MODERN HADRONIC RESONANCES THEORY

Size: px
Start display at page:

Download "MODERN HADRONIC RESONANCES THEORY"

Transcription

1 JLab, April 2002 MODERN HADRONIC RESONANCES THEORY by Norbert Ligterink Department of Physics and Astronomy University of Pittburgh Pittsburgh

2

3

4 S (535) confusion FIT Γ full (MeV) bf N A p 2 reaction VPI(96) ± 5 N N, γp p Drechsel(99) * 67 γp p Krusche(97) * 20 γp ηp Sauermann(96) ± 20 N N,γp, ηp Pitt-ANL(00) ± 3 All Feuster(99-00) All PDG ± 30 averaging * uses PDG value thanks to Steve Dytman

5 the little page with the big statements we shall overcome... technical... food for mathematicians and philosophers Not really! Extracting microscopic information Unstable states are hard to handle consistently in field theory (arrow-of-time, unitarity) One cannot postulate m+iγ without a microscopic model for the interaction and decay channels

6

7

8 Hamiltonian: two discrete states a and b, one continuum ɛ. H = a m a a + b m b b + dɛ ɛ ɛ ɛ 0 + dɛ g ɛ( ɛ)[ a ɛ + b ɛ + ɛ a + ɛ b ] 0 where ɛ dk[ps] k. Wave function (for energy ω : 0 < ω < ): β = ω = α a a + α b b + ( ω ɛ dɛβ(ɛ) ɛ ) + z(ω)δ(ω ɛ) g ɛ( ɛ)(α a + α b ) Inserting β back gives (ω H) α = 0, hence det[ω H] = 0 yields z: ( ) z(ω) = g 2 + g2 (ω ω ) ω( ω) log ω( ω) ω m b ω m a 2 ω

9 Some properties perturbative definition Γ = a H ɛ 2 = g 2 ɛ( ɛ) The phase shift Scattering amplitude δ r = arctan z(ω) T = z(ω) + i g 0 Some examples: g 2 ω( ω) (ω m a )(ω m b )/(2ω m a m b ) + ig 2 ω( ω)

10 Weak coupling Argand (2X) Real amplitude Imaginary amplitude Strong coupling Argand (2X) Scattering energy -

11 Weak coupling Argand (2X) Real amplitude Imaginary amplitude Strong coupling Argand (2X) Scattering energy -

12 Weak coupling Argand (X) Real amplitude Imaginary amplitude Strong coupling Argand (2X) Scattering energy -

13 T-Matrix / S-Matrix V E H 0 V E H 0 V E H 0 V nothing new Green s Function / Propagator / Resolvent E H 0 V E H 0 V Eigenstates / Möller Operator E H 0 V E H 0 V It all boils down to evaluating: ( N i E H 0 V E H 0 V E H 0 V ) i E H 0 V E H 0 E H 0 V φ 0

14 THE CORE Approximations at the level of the Hamiltonian (state selection) Maintaining unitarity and analyticity Restricting parameters through quantum field theory Renormalization (No fitting with cut-offs)

15 Fano in a nutshell THE HAMILTONIAN (Type I) H = k i= k + i m i i + i= dɛ ɛ ɛ ɛ W i (ɛ)dɛ ( ɛ e iφ i(ɛ) i + i e iφ i(ɛ) ɛ ), THE EIGENSTATE WITH ENERGY ω ω = dɛβ(ω, ɛ) ɛ + k i= α i (ω) i.

16 Fano in a nutshell THE HAMILTONIAN (Type II) H = m + + k a= k a= dɛ ɛ, a ɛ ɛ, a W a (ɛ)dɛ ( ɛ, a e iφ a(ɛ) + e iφ a(ɛ) ɛ, a ), THE EIGENSTATES WITH ENERGY ω ω, b = k a= dɛβ (b) a (ω, ɛ) ɛ, a + α (b) (ω).

17 Summary H I = m W.... m k W k W W k ɛ H II = m W W k W ɛ.... W k ɛ k can be solved in closed form... (Fano)... Many more can be turned into discrete numerical problems with exact (within numerical accuracy) solutions.

18 Fano Type I where the free lunch went for dinner β(ω, ɛ) in terms of the α s: β(ω, ɛ) = ( ω ɛ ) k + z(ω)δ(ω ɛ) α i (ω)w i (ɛ)e iφ i(ɛ) i= For the consistency condition on z(ω) we define: F ji (ξ) = W i (ξ)w j (ξ)e i(φ j(ξ) φ i (ξ)) F ji (η) = dξ F ij(ξ) η ξ F ji is hermitian and yields the shifted, but real, energies of the discrete states: z(ω) = ( W (ω) ((ω ɛ) F(ω)) W(ω) )

19 (the hadronic Lagrangian is not fundamental!) form factors NR formulae renormalization scale low energy constants cut off

20 v(s) OPAL 0 3 0, 3 0 MC corr. perturbative QCD (massless) naïve parton model OPAL (CERN) data τ pions rho meson peak + tail s (GeV 2 )

21 τ ν ρ ρ γ ρ

22 Many intermediate states ω between ρ and ρ a 0 ρ ρ ρ ρ ω ω ρ ρ 770MeV 279MeV ρρ ρρ ρ 540MeV 049MeV ρ ρ ρ ρ ρ ρ ω a 0 922MeV 20MeV 558MeV 837MeV

23 ρ g g ρ ρ g g 2 2 approximated by: (k 2 )k 8 dk/ω 2 ρ

24 COVARIANCE adding the backward diagrams to the real part restores covariance: dɛ f(ɛ2 ) ω ɛ + f(ɛ 2 ) dɛ ω (2ω + ɛ) = dɛ 2 f(ɛ2 ) ω 2 ɛ 2 (Only in the real parts, because threshold > 800 MeV)

25 Problems with multi-loop Feynman diagrams Picking just one: Pseudo-thresholds which turn up at succesive four-momentum integrations (or as singularities in Feynman parameters)

26 CLEO data + my fit log scale 0-4 events/0.025gev energy (GeV)

27 CLEO data + my fit log scale 0-4 events/0.025gev500 only energy (GeV)

28 CLEO data + my fit log scale 0-4 events/0.025gev500 in the presence of energy (GeV)

29 CLEO data + my fit log scale 0-4 events/0.025gev500 in the presence of energy (GeV)

30 CLEO data + my fit log scale 0-4 events/0.025gev500 total and energy (GeV)

31 CLEO data + my fit log scale 0-4 events/0.025gev500 barrier term included energy (GeV)

32 CLEO data + my fit The underlined quantities compare with the data 0-4 events/0.025gev500 log scale 4 suppresses 2 decay total and in the presence of only energy (GeV) in the presence of barrier term included

33 E 83-0M S[GY/.CD-0J E CP9 E -0F>8HGI/ACD->J?K39! =F>L0L0+3=9*= M5UWV & GYX X "!ZI Q$RTSHL B 45CD9,:<CDJ Q\] (from the inclusive data) Events / 25 MeV (2 entries / event) (*),+.- -0/23) ( a )! ( b ) &' "#$ % M (4 ) (GeV) Events / (GeV -2 ) OPAL (c).5 2 Unfolded 3 Tauola s (GeV 2 )

34 This is just the beginning... foundations of modern resonance theory PROJECTS Fano Type 3 V (multiple discrete and continuum states) Three-body states V, t-exchange V, N final states (sic) Systematize renormalization Coupled channel analysis, numerical code

35

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University

A meson-exchange model for π N scattering up to energies s. Shin Nan Yang National Taiwan University A meson-exchange model for π N scattering up to energies s 2 GeV Shin Nan Yang National Taiwan University Collaborators: S. S. Kamalov (Dubna) Guan Yeu Chen (Taipei) 18th International Conference on Few-body

More information

Meson Radiative Transitions on the Lattice hybrids and charmonium. Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab

Meson Radiative Transitions on the Lattice hybrids and charmonium. Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab Meson Radiative Transitions on the Lattice hybrids and charmonium Jo Dudek, Robert Edwards, David Richards & Nilmani Mathur Jefferson Lab 1 JLab, GlueX and photocouplings GlueX plans to photoproduce mesons

More information

Analyticity and crossing symmetry in the K-matrix formalism.

Analyticity and crossing symmetry in the K-matrix formalism. Analyticity and crossing symmetry in the K-matrix formalism. KVI, Groningen 7-11 September, 21 Overview Motivation Symmetries in scattering formalism K-matrix formalism (K S ) (K A ) Pions and photons

More information

πn Multi-πN Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:016002,2007)

πn Multi-πN Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:016002,2007) N Multi-N Scattering in the 1/N c Expansion (HJK, Richard Lebed, Phys.Rev.D75:01600,007) Herry Kwee Arizona State University JLAB, May 3, 007 1 Outline 1. Introduction. Scattering Amplitudes and N c power

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab the light meson spectrum relatively simple models of hadrons: bound states of constituent quarks and antiquarks the quark model empirical meson

More information

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON

AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON AN ISOBAR MODEL FOR η PHOTO- AND ELECTROPRODUCTION ON THE NUCLEON WEN-TAI CHIANG AND SHIN NAN YANG Department of Physics, National Taiwan University, Taipei 10617, Taiwan L. TIATOR AND D. DRECHSEL Institut

More information

Hadron Spectroscopy at COMPASS

Hadron Spectroscopy at COMPASS Hadron Spectroscopy at Overview and Analysis Methods Boris Grube for the Collaboration Physik-Department E18 Technische Universität München, Garching, Germany Future Directions in Spectroscopy Analysis

More information

Production of Tetraquarks at the LHC

Production of Tetraquarks at the LHC Production of Tetraquarks at the LHC Alessandro Pilloni HADRON2015 Newport News September 17th, 2015 Esposito, Piccinini, AP, Polosa, JMP 4, 1569 Guerrieri, Piccinini, AP, Polosa, PRD90, 034003 Esposito,

More information

The Hadronic Decay Ratios of η 5π at NLO in χpt

The Hadronic Decay Ratios of η 5π at NLO in χpt EJTP 11, No. 1 (2014) 11 140 Electronic Journal of Theoretical Physics The Hadronic Decay Ratios of η 5π at NLO in χpt M. Goodarzi and H. Sadeghi Department of Physics, Faculty of Science, Arak University,

More information

Spectroscopy Results from COMPASS. Jan Friedrich. Physik-Department, TU München on behalf of the COMPASS collaboration

Spectroscopy Results from COMPASS. Jan Friedrich. Physik-Department, TU München on behalf of the COMPASS collaboration Spectroscopy Results from COMPASS Jan Friedrich Physik-Department, TU München on behalf of the COMPASS collaboration 11th European Research Conference on "Electromagnetic Interactions with Nucleons and

More information

Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields

Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields Igor Danilkin (collaborators: Matthias F. M. Lutz, Stefan Leupold, Carla Terschlüsen,

More information

The chiral anomaly and the eta-prime in vacuum and at low temperatures

The chiral anomaly and the eta-prime in vacuum and at low temperatures The chiral anomaly and the eta-prime in vacuum and at low temperatures Stefan Leupold, Carl Niblaeus, Bruno Strandberg Department of Physics and Astronomy Uppsala University St. Goar, March 2013 1 Table

More information

A final state interaction model of resonance photoproduction

A final state interaction model of resonance photoproduction A final state interaction model of resonance photoproduction HASPECT week Kraków May 30 - June 1, 2016 Łukasz Bibrzycki Pedagogical University of Cracow 1 / 24 1. Resonances dynamically created in the

More information

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo

Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo Compositeness of hadrons and near-threshold dynamics Tetsuo Hyodo Yukawa Institute for Theoretical Physics, Kyoto Univ. 2015, May 26th 1 Contents Contents Introduction: compositeness of hadrons Near-threshold

More information

Non-local 1/m b corrections to B X s γ

Non-local 1/m b corrections to B X s γ Non-local 1/m b corrections to B X s γ Michael Benzke TU München September 16, 2010 In collaboration with S. J. Lee, M. Neubert, G. Paz Michael Benzke (JGU) Non-local 1/m b corrections to B X s γ TU München

More information

Overview of Light-Hadron Spectroscopy and Exotics

Overview of Light-Hadron Spectroscopy and Exotics Overview of Light-Hadron Spectroscopy and Eotics Stefan Wallner Institute for Hadronic Structure and Fundamental Symmetries - Technical University of Munich March 19, 018 HIEPA 018 E COMPASS 1 8 Introduction

More information

Recent Results on Spectroscopy from COMPASS

Recent Results on Spectroscopy from COMPASS Recent Results on Spectroscopy from COMPASS Boris Grube Physik-Department E18 Technische Universität München, Garching, Germany Hadron 15 16. September 15, Newport News, VA E COMPASS 1 8 The COMPASS Experiment

More information

Dynamical coupled channel calculation of pion and omega meson production

Dynamical coupled channel calculation of pion and omega meson production Dynamical coupled channel calculation of pion and omega meson production INT-JLab Workshop on Hadron Spectroscopy 2009/11/11 Mark Paris Center for Nuclear Studies Data Analysis Center George Washington

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Applications of QCD Sum Rules to Heavy Quark Physics

Applications of QCD Sum Rules to Heavy Quark Physics Applications of QCD Sum Rules to Heavy Quark Physics Alexander Khodjamirian UNIVERSITÄT SIEGEN Theoretische Physik 1 RESEARCH UNIT q et f 3 lectures at Helmholtz International School "Physics of Heavy

More information

Weak interactions. Chapter 7

Weak interactions. Chapter 7 Chapter 7 Weak interactions As already discussed, weak interactions are responsible for many processes which involve the transformation of particles from one type to another. Weak interactions cause nuclear

More information

e e with ISR and the Rb Scan at BaBar

e e with ISR and the Rb Scan at BaBar e e with ISR and the Rb Scan at BaBar + + Francesco Renga Università di Roma La Sapienza & INFN Roma on behalf of the BaBar Collaboration 1 Introduction B Factories showed an exciting capability for improving

More information

Review of Standard Tau Decays from B Factories

Review of Standard Tau Decays from B Factories Review of Standard Tau Decays from B Factories Fabrizio Salvatore, RHUL Tau mass measurement Tau decays to strange particles: - Measurement of V us using τ s decays - τ KKπν τ, KKKν τ branching fractions

More information

Effective field theory estimates of the hadronic contribution to g 2

Effective field theory estimates of the hadronic contribution to g 2 Effective field theory estimates of the hadronic contribution to g 2 Fred Jegerlehner fjeger@physik.hu-berlin.de Work in collaboration with Maurice Benayoun et al EPJ C 72 (2012) 1848 and extension RMC

More information

Lattice Methods for Hadron Spectroscopy: new problems and challenges

Lattice Methods for Hadron Spectroscopy: new problems and challenges Lattice Methods for Hadron Spectroscopy: new problems and challenges Sinéad Ryan School of Mathematics, Trinity College Dublin, Ireland INT, Seattle, 10 th August, 2012 Sinéad Ryan (TCD) 1 / 28 Plan A

More information

Interference Effects in D Meson Decays. D. Cinabro Wayne State University FPCP 2006, 12 April

Interference Effects in D Meson Decays. D. Cinabro Wayne State University FPCP 2006, 12 April Interference Effects in D Meson Decays D. Cinabro Wayne State University FPCP 2006, 12 April Why Interference Effects? Provide unique information Phases and amplitudes are otherwise inaccessible Need these

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

Selected results in hadronic final state in DIS at HERA

Selected results in hadronic final state in DIS at HERA Stathes Paganis Columbia Univ., Nevis Labs on behalf of H1 and ZEUS collaborations Recontres de Moriond - March 23 23 Outline Forward jet and π production in DIS First observation of K s K s resonances

More information

Parity violation. no left-handed ν$ are produced

Parity violation. no left-handed ν$ are produced Parity violation Wu experiment: b decay of polarized nuclei of Cobalt: Co (spin 5) decays to Ni (spin 4), electron and anti-neutrino (spin ½) Parity changes the helicity (H). Ø P-conservation assumes a

More information

hybrids (mesons and baryons) JLab Advanced Study Institute

hybrids (mesons and baryons) JLab Advanced Study Institute hybrids (mesons and baryons) 2000 2000 1500 1500 1000 1000 500 500 0 0 71 the resonance spectrum of QCD or, where are you hiding the scattering amplitudes? real QCD real QCD has very few stable particles

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

Recent V ub results from CLEO

Recent V ub results from CLEO Recent V ub results from CLEO Marina Artuso Representing the CLEO Collaboration Beauty 2005, Assisi, June 20-25, 2005 1 Quark Mixing Weak interaction couples weak eigenstates, not mass eigenstates: CKM

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Amplitude analyses with charm decays at e + e machines

Amplitude analyses with charm decays at e + e machines Amplitude analyses with charm decays at e + e machines Carnegie Mellon University E-mail: jvbennett@cmu.edu Amplitude analyses provide uniquely powerful sensitivity to the magnitudes and phases of interfering

More information

Deviations from the exponential decay law in strong decays

Deviations from the exponential decay law in strong decays Deviations from the exponential decay law in strong decays Giuseppe Pagliara Institut für Theoretische Physik Heidelberg, Germany in collaboration with Francesco Giacosa (based on arxiv: 1005.4817) Excited

More information

Charming Nuclear Physics

Charming Nuclear Physics Charming Nuclear Physics Masaoki Kusunoki Univ. of Arizona (with Sean Fleming, Tom Mehen, Bira van Kolck) Outline Charming Nuclear Physics Introduction (Nuclear EFT) X(3872) as shallow DD* bound state

More information

CLEO Results From Υ Decays

CLEO Results From Υ Decays CLEO Results From Υ Decays V. Credé 1 2 1 Cornell University, Ithaca, NY 2 now at Florida State University Tallahassee, FL Hadron 05 Outline 1 Introduction The Υ System CLEO III Detector CLEO III Υ Data

More information

Topics in Standard Model. Alexey Boyarsky Autumn 2013

Topics in Standard Model. Alexey Boyarsky Autumn 2013 Topics in Standard Model Alexey Boyarsky Autumn 2013 New particles Nuclear physics, two types of nuclear physics phenomena: α- decay and β-decay See Introduction of this article for the history Cosmic

More information

Finite-Energy Sum Rules. Jannes Nys JPAC Collaboration

Finite-Energy Sum Rules. Jannes Nys JPAC Collaboration Finite-Energy Sum Rules in γn 0 N Jannes Nys JPAC Collaboration Finite-Energy Sum Rules η /η beam asymmetry predictions πδ beam asymmetry Lots of other reactions Overview J. Nys, V. Mathieu et al (JPAC)

More information

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab

lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab lattice QCD and the hadron spectrum Jozef Dudek ODU/JLab a black box? QCD lattice QCD observables (scattering amplitudes?) in these lectures, hope to give you a look inside the box 2 these lectures how

More information

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September

Four-fermion production near the W-pair production threshold. Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September Four-fermion production near the W-pair production threshold Giulia Zanderighi, Theory Division, CERN ILC Physics in Florence September 12-14 2007 International Linear Collider we all believe that no matter

More information

Problems for SM/Higgs (I)

Problems for SM/Higgs (I) Problems for SM/Higgs (I) 1 Draw all possible Feynman diagrams (at the lowest level in perturbation theory) for the processes e + e µ + µ, ν e ν e, γγ, ZZ, W + W. Likewise, draw all possible Feynman diagrams

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD

Why? How? to test strong QCD! SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD Why? to test strong QCD! How? SU(3) Chiral Perturbation Theory Threshold γn ΚΛ amplitudes K +, K 0, Λ form factors, polarizabilities Lattice QCD Cornelius Bennhold George Washington University Excitation

More information

Flavour Physics Lecture 1

Flavour Physics Lecture 1 Flavour Physics Lecture 1 Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK New Horizons in Lattice Field Theory, Natal, Rio Grande do Norte, Brazil March

More information

PoS(EPS-HEP2015)565. Study of the radiative tau decays τ γlνν with the BABAR detector. Roger Barlow

PoS(EPS-HEP2015)565. Study of the radiative tau decays τ γlνν with the BABAR detector. Roger Barlow Study of the radiative tau decays τ γlνν with the BABAR detector University of Huddersfield (GB) E-mail: roger.barlow@cern.ch We present measurements of the branching fraction for the radiative τ leptonic

More information

Photoabsorption and Photoproduction on Nuclei in the Resonance Region

Photoabsorption and Photoproduction on Nuclei in the Resonance Region Photoabsorption and Photoproduction on Nuclei in the Resonance Region Susan Schadmand Institut für Kernphysik First Workshop on Quark-Hadron Duality Frascati, June 6-8, 2005 electromagnetic probes Hadron

More information

Standard Model of Particle Physics

Standard Model of Particle Physics Standard Model of Particle Physics Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK SUSSP61, St Andrews August 8th 23rd 2006 Contents 1. Spontaneous Symmetry

More information

arxiv: v1 [hep-ex] 31 Dec 2014

arxiv: v1 [hep-ex] 31 Dec 2014 The Journal s name will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 5 arxiv:5.v [hep-ex] Dec 4 Highlights from Compass in hadron spectroscopy

More information

Effective Field Theory

Effective Field Theory Effective Field Theory Iain Stewart MIT The 19 th Taiwan Spring School on Particles and Fields April, 2006 Physics compartmentalized Quantum Field Theory String Theory? General Relativity short distance

More information

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV Jiajun Wu R. Molina E. Oset B. S. Zou Outline Introduction Theory for the new bound states Width and Coupling constant

More information

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

The Cabibbo-Kobayashi-Maskawa (CKM) matrix The Cabibbo-Kobayashi-Maskawa (CKM) matrix Charge-raising current J µ W = ( ν e ν µ ν τ )γ µ (1 γ 5 ) V = A u L Ad L e µ τ + (ū c t)γ µ (1 γ 5 )V Mismatch between weak and quark masses, and between A u,d

More information

Overview and Status of Measurements of F 3π at COMPASS

Overview and Status of Measurements of F 3π at COMPASS g-2 workshop Mainz: Overview and Status of Measurements of F 3π at COMPASS D. Steffen on behalf of the COMPASS collaboration 19.06.2018 sponsored by: 2 Dominik Steffen g-2 workshop Mainz 19.06.2018 Contents

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

Conference Summary. K.K. Gan The Ohio State University. K.K. Gan Tau2000 1

Conference Summary. K.K. Gan The Ohio State University. K.K. Gan Tau2000 1 Conference Summary K.K. Gan The Ohio State University K.K. Gan Tau2000 1 many interesting results can only summarize some highlights include a few interesting results not presented here apologize to those

More information

Lecture 8. CPT theorem and CP violation

Lecture 8. CPT theorem and CP violation Lecture 8 CPT theorem and CP violation We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed

More information

Covariant effective field theory (EFT!)

Covariant effective field theory (EFT!) Outline Covariant effective field theory (EFT!) (or, can the dinosaur learn anything from the cockroach?) Part I: The Covariant Spectator approach for two and three nucleon interactions at JLab momentum

More information

The Search for Exotic Mesons in Photoproduction. Diane Schott

The Search for Exotic Mesons in Photoproduction. Diane Schott The Search for Exotic Mesons in Photoproduction Diane Schott Purpose The constituent quark model gives initial set of mesons formed by qq pairs. It is described by simplest QCD bound state. QCD allows

More information

Search for new physics in three-body charmless B mesons decays

Search for new physics in three-body charmless B mesons decays Search for new physics in three-body charmless B mesons decays Emilie Bertholet Advisors: Eli Ben-Haim, Matthew Charles LPNHE-LHCb group emilie.bertholet@lpnhe.in2p3.fr November 17, 2017 Emilie Bertholet

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

Baroion CHIRAL DYNAMICS

Baroion CHIRAL DYNAMICS Baroion CHIRAL DYNAMICS Baryons 2002 @ JLab Thomas Becher, SLAC Feb. 2002 Overview Chiral dynamics with nucleons Higher, faster, stronger, Formulation of the effective Theory Full one loop results: O(q

More information

Invariant Mass, Missing Mass, jet reconstruction and jet flavour tagging

Invariant Mass, Missing Mass, jet reconstruction and jet flavour tagging 1 Experimentelle Methods of Particle Physics HS 215 http://www.physik.uzh.ch/lectures/empp/ Wednesday 16.12.15 and Thursday 17.12.15 Invariant Mass, Missing Mass, jet reconstruction and jet flavour tagging

More information

Meson-baryon interaction in the meson exchange picture

Meson-baryon interaction in the meson exchange picture Meson-baryon interaction in the meson exchange picture M. Döring C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, University of Georgia, Universität Bonn

More information

Coupled-channel effects in radiative. Radiative charmonium transitions

Coupled-channel effects in radiative. Radiative charmonium transitions Coupled-channel effects in radiative charmonium transitions Feng-Kun Guo Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn IHEP, Beijing, April 16, 2013 Based on: Guo, Meißner, PRL108(2012)112002;

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Non-locality in QFT due to Quantum Effects in Gravity

Non-locality in QFT due to Quantum Effects in Gravity Non-locality in QFT due to Quantum Effects in Gravity Xavier Calmet Physics & Astronomy University of Sussex 1 Effective action for GR How can we describe general relativity quantum mechanically? Well

More information

Dynamical Model Analysis of Hadron Resonances (IV) T.- S. Harry Lee Argonne Na1onal Laboratory

Dynamical Model Analysis of Hadron Resonances (IV) T.- S. Harry Lee Argonne Na1onal Laboratory Dynamical Model Analysis of Hadron Resonances (IV) T.- S. Harry Lee Argonne Na1onal Laboratory Lecture IV: 1. Dynamical model for extrac3ng heavy/exo3c mesons from 3- mesons produc3on reac3ons 2. Summary

More information

Baryon resonance production at. LIU Beijiang (IHEP, CAS) For the BESIII collaboration ATHOS3/PWA8 2015, GWU

Baryon resonance production at. LIU Beijiang (IHEP, CAS) For the BESIII collaboration ATHOS3/PWA8 2015, GWU Baryon resonance production at LIU Beijiang (IHEP, CAS) For the BESIII collaboration ATHOS3/PWA8 2015, GWU Spectrum of Nucleon Resonances **** *** ** * N Spectrum 10 5 7 3 Δ Spectrum 7 3 7 5 Particle Data

More information

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016

Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie. September 5 th 2016 Holographic Distribution Amplitudes for mesons Ruben Sandapen (Acadia & Mt. A) in collaboration with M. Ahmady & F. Chishtie Diffraction 2016 Progress in QCD session September 5 th 2016 1 Outline Overview

More information

Review of D-D Mixing

Review of D-D Mixing Review of D-D Mixing David Curtin bla Cornell Institute for High Energy Phenomenology A-Exam Presentation Wednesday, October 7 2009 Introduction Neutral meson mixing probes the deep quantum structure of

More information

Rare Hadronic B Decays

Rare Hadronic B Decays XLI st Rencontres de Moriond QCD and High-Energy Hadronic Interactions La Thuile, Italy, March 18-5, 6 Rare Hadronic B Decays Jürgen Kroseberg Santa Cruz Institute for Particle Physics University of California,

More information

arxiv: v2 [hep-ph] 23 Jul 2010

arxiv: v2 [hep-ph] 23 Jul 2010 Photon- and pion-nucleon interactions in a unitary and causal effective field theory based on the chiral Lagrangian A. Gasparyan, a,b and M.F.M. Lutz a arxiv:13.346v [hep-ph] 3 Jul 1 Abstract a Gesellschaft

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

Renormalization and power counting of chiral nuclear forces. 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U.

Renormalization and power counting of chiral nuclear forces. 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U. Renormalization and power counting of chiral nuclear forces 龙炳蔚 (Bingwei Long) in collaboration with Chieh-Jen Jerry Yang (U. Arizona) What are we really doing? Correcting Weinberg's scheme about NN contact

More information

Renormalization of Conserving Selfconsistent Dyson equations

Renormalization of Conserving Selfconsistent Dyson equations Renormalization of Conserving Selfconsistent Dyson equations Hendrik van Hees Darmstadt Motivation Thermodynamics of strongly interacting systems Conservation laws, detailed balance, thermodynamical consistency

More information

* ) B s( * ) B s( - 2 -

* ) B s( * ) B s( - 2 - - 1 - ϒ Λ B s( * ) B s( * ) ϒ B s( * ) Λ B s( * ) - 2 - ϒ(5S) Study at CLEO CLEO studies B s in both inclusive and exclusive modes. Data was taken with the CLEO III detector. Data set ϒ(5S) ϒ(4S) Continuum

More information

Cornelius Bennhold George Washington University

Cornelius Bennhold George Washington University Cornelius Bennhold George Washington University The past 7 years Low-lying baryon resonances Missing and exotic (hybrid) resonances How many N* do we need? How many do we have? Resonance form factors The

More information

Overview of N* Physics

Overview of N* Physics N* analysis white paper mtg. 11/4/06-1 Overview of N* Physics Why study excited states of the nucleon? What do we know about N* states? What are the goals of the N* program? What developments are required

More information

πn scattering and π photoproduction in a dynamical coupled-channels model

πn scattering and π photoproduction in a dynamical coupled-channels model π scattering and π photoproduction in a dynamical coupled-channels model Fei Huang Department of Physics and Astronomy, The University of Georgia, USA Collaborators: K. akayama (UGA), H. Haberzettl (GWU)

More information

arxiv: v1 [hep-ph] 22 Apr 2008

arxiv: v1 [hep-ph] 22 Apr 2008 New formula for a resonant scattering near an inelastic threshold L. Leśniak arxiv:84.3479v [hep-ph] 22 Apr 28 The Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, 3-342

More information

Electroweak Theory: 5

Electroweak Theory: 5 Electroweak Theory: 5 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 162 References

More information

Recent results and perspectives on pseudo-scalar mesons and form factors at BES III

Recent results and perspectives on pseudo-scalar mesons and form factors at BES III Meson Physics in Low-Energy QCD Workshop on Meson Transition Form Factors Recent results and perspectives on pseudo-scalar mesons and form factors at BES III Elisabetta Prencipe Johannes Gutenberg University

More information

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons?

Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Baryon Spectroscopy at Jefferson Lab What have we learned about excited baryons? Volker Credé Florida State University, Tallahassee, FL Spring Meeting of the American Physical Society Atlanta, Georgia,

More information

Introduction to Operator Product Expansion

Introduction to Operator Product Expansion Introduction to Operator Product Expansion (Effective Hamiltonians, Wilson coefficients and all that... ) Thorsten Feldmann Neckarzimmern, March 2008 Th. Feldmann (Uni Siegen) Introduction to OPE March

More information

N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.)

N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.) N* and Y* baryon spectroscopy using high momentum pion beam (+ kaon beam) Hiroyuki Kamano (RCNP, Osaka U.) Mini workshop on Structure and productions of charmed baryons II KEK Tokai Campus, Tokai, Aug.

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

Charmonium Radiative Transitions

Charmonium Radiative Transitions Charmonium Radiative Transitions Jielei Zhang Institute of High Energy of Physics (for the BESIII collaboration) QWG2016 1 What to measure What have done with old datasets 1.06 10 8 ψ(3686) 2009 What will

More information

Mass Components of Mesons from Lattice QCD

Mass Components of Mesons from Lattice QCD Mass Components of Mesons from Lattice QCD Ying Chen In collaborating with: Y.-B. Yang, M. Gong, K.-F. Liu, T. Draper, Z. Liu, J.-P. Ma, etc. Peking University, Nov. 28, 2013 Outline I. Motivation II.

More information

Johan Bijnens. Lund University. bijnens bijnens/chpt.html

Johan Bijnens. Lund University.  bijnens  bijnens/chpt.html 1/28 Lund University bijnens@thep.lu.se http://thep.lu.se/ bijnens http://thep.lu.se/ bijnens/chpt.html Workshop on at CLAS Jefferson Lab 5 August 2012 2/28 Outline 1 2 3 4 5 6 7 3/28 The big picture This

More information

Study on the Two-Photon Transition from ψ(2s) to J/ψ at BESIII

Study on the Two-Photon Transition from ψ(2s) to J/ψ at BESIII Study on the Two-Photon Transition from ψ(2s) to J/ψ at BESIII 吕晓睿 Xiao-Rui Lu (E-mail: xiaorui@gucas.ac.cn) Graduate University of Chinese Academy of Sciences (GUCAS) List of Contents: Introduction (on

More information

CHAPTER 2 ELECTRON-PROTON COLLISION

CHAPTER 2 ELECTRON-PROTON COLLISION CHAPTER ELECTRON-PROTON COLLISION.1 Electron-proton collision at HERA The collision between electron and proton at HERA is useful to obtain the kinematical values of particle diffraction and interaction

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Single Spin Asymmetry at large x F and k T

Single Spin Asymmetry at large x F and k T 1 Single Spin Asymmetry at large x F and k T Paul Hoyer University of Helsinki Workshop on Transverse momentum, spin, and position distributions of partons in hadrons ECT*, 11-15 June 2007 PH and M. Järvinen,

More information

Lecture 8. CPT theorem and CP violation

Lecture 8. CPT theorem and CP violation Lecture 8 CPT theorem and CP violation We have seen that although both charge conjugation and parity are violated in weak interactions, the combination of the two CP turns left-handed antimuon onto right-handed

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

Feynman Rules of Non-Abelian Gauge Theory

Feynman Rules of Non-Abelian Gauge Theory Feynman Rules o Non-belian Gauge Theory.06.0 0. The Lorenz gauge In the Lorenz gauge, the constraint on the connection ields is a ( µ ) = 0 = µ a µ For every group index a, there is one such equation,

More information

QCD and Rescattering in Nuclear Targets Lecture 2

QCD and Rescattering in Nuclear Targets Lecture 2 QCD and Rescattering in Nuclear Targets Lecture Jianwei Qiu Iowa State University The 1 st Annual Hampton University Graduate Studies Program (HUGS 006) June 5-3, 006 Jefferson Lab, Newport News, Virginia

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

CLEO Charmonium Results

CLEO Charmonium Results CLEO Charmonium Results Hanna Mahlke Cornell University Ithaca, NY Quarkonium Working Group Meeting 10/17-20/07 DESY, Hamburg The Landscape All states below DD threshold observed 1-- states known best,

More information