Analysis of Electromagnetic Interferences Induced by High Voltage Lines under Normal and Fault Conditions

Size: px
Start display at page:

Download "Analysis of Electromagnetic Interferences Induced by High Voltage Lines under Normal and Fault Conditions"

Transcription

1 Analysis of Electromagnetic Interferences Induced by High Voltage Lines under Normal and Fault Conditions Calin MUNTEANU, Vasile TOPA, Laura GRINDEI Technical University of Cluj-Napoca, Baritiu 8, Cluj-Napoca, Romania, Leslie BORTELS, Johan DECONINCK Vrije Universiteit Brussel, Pleinlaan, 050 Brussel, Belgium Abstract. The paper presents a method for analysis of the electromagnetic interferences created on pipeline networks by the High Voltage (HV) power lines working on normal or fault conditions. In order to perform the numerical computations, a particular 3D numerical code was developed. The code was validated for particular problems by comparison using the CatPro software developed by Elsyca []. In the second part of the paper numerical results for normal and fault examples are outlined. Final conclusions end the paper. Introduction Nowadays there is an increasing concern regarding the hazards resulting from the electromagnetic interferences generated on buried pipe network by the electric power systems working under normal or fault conditions (see Figure ). The safety of the people touching the pipes, the damages of the pipe networks and the cathodic protection equipment to be implemented are only few of the important questions to be answered. Thus, there is an industrial need for development of user-friendly, high-precision computation software applications able to compute the induced voltage values and their effects on the victim pipelines. y z HV Line Fault to Ground Lossy Ground Buried Pipeline Figure : Pipelines in the neighbourhood of HV power lines In this light, the numerical analysis software application proposed to be developed is aimed to compute the values of the AC induced potential and currents on the buried pipelines by the source currents flowing through the HV power line that is placed in closed proximity with the pipeline network. Being a high complexity application, the software package is intended to be an addition of several computation modules, aimed to solve together the global 3D electromagnetic field problem. In this paper will be presented the module that computes the effects of the currents from the HV power line working on normal of fault conditions. The computation of the currents on HV line working on normal or fault situations, in the presence of the lossy conductive ground, is not the object of the present paper.

2 D FEM - 3D BEM electromagnetic field model In order to solve the electromagnetic field problem, a D Finite Element Method (FEM) model for the internal pipe problem coupled with a 3D Boundary Element Method (BEM) model for the external pipe problem has been developed. Dividing the pipe in so-called pipe elements as shown in Figure and assuming an ial symmetry of the problem, the starting equation for the current distribution is: i ( τ ) = i ( τ + dτ) + i ( τ) () rad i rad (τ) i (τ + dτ) i (τ) dτ Figure : Small pipe length and the st theorem of Kirchhoff Equation () will lead to the following current density components [], [3], [4]: Φ σ + jωa J = τ Φ σ + jωa = J = Q r rad rad ( AC ) () Taking into account (), the equation for the pipe internal problem can be written as: A π R + jω Q= 0 (3) τ τ σs Φ Using the weighted residual method [] for minimization of the functional associated to equation (3) one lead to the following system of equations: Q0 Q A + A 0 I = 0 ( Φ Φ 0 ) G + k jωlg Q Q A 0 + A 0 I = ( Φ Φ 0) G k jωlg (4) valid for a pipe element, where R is the pipe radius, l is the length of the pipe element, S is the transversal surface, k = π Rl is the surface of revolution and G = σ Sl is the ial conductance of the pipe element. The above system of equations may be rewritten for each node (i) in the following form suitable for the numerical implementation in accordance with sign convention from Figure 3. k k k k i i i i Q + Q Q G ( G G ) G i + + Φ + + Φ Φ i i j ω l G j l G j lg j lg i i i i i i i i A ω ω i A ω i + A i+ i i i i i i i+ = (5)

3 Q i- Q i Q i+ Ф i- Z i- Ф i Z i Ф i+ (i-) (i) (i+) I i- I i- I i I i I i+ I i+ Figure 3: The D FEM model for the pipe internal problem The 3D boundary integral equation for the pipe external problem can be formulated starting from the diffusion equation and using the Lorentz gauge condition A =μσφ []: Ω() i G Q Φ () i + Φ d Γ= G + j ω A d Γ 4π Γ n Γ σ rad (6) where ne r is the normal unit vector in the positive sense considered (from interior to exterior of the pipe) and G is the fundamental solution (Green s function) associated to the governing equation and given by []: r jkr δ e e r r G = = cos jsin 4π r 4πr δ δ (7) where r is the position vector and δ is the skin depth. In order to solve the coupled FEM BEM problem, a global matrix system has been set-up. The final global matrix system implemented is presented in the equation below: HR + HI + σ GR σ GI Φ R + ωgi + ωgr 0 0 ARR HI HR σ GI σ GR I ωgi ωgi 0 0 ARI + + Φ + = + G 0 + K 0 QR G3 AZR 0 + G 0 + K QI 0 0 G3 0 AZI (8) where: ФR, ФI are the real and the imaginary parts of the potential on the pipe boundary nodes; QR, QI are the real and the imaginary parts of the radial current density on the pipe boundary nodes (see Figure 3); ARR, ARI are the real and the imaginary radial components of the vector magnetic potential values on the pipe boundary nodes; AZR, AZI are the real and the imaginary ial components of the vector magnetic potential values on the pipe boundary nodes; The sources are therefore the values of the vector magnetic potential produced by the HV power line on the pipe nodes. These values are computed using the relation: jkr μ e A= I S S 4π dl (9) r Conductor 3

4 3 Numerical examples In order to test the computation accuracy of the software module developed the numerical results for particular cases have been compared with the results obtained with CatPro.4 [],[3] that uses the Transmission Lines Method (TLM). This software was developed by Elsyca []. The results in the case of a km long pipe placed parallel with a km straight HV power line working under normal condition (balanced three-phased line currents) are shown below. 5 PIPE HV Tline PIPE HV Tline x [km] x [km] (a) (b) Figure 4: Test cases for software computation accuracy (a) FEM-BEM software module developed (b) CatPro-Elsyca results Figure 5: Computation accuracy numerical results As it can be noticed from Figure 5, there is a very good agreement between the two results. Moreover, if the mimum potential values at the ends of the pipe are compared, one gets a relative error of 0.07% which means a very good agreement between the computation methods. In addition to the CatPro software that may be used only for normal working conditions on HV line and for straight geometries, the FEM-BEM software module developed is able to compute the potential distribution along the pipe for HV line fault cases and also for more complicated geometries of the pipe and HV line. In the first example presented in Figure 6 one considers a 0 km long pipeline placed parallel with a km long HV line. The potential distribution along the pipeline is computed in three cases: HV line working on normal condition (500 A balanced three-phased current through the line) case, HV line has a fault to ground at km distance from the left end cases. The 0 ka fault is considered fed in two ways: first case from both HV line ends (5 ka each) and second case from left end only (0 ka). Numerical results are presented in Figure 7 and Figure 8. Looking to the results presented in Figure 7 one can notice that the magnitude of the current influences dramatically the potential distribution on the neighbour pipe. 4

5 5 PIPE 0 ka 5 ka 5 ka HV Tline x [km] 0 ka Figure 6: Problem formulation for the first numerical example (a) Normal working condition (b) Fault supplied from one side left side Figure 7: Numerical results for the first example (a) Fault supplied from one side left side (b) Fault supplied from both sides Figure 8: Numerical results for the first example While in the case of normal working conditions (500 A balanced currents) one get mimum 43 V induced potential value along the pipe, for 0 ka fault current an induced potential value of up to 4. kv is obtained, which is a really dangerous value. Also the way the fault is supplied influences essentially the induced potential distribution. This fact is outlined in Figure 8. One can observe that if the fault currents flow along all the HV line the induced potentials are much higher than in the case of a higher current flowing on only one side. In this last case the potential values on the opposite side of the pipe is much lower. The software module implemented can be used for more complicated geometries, as the one presented in Figure 9. The potential distribution computed for normal and fault conditions are presented in Figure 0. 5

6 -5000 Pipe HV Line x [m] ka Figure 9: Problem formulation for the second numerical example 4 Conclusions (a) Normal working condition (b) Fault supplied from one side left side Figure 0: Numerical results for the second example The paper presents a method for computation of induced potential values along pipe networks due to HV line currents working on normal and fault conditions. The influences of the HV line supply method and of the geometry of the problem are outlined in the numerical examples proposed. References [] Web page [] C. Munteanu, L. Bortels, J. Deconinck, V. Topa, E. Simion. Advances on BEM FEM 3D Numerical Modelling of Electromagnetic Interferences between HV Lines and Buried Pipelines, Proceedings of the nd International Workshop on Advances in Numerical Computation Methods in Electromagnetism, ANCME 003, Gent, Belgium, 003, pp [3] L. Bortels, C. Munteanu, J. Deconinck, V. Topa. A User-Friendly Simulation Software for AC Predictive and Mitigation Techniques, 58 th Annual Conference and Exposition, CORROSION NACExpo 003, San Diego, USA, 003. [4] C. Munteanu, V. Topa, E. Simion, L. Bortels, J. Deconinck. 3D Numerical Modelling of the Induced Voltages on Pipelines by Neighbour HV Transmission Lines, Proceedings al Simpozionului National de Electrotehnica Teoretica, SNET 03, Bucharest, 003, pp. 9-6 Acknowledgments - The authors are grateful to the Flemish Government and to the Romanian Minister of Education and Science for the financial support in the frame of the Flemish- Romanian Bilateral Project BWS 0/05. 6

Modeling of the 3D Electrode Growth in Electroplating

Modeling of the 3D Electrode Growth in Electroplating Modeling of the 3D Electrode Growth in Electroplating Marius PURCAR, Calin MUNTEANU, Alexandru AVRAM, Vasile TOPA Technical University of Cluj-Napoca, Baritiu Street 26-28, 400027 Cluj-Napoca, Romania;

More information

Induction Heating Spiral Inductor Comparison between Practical Construction and Numerical Modeling

Induction Heating Spiral Inductor Comparison between Practical Construction and Numerical Modeling 542 ACTA ELECTROTEHNICA Induction Heating Spiral Inductor Comparison between Practical Construction and Numerical Modeling Claudia Constantinescu, Adina Răcășan, Claudia Păcurar, Sergiu Andreica, Flaviu

More information

Shielding effect of multi-grounded neutral wire in the distribution system

Shielding effect of multi-grounded neutral wire in the distribution system EUROPEAN TRANSACTIONS ON ELECTRICAL POWER Euro. Trans. Electr. Power 2011; 21:624 634 Published online 12 July 2010 in Wiley Online Library (wileyonlinelibrary.com)..466 Shielding effect of multi-grounded

More information

Magnetic Field Simulation of a Miniature Circuit Breaker s Coil

Magnetic Field Simulation of a Miniature Circuit Breaker s Coil Magnetic Field Simulation of a Miniature Circuit Breaker s Coil Comparison of Simulation and analitical results on the solenoid axis. Conecici-Lucian Madalin, Munteanu Calin, Purcar Ioan Marius Technical

More information

NUMERICAL EVALUATION OF INDUCED VOLTAGES IN THE METALLIC UNDERGROUND PIPELINES

NUMERICAL EVALUATION OF INDUCED VOLTAGES IN THE METALLIC UNDERGROUND PIPELINES NUMERICL EVLUTION OF INDUCED VOLTGES IN THE METLLIC UNDERGROUND PIPELINES DN DORU MICU 1, IOSIF LINGVY 2, CRMEN LINGVY 2, LUR CRET 1, EMIL SIMION 1 Keywords: Interpolation algorithms, Induced voltages,

More information

Electromagnetic Theorems

Electromagnetic Theorems Electromagnetic Theorems Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Electromagnetic Theorems Outline Outline Duality The Main Idea Electric Sources

More information

D. S. Weile Radiation

D. S. Weile Radiation Radiation Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Radiation Outline Outline Maxwell Redux Maxwell s Equation s are: 1 E = jωb = jωµh 2 H = J +

More information

The Influence of Phase Transposing on Double Circuit Overhead Power Line Magnetic Field

The Influence of Phase Transposing on Double Circuit Overhead Power Line Magnetic Field The Influence of Phase Transposing on Double Circuit Overhead Power Line Magnetic Field LIVIU NEAMł, LIVIU EMIL PETREAN, OLIVIAN CHIVER, ZOLTAN ERDEI Electrical Engineering Department North University

More information

COMPEL 27,1. The current issue and full text archive of this journal is available at

COMPEL 27,1. The current issue and full text archive of this journal is available at The current issue and full text archive of this journal is available at www.emeraldinsight.com/33-649.htm COMPEL 7, 7 Magnetic shielding of buried high-voltage (HV) cables by conductive metal plates Peter

More information

Outline of College Physics OpenStax Book

Outline of College Physics OpenStax Book Outline of College Physics OpenStax Book Taken from the online version of the book Dec. 27, 2017 18. Electric Charge and Electric Field 18.1. Static Electricity and Charge: Conservation of Charge Define

More information

Wave propagation effects induced in transmission pipelines by EMI from power lines

Wave propagation effects induced in transmission pipelines by EMI from power lines DOI 0.007/s000-07-0646-8 ORIGINAL PAPER Wave propagation effects induced in transmission pipelines by EMI from power lines Piotr Czarnywojtek Wojciech Machczyński Received: 5 April 07 / Accepted: September

More information

G R O U N D R E S I S TA N C E T E S T I N G P R I N C I P L E (Fall of Potential 3-Point Measurement)

G R O U N D R E S I S TA N C E T E S T I N G P R I N C I P L E (Fall of Potential 3-Point Measurement) G R O U N D R E S I S TA N C E T E S T I N G P R I N C I P L E (Fall of Potential 3-Point Measurement) NOTES The potential diference between rods X and Y is measured by a voltmeter, and the current flow

More information

Linear Wire Antennas. EE-4382/ Antenna Engineering

Linear Wire Antennas. EE-4382/ Antenna Engineering EE-4382/5306 - Antenna Engineering Outline Introduction Infinitesimal Dipole Small Dipole Finite Length Dipole Half-Wave Dipole Ground Effect Constantine A. Balanis, Antenna Theory: Analysis and Design

More information

Fault Calculation Methods

Fault Calculation Methods ELEC9713 Industrial and Commercial Power Systems Fault Calculation Methods There are two major problems that can occur in electrical systems: these are open circuits and short circuits. Of the two, the

More information

Chapter 18. Direct Current Circuits -II

Chapter 18. Direct Current Circuits -II Chapter 18 Direct Current Circuits -II So far A circuit consists of three-four elements: Electromotive force/power supply/battery capacitors, resistors inductors Analyzed circuits with capacitors or resistors

More information

RESEARCH ON REDUCING COGGING TORQUE IN PERMANENT MAGNET SYNCHRONOUS GENERATORS

RESEARCH ON REDUCING COGGING TORQUE IN PERMANENT MAGNET SYNCHRONOUS GENERATORS U.P.B. Sci. Bull., Series C, Vol. 77, Iss. 3, 2015 ISSN 2286-3540 RESEARCH ON REDUCING COGGING TORQUE IN PERMANENT MAGNET SYNCHRONOUS GENERATORS Ion TRIFU 1 This paper presents different cogging torque

More information

The influence of ambient temperature on the potentiality of integrated systems for wind energy conversion into electricity

The influence of ambient temperature on the potentiality of integrated systems for wind energy conversion into electricity Annals of the University of Craiova, Electrical Engineering series, No. 37, 13; ISSN 184-485 The influence of ambient temperature on the potentiality of integrated systems for wind energy conversion into

More information

Proximity effect on bare buried conductors connecting together MV/LV substations earth electrodes

Proximity effect on bare buried conductors connecting together MV/LV substations earth electrodes Proceedings of the 6 IASME/WSEAS International onference on Energy & Environmental Systems, halkida, Greece, May 8-, 6 (pp7-) Proximity effect on bare buried conductors connecting together MV/LV s earth

More information

Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals

Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals Direct Current When the current in a circuit has a constant magnitude and direction, the current is called direct current Because the potential difference between the terminals of a battery is constant,

More information

Chapter 2 Effective Internal Impedance

Chapter 2 Effective Internal Impedance Chapter 2 Effective Internal Impedance The impedance boundary condition (IBC) is widely used in scattering problems, eddy current problems, lossy transmission line problems, etc. The IBC is adopted to

More information

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis Antennas and Propagation : Basic Electromagnetic Analysis Outline Vector Potentials, Wave Equation Far-field Radiation Duality/Reciprocity Transmission Lines Antennas and Propagation Slide 2 Antenna Theory

More information

Wave Phenomena Physics 15c. Lecture 8 LC Transmission Line Wave Reflection

Wave Phenomena Physics 15c. Lecture 8 LC Transmission Line Wave Reflection Wave Phenomena Physics 15c Lecture 8 LC Transmission Line Wave Reflection Midterm Exam #1 Midterm #1 has been graded Class average = 80.4 Standard deviation = 14.6 Your exam will be returned in the section

More information

STRUCTURAL PARASITIC CAPACITANCE REDUCTION TECHNIQUES IN PLANAR MAGNETIC INTEGRATED STRUCTURES

STRUCTURAL PARASITIC CAPACITANCE REDUCTION TECHNIQUES IN PLANAR MAGNETIC INTEGRATED STRUCTURES STRUCTURAL PARASITIC CAPACITANCE REDUCTION TECHNIQUES IN PLANAR MAGNETIC INTEGRATED STRUCTURES STRUCTURAL PARASITIC CAPACITANCE REDUCTION TECHNIQUES IN PLANAR MAGNETIC INTEGRATED STRUCTURES Lecturer Eng.

More information

1 Solution of Electrostatics Problems with COM- SOL

1 Solution of Electrostatics Problems with COM- SOL 1 Solution of Electrostatics Problems with COM- SOL This section gives examples demonstrating how Comsol can be used to solve some simple electrostatics problems. 1.1 Laplace s Equation We start with a

More information

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/

Physics GRE: Electromagnetism. G. J. Loges 1. University of Rochester Dept. of Physics & Astronomy. xkcd.com/567/ Physics GRE: Electromagnetism G. J. Loges University of Rochester Dept. of Physics & stronomy xkcd.com/567/ c Gregory Loges, 206 Contents Electrostatics 2 Magnetostatics 2 3 Method of Images 3 4 Lorentz

More information

Industrial Heating System Creating Given Temperature Distribution

Industrial Heating System Creating Given Temperature Distribution SERBIAN JOURNAL OF ELECTRICAL ENGINEERING Vol. 5, No. 1, May 2008, 57-66 Industrial Heating System Creating Given Temperature Distribution Ilona Iatcheva 1, Ilonka Lilianova 2, Hristophor Tahrilov 2, Rumena

More information

Thermal Analysis by Conduction Convection and Radiation in a Power Cable

Thermal Analysis by Conduction Convection and Radiation in a Power Cable IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 3 Ver. II (May Jun. 2014), PP 51-56 Thermal Analysis by Conduction Convection and

More information

Risk indexes for studying interconnected earthing systems inside MV networks

Risk indexes for studying interconnected earthing systems inside MV networks Risk Analysis V: Simulation and Hazard Mitigation 67 Risk indexes for studying interconnected earthing systems inside MV networks A. Campoccia & G. Zizzo Department of Electrical, Electronic and Telecommunications

More information

Reluctance Synchronous Machine with a Particular Cageless Segmental Rotor

Reluctance Synchronous Machine with a Particular Cageless Segmental Rotor Reluctance Synchronous Machine with a Particular Cageless Segmental Rotor I.A. Viorel 1, I. Husain 2, Ioana Chişu 1, H.C. Hedeşiu 1, G. Madescu 3 and L. Szabó 1 1 Dept. of Electrical Machines, Technical

More information

2nd Year Electromagnetism 2012:.Exam Practice

2nd Year Electromagnetism 2012:.Exam Practice 2nd Year Electromagnetism 2012:.Exam Practice These are sample questions of the type of question that will be set in the exam. They haven t been checked the way exam questions are checked so there may

More information

Field Theory exam II Solutions

Field Theory exam II Solutions Field Theory exam II Solutions Problem 1 (a) Consider point charges, one with charge q located at x 1 = (1, 0, 1), and the other one with charge q at x = (1, 0, 1). Compute the multipole moments q lm in

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

Proximity Effect Against Skin Effect in Two Coupled U-shaped Busbars

Proximity Effect Against Skin Effect in Two Coupled U-shaped Busbars FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 22, no.3, December 2003, 293-303 Proximity Effect Against Skin Effect in Two Coupled U-shaped Busbars Karolina Kasaš - Lažetić, Miroslav Prša, and Nikola

More information

3.2 Numerical Methods for Antenna Analysis

3.2 Numerical Methods for Antenna Analysis ECEn 665: Antennas and Propagation for Wireless Communications 43 3.2 Numerical Methods for Antenna Analysis The sinusoidal current model for a dipole antenna is convenient because antenna parameters can

More information

Control and simulation of doubly fed induction generator for variable speed wind turbine systems based on an integrated Finite Element approach

Control and simulation of doubly fed induction generator for variable speed wind turbine systems based on an integrated Finite Element approach Control and simulation of doubly fed induction generator for variable speed wind turbine systems based on an integrated Finite Element approach Qiong zhong Chen*, Michel Defourny #, Olivier Brüls* *Department

More information

WIRE ANTENNA MODEL FOR TRANSIENT ANALYSIS OF SIMPLE GROUNDINGSYSTEMS, PART I: THE VERTICAL GROUNDING ELECTRODE

WIRE ANTENNA MODEL FOR TRANSIENT ANALYSIS OF SIMPLE GROUNDINGSYSTEMS, PART I: THE VERTICAL GROUNDING ELECTRODE Progress In Electromagnetics Research, PIER 64, 149 166, 2006 WIRE ANTENNA MODEL FOR TRANSIENT ANALYSIS OF SIMPLE GROUNDINGSYSTEMS, PART I: THE VERTICAL GROUNDING ELECTRODE D. Poljak and V. Doric Department

More information

ACCURACY OF APPROXIMATE FORMULAS FOR INTERNAL IMPEDANCE OF TUBULAR CYLINDRICAL CONDUCTORS FOR LARGE PARAMETERS

ACCURACY OF APPROXIMATE FORMULAS FOR INTERNAL IMPEDANCE OF TUBULAR CYLINDRICAL CONDUCTORS FOR LARGE PARAMETERS Progress In Electromagnetics Research M, Vol. 16, 171 184, 2011 ACCURACY OF APPROXIMATE FORMULAS FOR INTERNAL IMPEDANCE OF TUBULAR CYLINDRICAL CONDUCTORS FOR LARGE PARAMETERS D. Lovrić Faculty of Electrical

More information

Alternating Current (AC): Alternating Current is electric current that reverses directions at regular intervals.

Alternating Current (AC): Alternating Current is electric current that reverses directions at regular intervals. Glossary Alternating Current (AC): Alternating Current is electric current that reverses directions at regular intervals. American National Standards Institute (ANSI): American National Standards Institute

More information

Update On The Electromagnetism Module In LS-DYNA

Update On The Electromagnetism Module In LS-DYNA 12 th International LS-DYNA Users Conference Electromagnetic(1) Update On The Electromagnetism Module In LS-DYNA Pierre L'Eplattenier Iñaki Çaldichoury Livermore Software Technology Corporation 7374 Las

More information

Site Surveying Procedures for Construction and the Built Environment

Site Surveying Procedures for Construction and the Built Environment Unit 27: Site Surveying Procedures for Construction and the Built Environment Unit code: R/601/1291 QCF level: 4 Credit value: 15 Aim This unit develops an understanding of the principles of site surveying

More information

Electrical Power Cables Part 2 Cable Rating Calculations

Electrical Power Cables Part 2 Cable Rating Calculations ELEC971 High Voltage Systems Electrical Power Cables Part Cable Rating Calculations The calculation of cable ratings is a very complex determination because of the large number of interacting characteristics

More information

q x = k T 1 T 2 Q = k T 1 T / 12

q x = k T 1 T 2 Q = k T 1 T / 12 Conductive oss through a Window Pane q T T 1 Examine the simple one-dimensional conduction problem as heat flow through a windowpane. The window glass thickness,, is 1/8 in. If this is the only window

More information

Transmission Line Theory

Transmission Line Theory S. R. Zinka zinka@vit.ac.in School of Electronics Engineering Vellore Institute of Technology April 26, 2013 Outline 1 Free Space as a TX Line 2 TX Line Connected to a Load 3 Some Special Cases 4 Smith

More information

New Developments of Frequency Domain Acoustic Methods in LS-DYNA

New Developments of Frequency Domain Acoustic Methods in LS-DYNA 11 th International LS-DYNA Users Conference Simulation (2) New Developments of Frequency Domain Acoustic Methods in LS-DYNA Yun Huang 1, Mhamed Souli 2, Rongfeng Liu 3 1 Livermore Software Technology

More information

VALIDATION OF AN INTEGRATED METHODOLOGY FOR DESIGN OF GROUNDING SYSTEMS THROUGH FIELD MEASUREMENTS

VALIDATION OF AN INTEGRATED METHODOLOGY FOR DESIGN OF GROUNDING SYSTEMS THROUGH FIELD MEASUREMENTS VALIDATION OF AN INTEGRATED METHODOLOGY FOR DESIGN OF GROUNDING SYSTEMS THROUGH FIELD MEASUREMENTS Carlos CARDOSO Luís ROCHA Andreia LEIRIA Pedro TEIXEIRA EDP Labelec - Portugal EDP Labelec - Portugal

More information

Electrical Package Design TKK 2009 Lecture 2

Electrical Package Design TKK 2009 Lecture 2 Electrical Package Design TKK 2009 Lecture 2 James E. Morris Dept of Electrical & Computer Engineering Portland State University i Electrical Package Design Lecture topics A: Introduction CMOS; R, L, &

More information

VKES. Contents. Page 2 No 213, 13th Main RBI Layout JP Nagar 7th Phase, Bangalore Vidyuth Kanti Engineering Services

VKES. Contents. Page 2 No 213, 13th Main RBI Layout JP Nagar 7th Phase, Bangalore Vidyuth Kanti Engineering Services Contents What is earthing... 4 Why do we do earthing... 4 What is the Scope of this guideline... 4 How to protect a person in a substation against electrical shock... 4 What happens during a fault... 4

More information

Electrodynamics Qualifier Examination

Electrodynamics Qualifier Examination Electrodynamics Qualifier Examination August 15, 2007 General Instructions: In all cases, be sure to state your system of units. Show all your work, write only on one side of the designated paper, and

More information

PHYSICS 2B FINAL EXAM ANSWERS WINTER QUARTER 2010 PROF. HIRSCH MARCH 18, 2010 Problems 1, 2 P 1 P 2

PHYSICS 2B FINAL EXAM ANSWERS WINTER QUARTER 2010 PROF. HIRSCH MARCH 18, 2010 Problems 1, 2 P 1 P 2 Problems 1, 2 P 1 P 1 P 2 The figure shows a non-conducting spherical shell of inner radius and outer radius 2 (i.e. radial thickness ) with charge uniformly distributed throughout its volume. Prob 1:

More information

Sensitivity Estimation of Permanent Magnet Flowmeter

Sensitivity Estimation of Permanent Magnet Flowmeter Excerpt from the Proceedings of the COMSOL Conference 2009 Bangalore Sensitivity Estimation of Permanent Magnet Flowmeter Vijay Sharma, S.K.Dash, G.Vijaykumar, B.K.Nashine, B. Krishnakumar, P. Kalyanasundaram,

More information

TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the Force-Free Configuration

TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the Force-Free Configuration 5th International Workshop on Numerical Modelling of High-Temperature Superconductors, 6/15-17/2016, Bologna, Italy TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the

More information

CALCULATION OF POWER FREQUENCY FIELDS FROM HIGH VOLTAGE OVERHEAD LINES IN RESIDENTIAL AREAS

CALCULATION OF POWER FREQUENCY FIELDS FROM HIGH VOLTAGE OVERHEAD LINES IN RESIDENTIAL AREAS CALCULATION OF POWER FREQUENCY FIELDS FROM HIGH VOLTAGE OVERHEAD LINES IN RESIDENTIAL AREAS I. N. Ztoupis *, I. F. Gonos and I. A. Stathopulos National Technical University of Athens, School of Electrical

More information

Chapter 8: Unsymmetrical Faults

Chapter 8: Unsymmetrical Faults Chapter 8: Unsymmetrical Faults Introduction The sequence circuits and the sequence networks developed in the previous chapter will now be used for finding out fault current during unsymmetrical faults.

More information

Electrodynamics Exam Solutions

Electrodynamics Exam Solutions Electrodynamics Exam Solutions Name: FS 215 Prof. C. Anastasiou Student number: Exercise 1 2 3 4 Total Max. points 15 15 15 15 6 Points Visum 1 Visum 2 The exam lasts 18 minutes. Start every new exercise

More information

3D Finite Element Analysis of Crack in Aluminium Plate Using Tone Burst Eddy Current Thermography

3D Finite Element Analysis of Crack in Aluminium Plate Using Tone Burst Eddy Current Thermography 3D Finite Element Analysis of Crack in Aluminium Plate Using Tone Burst Eddy Current Thermography Rajeev V.R* & Ramjith Krishnan R** *Assistant Professor, Archana College of Engineering Alappuzha, India

More information

NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC FLOW METER

NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC FLOW METER Intensive Programme Renewable Energy Sources May 2011, Železná Ruda-Špičák, University of West Bohemia, Czech Republic NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC

More information

Magnetism 2. D. the charge moves at right angles to the lines of the magnetic field. (1)

Magnetism 2. D. the charge moves at right angles to the lines of the magnetic field. (1) Name: Date: Magnetism 2 1. A magnetic force acts on an electric charge in a magnetic field when A. the charge is not moving. B. the charge moves in the direction of the magnetic field. C. the charge moves

More information

SOLIDIFICATION SURFACE SPEED CONTROL OF FERROMAGNETIC PIECES USING EDDY CURRENT HEATING

SOLIDIFICATION SURFACE SPEED CONTROL OF FERROMAGNETIC PIECES USING EDDY CURRENT HEATING SOLIDIFICATION SURFACE SPEED CONTROL OF FERROMAGNETIC PIECES USING EDDY CURRENT HEATING MIHAI MARICARU, MARILENA STĂNCULESCU, 1 VALERIU ŞTEFAN MINCULETE, 1 FLOREA IOAN HĂNŢILĂ 11 Key words: Coupled eddy

More information

SYLLABUS. Course Applications Course Applications Indiv. study S L P S L P

SYLLABUS. Course Applications Course Applications Indiv. study S L P S L P 1. Data about the program of study SYLLABUS 1.1 Institution The Technical University of Cluj-Napoca 1.2 Faculty Electrical Engineering 1.3 Department Electrotechnics and Measurements 1.4 Field of study

More information

Note on Posted Slides. Flow of Charge. Electricity/Water Analogy: Continuing the Analogy. Electric Current

Note on Posted Slides. Flow of Charge. Electricity/Water Analogy: Continuing the Analogy. Electric Current Note on Posted Slides These are the slides that I intended to show in class on Tue. Mar. 18, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably

More information

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017

Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 Electricity & Magnetism Study Questions for the Spring 2018 Department Exam December 4, 2017 1. a. Find the capacitance of a spherical capacitor with inner radius l i and outer radius l 0 filled with dielectric

More information

Ultrasonic Thickness Inspection of Oil Pipeline Based on Marginal Spectrum. of Hilbert-Huang Transform

Ultrasonic Thickness Inspection of Oil Pipeline Based on Marginal Spectrum. of Hilbert-Huang Transform 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China Ultrasonic Thickness Inspection of Oil Pipeline Based on Marginal Spectrum of Hilbert-Huang Transform Yimei MAO, Peiwen

More information

B(r) = µ 0a 2 J r 2ρ 2

B(r) = µ 0a 2 J r 2ρ 2 28 S8 Covariant Electromagnetism: Problems Questions marked with an asterisk are more difficult.. Eliminate B instead of H from the standard Maxwell equations. Show that the effective source terms are

More information

2. The following diagram illustrates that voltage represents what physical dimension?

2. The following diagram illustrates that voltage represents what physical dimension? BioE 1310 - Exam 1 2/20/2018 Answer Sheet - Correct answer is A for all questions 1. A particular voltage divider with 10 V across it consists of two resistors in series. One resistor is 7 KΩ and the other

More information

Question 1. Question 2

Question 1. Question 2 Question 1 Figure 29-26 shows cross sections of two long straight wires; the left-hand wire carries current i 1 directly out of the page. The net magnetic field due to the two currents is to be zero at

More information

IMPROVED DESIGN OF A LINEAR TRANSVERSE FLUX RELUCTANCE MOTOR

IMPROVED DESIGN OF A LINEAR TRANSVERSE FLUX RELUCTANCE MOTOR IMPROVED DESIGN OF A LINEAR TRANSVERSE FLUX RELUCTANCE MOTOR D.C. Popa, V. Iancu and L. Szabó Technical University Cluj-Napoca/Electrical Machines Department, Cluj-Napoca, Romania Abstract The paper deals

More information

Optimization of the current density distribution in electrochemical cells based on the level set method and genetic algorithm

Optimization of the current density distribution in electrochemical cells based on the level set method and genetic algorithm Optimization of the current density distribution in electrochemical cells based on the level set method and genetic algorithm M. Purcar, V. Topa, C. Munteanu, A. Avram, L. Grindei, R. Chereches To cite

More information

Magnetism. a) Ferromagnetic materials are strongly attracted to magnets. b) Paramagnetic materials are weakly attracted to magnets

Magnetism. a) Ferromagnetic materials are strongly attracted to magnets. b) Paramagnetic materials are weakly attracted to magnets Magnetism Types of Magnetic Materials Magnetic substances can be classified into three basic groups, according to their response to a magnet. Note the strength and direction of the interaction. a) Ferromagnetic

More information

Chapter 28: DC and RC Circuits Kirchhoff s Rules

Chapter 28: DC and RC Circuits Kirchhoff s Rules Chapter 28: DC and RC Circuits Kirchhoff s Rules Series Circuits The current is the same in each device. The equivalent resistance of the circuit is the sum of the individual resistances. Parallel Circuits

More information

A GEOMETRICAL METHOD FOR CONDUCTING SPHERES IN ELECTROSTATIC FIELD

A GEOMETRICAL METHOD FOR CONDUCTING SPHERES IN ELECTROSTATIC FIELD Électrotechnique et électroénergétique A GEOMETRICAL METHOD FOR CONDUCTING SPHERES IN ELECTROSTATIC FIELD TUDOR MICU 1, DAN MICU, DENISA ŞTEŢ Key words: Electrical charge, Electrical images, Kelvin transform,

More information

Week 9 - Sources of Magnetic Fields

Week 9 - Sources of Magnetic Fields Week 9 - Sources of Magnetic Fields October 22, 2012 Ampere was the Newton of Electricity. James C. Maxwell Exercise 9.1: Discussion Quesitons a) The text in the book discusses the case of an infinite

More information

Describe thermal energy and compare it to potential and kinetic energies. Charging is the separation, not the creation, of electric charges.

Describe thermal energy and compare it to potential and kinetic energies. Charging is the separation, not the creation, of electric charges. Name: Physics I Final Exam Study Guide Date: Mr. Tiesler Know: Describe thermal energy and compare it to potential and kinetic energies. Distinguish temperature and thermal energy. Calculate specific heat.

More information

Synchrotron Motion with Space-Charge

Synchrotron Motion with Space-Charge Synchrotron Motion with Space-Charge Basic Principles without space-charge RF resonant cavity providing accelerating voltage V (t). Often V = V 0 sin(φ s + ω rf t), where ω rf is the angular frequency

More information

STUDY ON THE INFLUENCE OF THE STAR CONNECTION NEUTRAL ON THE ELECTRICAL TRANSFORMERS WINDINGS ON ELECTRIC- SECURITY AND ON THE ELECTRICAL NETWORK

STUDY ON THE INFLUENCE OF THE STAR CONNECTION NEUTRAL ON THE ELECTRICAL TRANSFORMERS WINDINGS ON ELECTRIC- SECURITY AND ON THE ELECTRICAL NETWORK STUDY ON THE INFLUENE OF THE STA ONNETION NEUTAL ON THE ELETIAL TANSFOMES WINDINGS ON ELETI- SEUITY AND ON THE ELETIAL NETWOK ISTINEL POPESU, University of onstantin Brâncuşi of Tg-Jiu OZMA VASILE, University

More information

Beam Dynamics in Synchrotrons with Space- Charge

Beam Dynamics in Synchrotrons with Space- Charge Beam Dynamics in Synchrotrons with Space- Charge 1 Basic Principles without space-charge RF resonant cavity providing accelerating voltage V (t). Often V = V 0 sin(φ s + ω rf t), where ω rf is the angular

More information

Electric field and exposure time in a EHV substation near a bay-equipment: concerning ICNIRP guidelines

Electric field and exposure time in a EHV substation near a bay-equipment: concerning ICNIRP guidelines Proc. 2018 Electrostatics Joint Conference 1 Electric field and exposure time in a EHV substation near a bay-equipment: concerning ICNIRP guidelines D Harimurugan, NITK, Surathkal, INDIA-575025 harimur@gmail.com

More information

1 Electromagnetic concepts useful for radar applications

1 Electromagnetic concepts useful for radar applications Electromagnetic concepts useful for radar applications The scattering of electromagnetic waves by precipitation particles and their propagation through precipitation media are of fundamental importance

More information

Kimmo Silvonen, Transmission lines, ver

Kimmo Silvonen, Transmission lines, ver Kimmo Silvonen, Transmission lines, ver. 13.10.2008 1 1 Basic Theory The increasing operating and clock frequencies require transmission line theory to be considered more and more often! 1.1 Some practical

More information

Electromagnetism. 1 ENGN6521 / ENGN4521: Embedded Wireless

Electromagnetism. 1 ENGN6521 / ENGN4521: Embedded Wireless Electromagnetism 1 ENGN6521 / ENGN4521: Embedded Wireless Radio Spectrum use for Communications 2 ENGN6521 / ENGN4521: Embedded Wireless 3 ENGN6521 / ENGN4521: Embedded Wireless Electromagnetism I Gauss

More information

Engineering Recommendation EREC S34 Issue 2, November A guide for assessing the rise of earth potential at electrical installations

Engineering Recommendation EREC S34 Issue 2, November A guide for assessing the rise of earth potential at electrical installations PRODUCED BY THE OPERATIONS DIRECTORATE OF ENERGY NETWORKS ASSOCIATION Engineering Recommendation EREC S34 Issue 2, November 2018 A guide for assessing the rise of earth potential at electrical installations

More information

Spherical Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Spherical Coordinates

Spherical Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Spherical Coordinates Spherical Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Spherical Coordinates Outline Wave Functions 1 Wave Functions Outline Wave Functions 1

More information

Units of Integral Group Rings, Banff, Eric Jespers. Vrije Universiteit Brussel Belgium

Units of Integral Group Rings, Banff, Eric Jespers. Vrije Universiteit Brussel Belgium Units of Integral Group Rings, Banff, 2014 Eric Jespers Vrije Universiteit Brussel Belgium G a finite group ZG integral group ring U(ZG) group of invertible elements, a finitely presented group PROBLEM

More information

FINITE element analysis arose essentially as a discipline

FINITE element analysis arose essentially as a discipline 516 IEEE TRANSACTIONS ON MAGNETICS, VOL. 35, NO. 1, JANUARY 1999 An Artificial Intelligence System for a Complex Electromagnetic Field Problem: Part I Finite Element Calculations and Fuzzy Logic Development

More information

CHAPTER 8 CONSERVATION LAWS

CHAPTER 8 CONSERVATION LAWS CHAPTER 8 CONSERVATION LAWS Outlines 1. Charge and Energy 2. The Poynting s Theorem 3. Momentum 4. Angular Momentum 2 Conservation of charge and energy The net amount of charges in a volume V is given

More information

AP Physics 1 Second Semester Final Exam Review

AP Physics 1 Second Semester Final Exam Review AP Physics 1 Second Semester Final Exam Review Chapter 7: Circular Motion 1. What does centripetal mean? What direction does it indicate?. Does the centripetal force do work on the object it is rotating?

More information

NUMERICAL EVALUATION OF THE MAGNETIC FIELD EXPOSURE NEAR THE TRANSITION TOWER OF AN OVERHEAD-UNDERGROUND HV LINE

NUMERICAL EVALUATION OF THE MAGNETIC FIELD EXPOSURE NEAR THE TRANSITION TOWER OF AN OVERHEAD-UNDERGROUND HV LINE Progress In Electromagnetics Research M, Vol. 14, 247 261, 2010 NUMERICAL EVALUATION OF THE MAGNETIC FIELD EXPOSURE NEAR THE TRANSITION TOWER OF AN OVERHEAD-UNDERGROUND HV LINE W. Krajewski Institute of

More information

Analysis of capacitance of a cryogenic by-pass line for SIS100 particle accelerator at FAIR

Analysis of capacitance of a cryogenic by-pass line for SIS100 particle accelerator at FAIR ARCHIVES OF ELECTRICAL ENGINEERING VOL. 67(4), pp. 803 814 (2018) DOI 10.24425/aee.2018.124741 Analysis of capacitance of a cryogenic by-pass line for SIS100 particle accelerator at FAIR ŁUKASZ TOMKÓW

More information

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents. Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit. Current Transducer LDSR 0.3-TP/SP1 I P R N = 300 ma For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit. Features Closed

More information

Collation Studies of Sequence Impedances for Underground Cables with Different Layouts

Collation Studies of Sequence Impedances for Underground Cables with Different Layouts Collation Studies of Sequence Impedances for Underground Cables with Different Layouts M.Ramya 1, G.Radhika 2, Poonam Upadhyay 3 1 Department of EEE, VNRVJIET, Hyderabad, India 2 Department of EEE, Sr.Assistant

More information

CHAPTER 4 ANALYSIS AND DESIGN OF THE DUAL INVERTED-F ANTENNA

CHAPTER 4 ANALYSIS AND DESIGN OF THE DUAL INVERTED-F ANTENNA CHAPTER 4 ANALYSIS AND DESIGN OF THE DUAL INVERTED-F ANTENNA 4.1. Introduction The previous chapter presented the Inverted-F Antenna (IFA) and its variations as antenna designs suitable for use in hand-held

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Set 2: Transmission lines Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Outline Transmission

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chapter 28 Sources of Magnetic Field In this chapter we investigate the sources of magnetic field, in particular, the magnetic field produced by moving charges (i.e., currents), Ampere s Law is introduced

More information

EE 3324 Electromagnetics Laboratory

EE 3324 Electromagnetics Laboratory EE 3324 Electromagnetics Laboratory Experiment #3 Inductors and Inductance 1. Objective The objective of Experiment #3 is to investigate the concepts of inductors and inductance. Several inductor geometries

More information

Boundary and Excitation Training February 2003

Boundary and Excitation Training February 2003 Boundary and Excitation Training February 2003 1 Why are They Critical? For most practical problems, the solution to Maxwell s equations requires a rigorous matrix approach such as the Finite Element Method

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE B.ENG (HONS) ELECTRICAL & ELECTRONIC ENGINEERING SEMESTER ONE EXAMINATION 2016/2017

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE B.ENG (HONS) ELECTRICAL & ELECTRONIC ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE B.ENG (HONS) ELECTRICAL & ELECTRONIC ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 ENGINEERING ELECTROMAGNETISM MODULE NO: EEE6002 Date: Tuesday

More information

Cathodic Protection: Pipelines and Other Components

Cathodic Protection: Pipelines and Other Components Cathodic Protection: Pipelines and Other Components By Dr. W.J.D. (Bill) Shaw Professor & Director, Pipeline Engineering Center Schulich School of Engineering University of Calgary 1 Presentation 1. Perspective

More information

PHYSICS (Theory) Time Allowed: 3 hours Maximum Marks: 70

PHYSICS (Theory) Time Allowed: 3 hours Maximum Marks: 70 Sample Paper (CBSE) Series PHY/SP/1B Code No. SP/1-B PHYSICS (Theory) Time Allowed: hours Maximum Marks: 70 General Instructions: (i) (ii) (iii) (iv) (v) All questions are compulsory. This question paper

More information

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string)

Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) 1 Part 5: Waves 5.1: Harmonic Waves Wave a disturbance in a medium that propagates Transverse wave - the disturbance is perpendicular to the propagation direction (e.g., wave on a string) Longitudinal

More information

Dynamic Braking Resistor Calculator

Dynamic Braking Resistor Calculator www.abpowerflex.com Dynamic Braking Resistor Calculator Important User Information Solid state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines

More information