space G 4

The equiform differential geometry of curves in 4-dimensional galilean space G 4 Stud. Univ. Babeş-Bolyai Math. 582013, No. 3, 393 400 The equiform differential geometry of curves in 4-dimensional galilean space G 4 M. Evren Aydin and Mahmut Ergüt Abstract. In this paper, we establish

More information

ISOPERIMETRIC INEQUALITY FOR FLAT SURFACES

ISOPERIMETRIC INEQUALITY FOR FLAT SURFACES Proceedings of The Thirteenth International Workshop on Diff. Geom. 3(9) 3-9 ISOPERIMETRIC INEQUALITY FOR FLAT SURFACES JAIGYOUNG CHOE Korea Institute for Advanced Study, Seoul, 3-7, Korea e-mail : choe@kias.re.kr

More information

Affine invariant Fourier descriptors

Affine invariant Fourier descriptors Affine invariant Fourier descriptors Sought: a generalization of the previously introduced similarityinvariant Fourier descriptors H. Burkhardt, Institut für Informatik, Universität Freiburg ME-II, Kap.

More information

Minkowski geometry, curve shortening and flow by weighted mean curvature. Michael E. Gage University of Rochester.

Minkowski geometry, curve shortening and flow by weighted mean curvature. Michael E. Gage University of Rochester. Minkowski geometry, curve shortening and flow by weighted mean curvature. Michael E. Gage University of Rochester February 21, 2003 1 The flow by curvature What is the asymptotic shape of this curve as

More information

On T-slant, N-slant and B-slant Helices in Pseudo-Galilean Space G 1 3

On T-slant, N-slant and B-slant Helices in Pseudo-Galilean Space G 1 3 Filomat :1 (018), 45 5 https://doiorg/1098/fil180145o Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://wwwpmfniacrs/filomat On T-slant, N-slant and B-slant

More information

Differential-Geometrical Conditions Between Geodesic Curves and Ruled Surfaces in the Lorentz Space

Differential-Geometrical Conditions Between Geodesic Curves and Ruled Surfaces in the Lorentz Space Differential-Geometrical Conditions Between Geodesic Curves and Ruled Surfaces in the Lorentz Space Nihat Ayyildiz, A. Ceylan Çöken, Ahmet Yücesan Abstract In this paper, a system of differential equations

More information

Homothetic Bishop Motion Of Euclidean Submanifolds in Euclidean 3-Space

Homothetic Bishop Motion Of Euclidean Submanifolds in Euclidean 3-Space Palestine Journal of Mathematics Vol. 016, 13 19 Palestine Polytechnic University-PPU 016 Homothetic Bishop Motion Of Euclidean Submanifol in Euclidean 3-Space Yılmaz TUNÇER, Murat Kemal KARACAN and Dae

More information

3 Parallel transport and geodesics

3 Parallel transport and geodesics 3 Parallel transport and geodesics 3.1 Differentiation along a curve As a prelude to parallel transport we consider another form of differentiation: differentiation along a curve. A curve is a parametrized

More information

Classical solutions for the quasi-stationary Stefan problem with surface tension

Classical solutions for the quasi-stationary Stefan problem with surface tension Classical solutions for the quasi-stationary Stefan problem with surface tension Joachim Escher, Gieri Simonett We show that the quasi-stationary two-phase Stefan problem with surface tension has a unique

More information

The Conservation of Matter in General Relativity

The Conservation of Matter in General Relativity Commun. math. Phys. 18, 301 306 (1970) by Springer-Verlag 1970 The Conservation of Matter in General Relativity STEPHEN HAWKING Institute of Theoretical Astronomy, Cambridge, England Received June 1, 1970

More information

Integrable Curves and Surfaces

Integrable Curves and Surfaces Integrable Curves and Surfaces March 30, 2015 Metin Gürses Department of Mathematics, Faculty of Sciences, Bilkent University 06800 Ankara, Turkey, gurses@fen.bilkent.edu.tr Summary The connection of curves

More information

SIAM Conference on Applied Algebraic Geometry Daejeon, South Korea, Irina Kogan North Carolina State University. Supported in part by the

SIAM Conference on Applied Algebraic Geometry Daejeon, South Korea, Irina Kogan North Carolina State University. Supported in part by the SIAM Conference on Applied Algebraic Geometry Daejeon, South Korea, 2015 Irina Kogan North Carolina State University Supported in part by the 1 Based on: 1. J. M. Burdis, I. A. Kogan and H. Hong Object-image

More information

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds

A local characterization for constant curvature metrics in 2-dimensional Lorentz manifolds A local characterization for constant curvature metrics in -dimensional Lorentz manifolds Ivo Terek Couto Alexandre Lymberopoulos August 9, 8 arxiv:65.7573v [math.dg] 4 May 6 Abstract In this paper we

More information

ON THE SCALAR AND DUAL FORMULATIONS OF THE CURVATURE THEORY OF LINE TRAJECTORIES IN THE LORENTZIAN SPACE. 1. Introduction

ON THE SCALAR AND DUAL FORMULATIONS OF THE CURVATURE THEORY OF LINE TRAJECTORIES IN THE LORENTZIAN SPACE. 1. Introduction J. Korean Math. Soc. 43 (2006), No. 6, pp. 1339 1355 ON THE SCALAR AND DUAL FORMULATIONS OF THE CURVATURE THEORY OF LINE TRAJECTORIES IN THE LORENTZIAN SPACE N ihat Ayyıldız and Ahmet Yücesan Abstract.

More information

ON THE SYMMETRY OF ANNULAR BRYANT SURFACE WITH CONSTANT CONTACT ANGLE. Sung-Ho Park

ON THE SYMMETRY OF ANNULAR BRYANT SURFACE WITH CONSTANT CONTACT ANGLE. Sung-Ho Park Korean J. Math. 22 (201), No. 1, pp. 133 138 http://dx.doi.org/10.11568/kjm.201.22.1.133 ON THE SYMMETRY OF ANNULAR BRYANT SURFACE WITH CONSTANT CONTACT ANGLE Sung-Ho Park Abstract. We show that a compact

More information

A METHOD OF THE DETERMINATION OF A GEODESIC CURVE ON RULED SURFACE WITH TIME-LIKE RULINGS

A METHOD OF THE DETERMINATION OF A GEODESIC CURVE ON RULED SURFACE WITH TIME-LIKE RULINGS Novi Sad J. Math. Vol., No. 2, 200, 10-110 A METHOD OF THE DETERMINATION OF A GEODESIC CURVE ON RULED SURFACE WITH TIME-LIKE RULINGS Emin Kasap 1 Abstract. A non-linear differential equation is analyzed

More information

arxiv: v1 [math.dg] 1 Oct 2018

arxiv: v1 [math.dg] 1 Oct 2018 ON SOME CURVES WITH MODIFIED ORTHOGONAL FRAME IN EUCLIDEAN 3-SPACE arxiv:181000557v1 [mathdg] 1 Oct 018 MOHAMD SALEEM LONE, HASAN ES, MURAT KEMAL KARACAN, AND BAHADDIN BUKCU Abstract In this paper, we

More information

Twisting versus bending in quantum waveguides

Twisting versus bending in quantum waveguides Twisting versus bending in quantum waveguides David KREJČIŘÍK Nuclear Physics Institute, Academy of Sciences, Řež, Czech Republic http://gemma.ujf.cas.cz/ david/ Based on: [Chenaud, Duclos, Freitas, D.K.]

More information

arxiv: v1 [cs.cv] 17 Jun 2012

arxiv: v1 [cs.cv] 17 Jun 2012 1 The Stability of Convergence of Curve Evolutions in Vector Fields Junyan Wang* Member, IEEE and Kap Luk Chan Member, IEEE Abstract arxiv:1206.4042v1 [cs.cv] 17 Jun 2012 Curve evolution is often used

More information

A connection between Lorentzian distance and mechanical least action

A connection between Lorentzian distance and mechanical least action A connection between Lorentzian distance and mechanical least action Ettore Minguzzi Università Degli Studi Di Firenze Non-commutative structures and non-relativistic (super)symmetries, LMPT Tours, June

More information

Transversal Surfaces of Timelike Ruled Surfaces in Minkowski 3-Space

Transversal Surfaces of Timelike Ruled Surfaces in Minkowski 3-Space Transversal Surfaces of Timelike Ruled Surfaces in Minkowski -Space Mehmet Önder Celal Bayar University, Faculty of Science and Arts, Department of Mathematics, Muradiye Campus, 45047, Muradiye, Manisa,

More information

Geometric Affine Symplectic Curve Flows in R 4

Geometric Affine Symplectic Curve Flows in R 4 Geometric Affine Symplectic Curve Flows in R 4 Francis Valiquette 1 epartment of Mathematics and Statistics alhousie University alifax, Nova Scotia, Canada B3 3J5 francisv@mathstat.dal.ca http://www.mathstat.dal.ca/

More information

Spherical Images and Characterizations of Time-like Curve According to New Version of the Bishop Frame in Minkowski 3-Space

Spherical Images and Characterizations of Time-like Curve According to New Version of the Bishop Frame in Minkowski 3-Space Prespacetime Journal January 016 Volume 7 Issue 1 pp. 163 176 163 Article Spherical Images and Characterizations of Time-like Curve According to New Version of the Umit Z. Savcı 1 Celal Bayar University,

More information

Integration of non linear conservation laws?

Integration of non linear conservation laws? Integration of non linear conservation laws? Frédéric Hélein, Institut Mathématique de Jussieu, Paris 7 Advances in Surface Theory, Leicester, June 13, 2013 Harmonic maps Let (M, g) be an oriented Riemannian

More information

CHARACTERIZATIONS OF SPACE CURVES WITH 1-TYPE DARBOUX INSTANTANEOUS ROTATION VECTOR

CHARACTERIZATIONS OF SPACE CURVES WITH 1-TYPE DARBOUX INSTANTANEOUS ROTATION VECTOR Commun. Korean Math. Soc. 31 016), No., pp. 379 388 http://dx.doi.org/10.4134/ckms.016.31..379 CHARACTERIZATIONS OF SPACE CURVES WITH 1-TYPE DARBOUX INSTANTANEOUS ROTATION VECTOR Kadri Arslan, Hüseyin

More information

Class Meeting # 12: Kirchhoff s Formula and Minkowskian Geometry

Class Meeting # 12: Kirchhoff s Formula and Minkowskian Geometry MATH 8.52 COURSE NOTES - CLASS MEETING # 2 8.52 Introduction to PDEs, Spring 207 Professor: Jared Speck Class Meeting # 2: Kirchhoff s Formula and Minkowskian Geometry. Kirchhoff s Formula We are now ready

More information

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor.

Übungen zu RT2 SS (4) Show that (any) contraction of a (p, q) - tensor results in a (p 1, q 1) - tensor. Übungen zu RT2 SS 2010 (1) Show that the tensor field g µν (x) = η µν is invariant under Poincaré transformations, i.e. x µ x µ = L µ νx ν + c µ, where L µ ν is a constant matrix subject to L µ ρl ν ση

More information

An exact solution for 2+1 dimensional critical collapse

An exact solution for 2+1 dimensional critical collapse An exact solution for + dimensional critical collapse David Garfinkle Department of Physics, Oakland University, Rochester, Michigan 839 We find an exact solution in closed form for the critical collapse

More information

Gravitation: Tensor Calculus

Gravitation: Tensor Calculus An Introduction to General Relativity Center for Relativistic Astrophysics School of Physics Georgia Institute of Technology Notes based on textbook: Spacetime and Geometry by S.M. Carroll Spring 2013

More information

GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE. 1. Introduction

GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE. 1. Introduction ACTA MATHEMATICA VIETNAMICA 205 Volume 29, Number 2, 2004, pp. 205-216 GENERALIZED NULL SCROLLS IN THE n-dimensional LORENTZIAN SPACE HANDAN BALGETIR AND MAHMUT ERGÜT Abstract. In this paper, we define

More information

The Natural Lift of the Fixed Centrode of a Non-null Curve in Minkowski 3-Space

The Natural Lift of the Fixed Centrode of a Non-null Curve in Minkowski 3-Space Malaya J Mat 4(3(016 338 348 The Natural Lift of the Fixed entrode of a Non-null urve in Minkowski 3-Space Mustafa Çalışkan a and Evren Ergün b a Faculty of Sciences epartment of Mathematics Gazi University

More information

Motion design with Euler-Rodrigues frames of quintic Pythagorean-hodograph curves

Motion design with Euler-Rodrigues frames of quintic Pythagorean-hodograph curves Motion design with Euler-Rodrigues frames of quintic Pythagorean-hodograph curves Marjeta Krajnc a,b,, Vito Vitrih c,d a FMF, University of Ljubljana, Jadranska 9, Ljubljana, Slovenia b IMFM, Jadranska

More information

TIMELIKE BIHARMONIC CURVES ACCORDING TO FLAT METRIC IN LORENTZIAN HEISENBERG GROUP HEIS 3. Talat Korpinar, Essin Turhan, Iqbal H.

TIMELIKE BIHARMONIC CURVES ACCORDING TO FLAT METRIC IN LORENTZIAN HEISENBERG GROUP HEIS 3. Talat Korpinar, Essin Turhan, Iqbal H. Acta Universitatis Apulensis ISSN: 1582-5329 No. 29/2012 pp. 227-234 TIMELIKE BIHARMONIC CURVES ACCORDING TO FLAT METRIC IN LORENTZIAN HEISENBERG GROUP HEIS 3 Talat Korpinar, Essin Turhan, Iqbal H. Jebril

More information

Constant ratio timelike curves in pseudo-galilean 3-space G 1 3

Constant ratio timelike curves in pseudo-galilean 3-space G 1 3 CREAT MATH INFORM 7 018, No 1, 57-6 Online version at http://creative-mathematicsubmro/ Print Edition: ISSN 1584-86X Online Edition: ISSN 1843-441X Constant ratio timelike curves in pseudo-galilean 3-space

More information

On Submanifold Dirac Operators and Generalized Weierstrass Relations

On Submanifold Dirac Operators and Generalized Weierstrass Relations .. On Submanifold Dirac Operators and Generalized Weierstrass Relations Shigeki Matsutani National Institute of of Technology, Sasebo College 2016/3/2 Shigeki Matsutani (Sasebo College) Submanifold Dirac

More information

Minimal timelike surfaces in a certain homogeneous Lorentzian 3-manifold II

Minimal timelike surfaces in a certain homogeneous Lorentzian 3-manifold II Minimal timelike surfaces in a certain homogeneous Lorentzian 3-manifold II Sungwook Lee Abstract The 2-parameter family of certain homogeneous Lorentzian 3-manifolds which includes Minkowski 3-space and

More information

ON BOUNDED AND UNBOUNDED CURVES DETERMINED BY THEIR CURVATURE AND TORSION

ON BOUNDED AND UNBOUNDED CURVES DETERMINED BY THEIR CURVATURE AND TORSION ON BOUNDED AND UNBOUNDED CURVES DETERMINED BY THEIR CURVATURE AND TORSION OLEG ZUBELEVICH DEPT. OF THEORETICAL MECHANICS, MECHANICS AND MATHEMATICS FACULTY, M. V. LOMONOSOV MOSCOW STATE UNIVERSITY RUSSIA,

More information