Transverse Momentum Parton Distributions and Gauge Links. 31 May 2010 The College of William and Mary. Leonard Gamberg Penn State University

Size: px
Start display at page:

Download "Transverse Momentum Parton Distributions and Gauge Links. 31 May 2010 The College of William and Mary. Leonard Gamberg Penn State University"

Transcription

1 Transverse Momentum Parton Distributions and Gauge Links 31 May 2010 The College of William and Mary Leonard Gamberg Penn State University

2 Outline Transverse spin Effects in TSSAs Gauge links-color Gauge Inv.- T-odd TMDs T-odd PDFs via FSIs & Transverse distortion QCD calc FSIs Gauge Links-Color Gauge Inv. T-odd TMDs Pheno -Transverse Structure TMDs and TSSAs-b and k asymm An improved dynamical approach for FSIs & model building f 1T (x, k 2 ) E(x, b 2 ) spin pol

3 Transverse SPIN Observables SSA (TSSA) P P πx Single Spin Asymmetry Rotational invariance σ (x F, p ) = σ (x F, p ) Left-Right Asymmetry P S T Parity Conserving interactions: SSAs Transverse Scattering plane σ is T (P P π ) L P R A N = σ (x F,p ) σ (x F, p ) σ (x F,p )+σ (x F, p ) σ P S T π P P π π P π

4 Reaction Mechanism Co-linear factorized QCD-parton dynamics σ pp πx f a f b ˆσ D q π Requires helicity flip-hard part ˆσ ˆσ ˆσ TSSA requires relative phase btwn different helicity amps ± ˆ â N = ˆσ ˆσ ˆσ +ˆσ Im ( M + M ) M M 2 f D M M / =( + ± i ) f

5 Factorization Theorem in QCD Helicity limit...triviality m + x QCD interactions conserve helicity m q 0 and Born amplitudes real A N m qα s E Kane, Repko, PRL:1978 Twist three and trival?! Not the full Twist 3 approach ETQS approach Phases in soft poles of propagator in hard subprocess Efremov & Teryaev :PLB 1982 Qiu-Sterman:PLB 1991, 1999, Koike et al. PLB , Ji,Qiu,Vogelsang,Yuan:PR 2006,

6 P S T Large Transverse SSA s at s = 62.4 & 200 GeV at RHIC L P R STAR PRL101, (2008) BRAHMS Preliminary GeV 62.4 GeV 0.1 A N (!) 0! + -! E704 E <p (!)<0.8 GeV/c T

7 lp l πx Hermes PRL 2009

8 Collins Asymmetry Compass-proton data 2007 comparison w/ HERMES-Collins D. Hasch INT-12 GeV

9 TSSAs thru T-odd non-pertb. spin-orbit correlations... Sensitivity to p T k T << Q 2 Sivers PRD: 1990 TSSA is associated w/ correlation transverse spin and momenta in initial state hadron P k x S T P k S T σ pp πx D f f ˆσ Born f (x, k ) = is T (P k ) f 1T (x, k ) Collins NPB: 1993 TSSA is associated with transverse spin of fragmenting quark and transverse momentum of final state hadron k P π k x s T k P π k s T σ ep eπx D f ˆσ Born D (x, p H1 ) = is T (P p ) (x, p )

10 Reaction Mechanism-FSI phases in TSSAs at unsupressed Brodsky, Hwang, Schmidt PLB: 2002 SIDIS w/ transverse polarized nucleon target e p eπx Collins PLB Gauge link Sivers function doesn t vanish Ji, Yuan PLB: Sivers fnct. FSI emerge from Color Gauge-links LG, Goldstein, Oganessyan 2002, 2003 PRD Boer-Mulders Fnct, and Sivers -spectator model LG, M. Schlegel, PLB 2010 Boer-Mulders Fnct, and Sivers beyond summing the FSIs through the gauge link

11 Factorization & Sensitivity to P T k TMDs John Collins Nuclear Physics B396 (1993) FACTORIZATION WITH INTRINSIC TRANSVERSE MOMENTUM AND POLARIZATION Ralston Spoper NPB 1979, Collins NPB 1993 Fig. 2. Parton model for semi-inclusive deeply inelastic scattering. lation [17,28]. A similar theorem should apply here. An obvious ansatz is E EBd3I,d3 = Efd~f~fd2ka± fd2kbl fa/a(~ k~1) Collins Soper NPB 1981, & Sterman NPB 1985 d6~ xe Ekh d 31 d~kb~ ~ khl) + Y(xB~,Q, z, q 1/Q). scattering function. The function fa/a defined earlier gives the intrinsic transverse-momentum dependence of partons in the initial-state hadron. Similarly, DB/a gives the distribution of hadrons in a parton, with kbl being the transverse momentum of the parton relative to the hadron.

12 Factorization parton model when PT of the hadron small W µν (q, P, S, P h ) a e 2 d 2 p T dp dp + (2π) 4 d 2 k T dk dk + (2π) 4 δ(p + x B P + )δ(k P h z )δ2 (p T + q T k T ) Tr [Φ(p, P, S)γ µ (k, P h )γ ν ] W µν (q, P, S, P h )= d 2 p T (2π) 4 d 2 k T (2π) 4 δ2 (p T P h z [( k T )Tr ) ( dp Φ γ µ ) ] dk + γ ν Integrate out small longitudinal momenta components Φ(x, p T,S) dp Φ(p, P, S), p+ =x B P + (z,k T ) dk + (k, P h ) P h Small transverse momentum k = P z h Integration support for integrals is where transverse momentum is small- cov parton model e.g. Landshoff Polkinghorne NPB28, 1971 (γ, ɛ) q (k, µ) P X (k, µ ) (p, λ) (p, λ ) (P, Λ) P X Φ (P, Λ )

13 What about FSIs and TSSAs? Extend Parton Model result-gauge Links What are the leading order gluons that implement color gauge invariance? How is the correlator modified? ν q µ k P h H ρ,ν = γ ν H ρν;a (k) H µ p p 1 p 1 p P Φ aρ A (p,p 1)

14 T-Odd Effects From Color Gauge Inv. Via Gauge links Gauge link determined re-summing gluon interactions btwn soft and hard Efremov,Radyushkin Theor. Math. Phys Belitsky, Ji, Yuan NPB 2003, Boer, Bomhof, Mulders Pijlman, et al NPB, PLB, PRD Φ [U[C]] (x, p T ) = ν q µ H ρν;a k P h (k) H µ dξ d 2 ξ T 2(2π) 3 eip ξ P ψ(0)u [C] [0,ξ] ψ(ξ, ξ T ) P ξ + =0 P p p 1 p 1 Φ aρ A (p,p 1) p P R Summing gauge link with color LG, M. Schlegel PLB 2010 The path [C] is fixed by hard subprocess within hadronic process. d 4 pd 4 kδ 4 (p + q k)tr [ ] Φ [U C [ ;ξ] (p)h µ (p, k) (k)h ν (p, k) ξ T U [+] ξ

15 Wilson Line = Gauge links... Path ordered Eikonal U[z s 1,z 2 ] = W[z 1; z 2 ] = [z 1 ; z 2 ]=Pe ig R z 2 z 1 ds A(s) z T z 2 = (0, z 2, z T 2 ) (0, z 2, z T 2 ) W TMD z z 1 = (0, z 2, z T 2 ) (0, +, z T 2 ) Process Dependence, Collins plb 02, Brodsky et al. NPB 02, Boer Mulders Pijlman Bomhoff 03, SIDIS ξ T ξ P&T ξ T ξ DY Φ [+] (x, p T ) = iγ 1 γ 3 Φ [ ] (x, p T )iγ 1 γ 3

16 Ji, Ma, Yuan: PLB, PRD 2004, 2005 Extend factorization of CS-NPB: 81 Also see Bacchetta Boer Diehl Mulders JHEP 08 F UU,T (x, z, Ph,Q 2 2 )=C [ ] f 1 D 1 = d 2 p T d 2 k T d 2 l T δ (2)( p T k T + l T P h /z ) x a e 2 a f a 1 (x, p 2 T,µ 2 ) D a 1(z, k 2 T,µ 2 ) U(l 2 T,µ 2 )H(Q 2,µ 2 ) TMD PDF TMD FF Soft factor Hard part Collins, Soper, NPB 193 (81) Ji, Ma, Yuan, PRD 71 (05)

17 Leading Twist TMDs from Correlator is Matrix in Dirac space { [ { { [ ( ) ] Φ [γ+] (x, p T ) f 1 (x, p 2 T) + ɛij T p Ti S Tj { M f 1T (x, p 2 T) Φ [γ+ γ 5 ] (x, p T ) λ g 1L (x, p 2 T) + p T S T M g 1T (x, p 2 T) { [( ( Φ [iσi+ γ 5 ] (x, p T ) S i T h 1T (x, p 2 T) + pi T M } λ h 1L(x, p 2 T) + p T S T M h 1T (x, p 2 T) ) ( + ɛij T p j T M h 1 (x, p 2 T) { Avakian Mulders-tableau

18 TSSAs in SIDIS P h d 6 σ =ˆσ hard C[wfD] Structure functions that are extracted q k F AB = C[w f D] p Φ P C[wfD] = a xe 2 a d 2 p T d 2 k T δ (2) ( p T k T P h z ) f a (x, p 2 T )D a (z, k 2 T )

19 Transverse Spin Observables and TMD Correlators in SIDIS Φ(x, p T )= 1 nf 1 (x, p T ) /P + ih 1 2 (x, p T ) [ /p T, /P ] 2M (z, k T )= 1 nzd 1 (z, k T ) /P h + izh 1 4 (z, k T ) [k T, /P h ] 2M h f 1T (x, p T ) ɛij T p T is T j M /P o zd 1T (z, k T ) ɛij T k T is T j /P h + M h { } SIDIS cross section dσ{λ,λ} ln lπx f 1 dˆσ lq lq D 1 + k Q f 1 dˆσ lq lq D 1 cos φ [ ] k 2 + Q 2f 1 dˆσ lq lq D 1 + h 1 dˆσ lq lq H1 cos 2φ + S T h 1 dˆσ lq lq H 1 sin(φ + φ S ) Collins + S T f 1T dˆσ lq lq D 1 sin(φ φ S ) Sivers Boer-Mulders o transversity + S L h 1L dˆσ lq lq H 1 sin(2φ) Kotzinian MuldersPLB

20 Spec. model workbench for ISI/FSI TSSAs &TMDs f1t,h 1,D1T,H1 & gluonic pole MEs / calculation Quark-Quark Correlator in Full QCD Φ [U[C]] (x, p T ) = Z dξ d 2 ξt 2(2π) 3 eip ξ P ψ(0)u [C] [0,ξ] ψ(ξ, ξ T ) P ξ + =0 Use Spectator Framework Develop a QFT to explore and estimates these effects with gauge links BHS FSI/ISI Sivers fnct, -PLB 2002, NPB 2002 Ji, Yuan PLB Sivers Function Metz PLB Collins Function L.G. Goldstein, 2002 ICHEP- Boer Mulders Function L.G. Goldstein, Oganessyan TSSA & AAS PRD 2003-SIDIS Boer Brodsky Hwang PRD 2003-Drell Yan Boer Mulders Bacchetta Jang Schafer PLB, Flavor-Sivers, Boer Mulders Lu Ma Schmidt PLB, PRD, 2004/2005 Pion Boer Mulders L.G. Goldstein DY and higher twist, PLB 2007 LG, Goldstein, Schlegel PRD 2008-Flavor dep. Boer Mulders cos 2φ SIDIS Conti, Bacchetta, Radici, Ellis, Hwang, Kotzinian 2008 hep-ph...! Spectator Model Field Theoretic used study Universality of T-odd Fragmentation ij Metz PLB 2002, Collins Metz PRL 2004 Bacchetta, Metz, Yang, PBL 2003, Amrath, Bacchetta, Metz 2005, Bacchetta, L.G. Goldstein, Mukherjee, PLB 2008 Collins Qui, Collins PRD 2007,2008 Yuan 2-loop Collins function PRL 2008 L.G., Mulders, Mukherjee Gluonic Poles PRD 2008 Mulders & Rogers Fact. breaking PRD 2010

21 Studies FSIs in 1-gluon exchange approx. LG, G. Goldstein, M. Schlegel PRD , Bacchetta Conti Radici PRD 78, 2008 P p + l Υ l P p l Γ l P p Build the T-odd TMD PDF with Final State Interactions-- one gluon exchange approx of Gauge link W i (P, k, S) Z ¼ ie q e dq d 4 l g ax ððp þ lþ 2 Þ ð2þ 4 p ffiffiffi ffiffiffi 3 ½g v ð2p 2p lþþð1þþðv ðp p þ lþ þ v ðp p 2lÞ ÞŠ ½½l v þ i0š½l 2 þ i0š½ðl þ pþ Þ 2 m 2 q þ i0š ðp6 þ6 l þ m q Þ 5 P R g uðp; SÞ ; M ɛ ij T ki T S j T f 1T (x, kt 2 M )= 8(2π) 3 (1 x)p + ( " ðp p;þd ax ðp p lþ W γ + W i ST W γ + W ) ST Many model calculations studying dynamics of FSIs Brodsky, Hwang et al, Bacchetta & Radici, et al, Pasquini et al, Courtoy et al,...

22 Flavor Dependence: Results & Phenomenology Flavor-dependent PDFs from diquark models: u = 3 2 s + 1 2a, d = a, moments: h (1/2) 1 (x) = d 2 p p T T M h 1 (x, p 2 T ) L.G. Goldstein, Schlegel PRD 2008 Comparison to f (u,d) normalization... xf(x) 1 (Glück, Reya, Vogt) parameters of the model, xf 1 (u) xf 1 (d) xf 1 (u,grv) xf 1 (d,grv) xf(x) xf(x) x κ = 1.0 (1/2,u) xf 1T (1/2,d) xf 1T (1/2,u) xh 1 (1/2,d) xh xf(x) x x κ = (1/2,u) xf 1T (1/2,d) xf 1T (1/2,u) xh 1 (1/2,d) xh xf(x) κ = 1.0 xf 1T (1,u) xf 1T (1,d) (1,u) xh 1 (1,d) xh x x -0.2 PRD Boer Mulders up and down are negative is spectator model and f (u) 1T x h (u) 1

23 Sivers Anselmino et al. PRD 05, EPJA 08 Gamberg, Goldstein,Schlegel PRD 77, 2008 x f (x) x f (x) (1) u N (1) d N Q = 2.4 GeV x f d (x, k ) x f u(x, k ) N N 0.6 x = xf(x) κ = µ 2 =0.26 GeV 2 x xf 1T (1,u) xf 1T (1,d) (1,u) xh 1 (1,d) xh x k (GeV) FIG. 5 (color online). The first moment of the Boer-Mulders and Sivers functions versus x for ¼ 1:0. Fig. 7. The Sivers distribution functions for u and d flavours, at the scale Q 2 =2.4 (GeV/c) 2, as determined by our present fit (solid lines), are compared with those of our previous fit [2] of SIDIS data (dashed lines), where π 0 and kaon productions were not considered and only valence quark contributions were taken into account. This plot clearly shows that the Sivers functions previously found are consistent, within the statistical uncertainty bands, with the Sivers functions presently obtained.

24 Boer Mulders effect Proton Target HERMES L Pappalardo-jlab exclusive wksp

25 Beyond One Loop Approximation So far: Most phenomenological approaches to T-odd TMDs! Final state interactions modeled by a one-gluon exchange e.g. Diquark-model, MIT-Bag model etc. Sivers-effect ~5%,!!!!"#"!# "$! "!"!" # %!!"# #!"$ strength of FSI BHS (02) Ji-Yuan (02) LG, G. Goldstein (02,03.. LG, GRG, Schlegel (08) Bacchetta,Conti,Radici et al. (08, 10) Lu Schmidt (05, 06)

26 Explore non-pertb. FSIs-Links & Gauge Link remnant W~ Non-perturbative calculation of FSIs M M L.G. & Marc Schlegel Phys.Lett.B685:95-103, 2010 & Mod.Phys.Lett.A24: ,2009 ɛ ij T ki T S j T f 1T (x, kt 2 M )= 8(2π) 3 (1 x)p + ( W γ + W ST W γ + W ) ST

27 Fruitful to exploit 2+1 Dimension Transverse Structure and TSSAs and TMDs Intuitive picture of Sivers asymmetry: Spatial distortion in transverse plane due to polarization+ FSI leads to observable effect Non-zero Left Right (Sivers) momentum asymmetry M. Burkardt [Nucl.Phys. A735, 185], [PRD66, ] Gockler et al. PRL07 x-moments of IP-GPDs b spin pol ST S ( ˆP k ) f 1T (x, k 2 ) ( ) FIG. 4: Lowest moment (n = 1) of the densities of unpolarized S quarks in a transversely polarized nucleon (left) and transversely ( ˆP polarized b) quarks ine(x, an unpolarized b 2 nucleon ) (right) for up (upper plots) and down (lower plots) quarks. The quark spins (inner arrows) and nucleon spins (outer arrows) are oriented in the transverse plane as indicated. κ up T,latt 3.0 and κdown T,latt 1.9. Similarly large positive

28 Used to predict Esign of TSSA-Sivers Burkardt 02,04 NPA PRD d q y 2M 1 dx d 2 b E q x,b 2M 1 dxe q x,0,0 F 2,q 0 = 2M, κ 2M κ p =1.79, κ n = 1.91 κ u/p = 1.67, κ d/p = 2.03 w/ attractive interactions r pion and kaon Anselmino production semi-inclusivet deep al. inelastic PRD scattering 05, 95 EPJA 08 x = 0.1 f (u) = neg & f (d) 1T 1T x f (x) x f (x) (1) u N (1) d N Q = 2.4 GeV x f d (x, k ) x f u(x, k ) N N 0.6 x = x k (GeV) Fig. 7. The Sivers distribution functions for u and d flavours, at the scale Q 2 =2.4 (GeV/c) 2, as determined by our present fit (solid lines), are compared with those of our previous fit [2] of SIDIS data (dashed lines), where π 0 and kaon productions were not considered and only valence quark contributions were taken into account. This plot clearly shows that the Sivers functions previously found are consistent, within the statistical uncertainty bands, with the Sivers functions presently obtained Sivers = pos FIG. 4: Lowest moment (n = 1) of the densities of unpolarized quarks in a transversely polarized nucleon (left) and transversely polarized quarks in an unpolarized nucleon (right) for up (upper plots) and down (lower plots) quarks. The quark spins (inner arrows) and nucleon spins (outer arrows) are oriented in the transverse plane as indicated. 3.0 and κdown T,latt 1.9. Similarly large positive GAMBERG, Gamberg, GOLDSTEIN, valuesgoldstein, AND have been obtained Schlegel SCHLEGEL in a PRD recent 77, model 2008 PHYS calculation 0.2 [25]. Large N c considerations predict κ up T κdown T [26]. Let us now discuss our results for ρ n (1,u) B. Single-spin as (b xf κ = 1.0 1T, s, S ) in (1,d) Since we have calc Eq. (1). For the numerical evaluation we xf Fourier 1T transform the p-pole parametrization to impact parameter parton distribution h 0.1? 1L (1,u) xh (b ) space. The parametrizations of the impact 1 parameter dependent GFFs then depend only xh on the p-pole Collins function to giv this result together wi (1,d) 1 0 masses m p and the forward values F 0. Before showing ment of the single-spin a our final 0.2 results, 0.4 we would0.6like to note 0.8 that the 1 moments of the transverse spin density can be writtenaccount as the flavor depen polarized target. In pa sum/difference of the corresponding moments for quarks -0.1 a similar procedure for and antiquarks, ρ n = ρ n q + ( 1) n ρ n q, because vector and for treating the leading tensor operators transform identically under charge conjugation. Although we expect contributions from anti- A decomposition int -0.2 quarks to be small in general, only the n-even moments section of semi-inclusi must be strictly positive. In Fig. 4, we show the lowest ized target reads (see e x moment n = 1 of spin densities for up and down quarks d in the nucleon. Due to the large anomalous magnetic UL FIG. 5 (color online). The first moment of the Boer-Mulders moments κ u,d, we find strong distortions for unpolarizeddxdydzd h dp 2 and Sivers functions versus x for ¼ 1:0. h? quarks in transversely polarized nucleons (left part of the xf(x) κ up T,latt

29 Spin-Orbit kinematics Analysis of correlators for TMDs and IP-GPDs similar forms Burkhardt-02 PRD &... Diehl Hagler-05 EPJC, Meissner, Metz, Goeke 07 PRD Φ q (x, k T ; S) F q (x, b T ; S) = = f q 1 (x, k 2 T ) ɛij T ki T Sj T M H q (x, b 2 T ) + ɛij T bi T Sj T M f q 1T (x, k 2 T ), ( E q (x, b 2 T ) ), k T b T Not conjugates (!) and... f1t (x, kt 2 ) (E(x, ) b 2 T ) Naive T-odd Naive T-even FSIs needed... Burkardt PRD 02 & NPA 04 How do we test this further?

30 Summing Gauge Link, Impact parameter & spectator remnant bt 1 x remnantspectator

31 Fourier transform of GPD F (x, 0, T ξ =0 Burkardt PRD 00, 02, P + P T =0 F(x, b)= b T Localizing partons: impact parameter states with definite light-cone momentum p + and transverse position (impact parameter): Soper PRD1977 dz + (2π) 2 eixp z P + ; 0 T q (z 1 ) W(z 1,z 2 )q (z 2 ) P + ; 0 T z 1/2 = ± z 2 n + b T 2 p +, b = d 2 p e ib p p +, p F(x, b) = d 2 T (2π) 2 ei T b F (x, 0, T ) = H(x, b)+ ɛij T bi T Sj T M ( E(x, ) b) F.T. b T Prob. of finding unpol. quark w/ long momentum x at position bt in trans. polarized ST nucleon: spin independent and spin flip part H E

32 Observable to test this possible connection btnw TMD and Impact par. picture? Gluonic Pole ME!!! " " "!"" #! #!! "!! " "! " $%&$ # '!& % " "( # $%&$ # '(!#& % # " " k i T (x) = d 2 b T dz 2(2π) eixp + z P + ; 0 T ; S T ψ(z 1 )γ + [z 1 ; z 2 ]I i (z 2 )ψ(z 2 ) P + ; 0 T ; S T z 1/2 = z 2 n + b T Impact parameter rep for GPD E I i (z ) = dy [z ; y ]gf +i (y )[y ; z ] Soft gluonic pole op Phases in soft poles of propagator in hard subprocess Efremov & Teryaev :PLB 1982 b... spin pol

33 hk q;i T x i UT Z Z! Note on Distortion and FSIs M. Burkardt [Nucl.Phys. A735, 185], [PRD66, ] #!! "!! " "! " # $%&$ # '!%& " "( # $%&$ # '(!#%& " " Manipulate gauge link and trnsfm to Z b space 1) hk q;i T x i UT 1 2 Z d 2 ~b T Z dz 2 eixp z hp ; ~0 T ; Sj z 1 W z 1 ; z 2 I q;i z 2 z 2 jp ; ~0 T ; Si; 2) Z h j F q x; ~b T ; S 1 Z dz z hp ; ~0 2 2 eixp T ; Sj z 1 W z 1 ; z 2 z 2 jp ; ~0 T ; Si; Γ γ + j i Comparing expressions difference Z is additional factor, I q,i and integration over b

34 Conjecture: factorization FSI and spatial distortion: k i T (x) =Mɛij T Si T f (1) 1T d 2 b T I i (x, b 2 T ) b T S T M b 2 T E(x, b 2 T ) I i (x, b 2 T ) Lensing Function bt 1 x remnantspectator

35 Boer Mulders as well... Av. transv. momentum of transv. pol. partons in an unpol. hadron:!!! " "#!"" #! #!! "!! " "! " $ #!$!! % "$!$" % $ #!$!! % "$ #!#$" #&%! &!&%"& "!"" $ $ #! ' " ( '" % (&!") ( ' " " ' '( # " "' " % & '( " #!") ( '! " "! " # Diehl & Hagler EJPC (05), Burkardt PRD (04)

36 ( )!! W!!!! We calc W again... ecify the form factor! that we attach to the nucleon-quark-diquark vertex w ( " # "'&# )!(""! ## # (" *"! #* $ + " #,""-.#) # " $% %& "#- "! /# ) " (0 # ""! /! ## $ $%)(""! ## # $ + # " $ $%)(##! + # ' $ $%) W (P, k) =! ɛ ij T ki T S j T f 1T (x, kt 2 M )= 8(2π) 3 (1 x)p +! &7-%+&=>&<(-%2,'-/)(&)0%,&? *& && > %%!""#$%&()&? * &@&? 6 &+)3%"&/(& # &7-%+&=>&<(-%2,'-/)(&)0%,&? *& && %%!""#$%&()&? * &@&? 6 &+)3%"&/(&5A &&? * &*&+)3%"&'-&)(%&3))+&B),&C/2C% &? * &*&+)3%"&'-&)(%&3))+&B),&C/2C%,&-D/"-&E*)44&E5:"&=>"4.)#*:%?@"7*:%!)AB:%!&:%5-0%CD<:%E9FG &F&()(*3/2C-&3/G%&H/3")(&3/(%"I&D)#34&"+)/3&,%3'-/)(A! %7-%+&J>&<(-%2,'-/)(&)0%,&? 7-%+&J>&<(-%2,'-/)(&)0%,&?& 6 > %%;/K&-C%&?6&*&+)3% &&%$+C'"/L%"&'&M('-#,'3M&+/1-#,%&)B&;7< &&%?#/0'3%(-&-)&N#-G)"GO&1#-I&'""#$+-/)("&)B&7-%+&=&0'3/4&/(&P/G)('3&$)4%3" *& >! "!!!#"!! #! $ $% % &! "!!!#"!! #!! $&'""!!!#"!! #! #! " # ( W γ + W ST W γ + W ) ST

37 Conjecture born out factorization FSI and spatial distortion in eikonal + spectator approximation k i T (x) =Mɛij T Si T f (1) 1T d 2 b T I i (x, b 2 T ) b T S T M b 2 T E(x, b 2 T ) I i (x, b 2 T ) Lensing Function bt 1 x remnantspectator

38 Eikonal Color calculation and path ordered gauge link # +, '()!$% &#'" #!(!" $!!!! " %! % Abarabanel Itzykson PRL 69 Gamberg Milton PRD 1999 Fried et al. 2000,- &!#$")!!#%$ + "#$!$! &! -"" "&!#-! "!./ %#'# "0&/%$ 1 ## +, & G#=$1%>6%H=@)7>"7*()%>')%IJA=)(H%"7H%>')%$6(6#%4">#=$)@%>F%K37$>=67"(%KG "&!#-! "!./ %#'# "0&/%$ 1 ##!! +, # % $ &. &/ & #!.2 3 $ "2$4 $ "2 $ & #-! ".2 3 $ "2$ %#' $ "0&2%$ & #! # "!.2 1$ 4 $ +, "2$ & &! " #

39 FLOW CHART for calculation of Boer Mulders L.G. & Marc Schlegel 2m 2 π h (1) 1 (x) Phys.Lett.B685:95-103,2010 & Mod.Phys.Lett.A24: ,2009. d 2 b T b T I(x, b T ) I i (x, q T ) = 1 d 2 p T N c (2π) 2 (2p T q T ) ( i I[ M eik ] ) αδ ( p T ) δβ ( ( ) βγ ) (2π) 2 δ αβ δ (2) ( p T q T ) + R[ M eik ] ( p T q T ). b 2 T γα H π 1 (x, b 2 T ), Non-pertb FSIs in here ( ) M eik αδ (x, q (1 x)p+ T + k T ) = d 2 z T e i z T ( q T + k T ) (20) δβ m s d N2 c d 1 Nc 2 1 u α ( e iα u e ) ( ) iχ( z T )t α e it u (2π) δ αβ N2 c 1 αδ δβ. COLOR Integral f αβ (χ) d N2 c 1 α d Nc 2 1 u ( e iα u e ) iχ( z T )t α (2π) N2 c 1 αδ ( e it u ) δβ δ αβ

40 Lensing Function & untangling the COLOR FACTOR I i (x, b i (1 x) bt χ ] χ T ) = 2N c b T 4 C[, 4 [ ] [ ( ) [ ( ) 1 f αβ (χ) = n=1 (iχ) n (n!) 2 N c 2 1 a 1 =1... N c 2 1 a n =1 P n (t a1...t an t apn (1)...t apn(n) ) αβ.

41 Eikonal Phase and FSIs χ DS ( z T ) = 2 0 dk T k T α s (k 2 T )J 0( z T k T )Z(k 2 T, Λ2 QCD )/k2 T. α s (µ 2 ) = α s (0) ln [ ]. (35) e + a 1 (µ 2 /Λ 2 ) a 2 + b1 (µ 2 /Λ 2 ) b 2 The values for the fit parameters are Λ = 0.71 GeV, a 1 = 1.106, a 2 = 2.324, b 1 = and b 2 = These calculations 5 4 3![z T ] 2 #=0.2 GeV #=0.5 GeV #=0.7 GeV #=0.0 GeV Z(p 2,µ 2 ) = p 2 D 1 (p 2,µ 2 ) Fisher & Alkofer prd 03, Annal of phys. 09 ( αs (p 2 ) 1+2δ ) = α s (µ 2 ) c ( p 2 Λ 2 ) κ + d ( p 2 Λ 2 ) 2κ 1 + c ( p 2 Λ 2 ) κ + d ( p 2 Λ 2 ) 2κ 2, (36) with the parameters c = 1.269, d = 2.105, and δ = These fits for the running coupling and the gluon propaga- use running coupling extended to non-perturbative regime gluon non-perturbative gluon propagator z T

42 FIG. 4 (color online). Pion mass dependence of B Tn0 ðt ¼ 0Þ=m. The shaded bands represent fits as explained in the text.!!!""#$!!"# $ # " # $ % $!! " # " # $ # " %!! "$ %! " ##& " $ & '() %! "$ %! " ##& "!"#$%#&'()#*+%,#!"#$%&&'(%)&*)+',-)./*0)'*)'/%$1&'02'!*30)45'674&%8!!!""%$!!"# $ # " # $ * $!! # " # $ # " %!! "$ %! " ##& " +!$ & '() ' & " & # ' & $ % # # ),- ' ' & & # ),- ' $ "! "$ %! " & ##& "!!!""'$!!"# $ # " # -./01,') L.G. & Marc Schlegel Phys.Lett.B685:95-103,2010 & Mod.Phys.Lett.A24: , (2008) P H Y S I C A L R E V I E W L E T T E R S Spin Structure of the Pion mmel, 1,2 M. Diehl, 1 M. Göckeler, 2 Ph. Hägler, 3, * R. Horsley, 4 Y. Nakamura, 5 D. Pleiter, 5 P. E. L. Rakow, 6 A. Schäfer, 2 G. Schierholz, 1,5 H. Stüben, 7 and J. M. Zanotti 4 (QCDSF/UKQCD Collaborations) 1 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany 2 Institut für Theoretische Physik, Universität Regensburg, Regensburg, Germany 3 Institut für Theoretische Physik T39, Physik-Department der TU München, Garching, Germany 4 School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom PRL 5 John 101, von Neumann-Institut (2008) für Computing P H Y NIC/DESY, S I C A L R E V Zeuthen, I E W Germany L E T T E R S 6 Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom 7 Konrad-Zuse-Zentrum für Informationstechnik Berlin, Berlin, Germany (Received 26 August 2007; published Spin 17Structure September 2008) of the Pion PRL 08 week ending 19 SEPTEMBER 2008 week ending 19 SEPTEMBER 2008 We present the first calculation D. Brömmel, 1,2 of the M. Diehl, 1 transverse spin M. Göckeler, 2 structure of Ph. Hägler, 3, * the pion in lattice R. Horsley, 4 QCD. Our Y. Nakamura, 5 D. Pleiter, 5 P. E. L. Rakow, 6 simulations are based on two flavors of nonperturbatively A. Schäfer, 2 improved Wilson G. Schierholz, 1,5 fermions, with H. Stüben, 7 pion masses as and J. M. Zanotti 4 low as 400 MeV in volumes up to ð2:1 fmþ 3 and lattice spacings below 0.1 fm. We find a characteristic asymmetry in the spatial distribution of transversely polarized quarks. This asymmetry is very similar in magnitude to the analogous asymmetry we previously (QCDSF/UKQCD obtained for quarks Collaborations) in the nucleon. Our results support the hypothesis that all Boer-Mulders functions are alike. 1 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany DOI: /PhysRevLett Institut für Theoretische Physik, Universität PACSRegensburg, numbers: Gc, Aq Regensburg, Germany 3 Institut für Theoretische Physik T39, Physik-Department der TU München, Garching, Germany 4 School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom 5 John von Neumann-Institut für Computing NIC/DESY, Zeuthen, Germany tion. Since their discovery FIG. 5 (color 6 in the late 1940s, Department online). of Mathematical The lowest Sciences, moment University of the of Liverpool, densities Liverpool of L69 3BX, United Kingdom played a central role in nuclear unpolarized (left) and 7 and particle n ðb? ;s? Þ¼ Z 1 dx x n 1 ðx; b? ;s? Þ Konrad-Zuse-Zentrum für Informationstechnik 1 Berlin, Berlin, Germany s pseudo-goldstone bosons of spontaneously transversely polarized (right) up quarks in a þ (Received 26 August 2007; published 17 September 2008) ral symmetry, they together are at We with the core present corresponding of the lowtor of quantum chromodynamics (QCD). Since 2 ðb2? Þ si? ij b j? the first calculation profile the plots. ¼ transverse The 1 Aquark spin n0 structure spin is B of the pion 0 Tn0 m ðb2 in? ; Þ (1) lattice QCD. Our as spin zero, oriented its longitudinal in simulations the transverse spin are structure basedplane on in twoas flavors indicated of nonperturbatively by the arrow. improvedthe Wilson fermions, with pion masses as d error bands in lowthe as 400 profile MeV in plots volumes show upwhere to the ð2:1b uncertainties fmþ 0 Tn0 ark and gluon degrees of freedom is trivial. Pion 3 ¼ blattice 2?B Tn0 in spacings. The B ;u b?-dependent T10 ðt below ¼ 0.1 fm. vector We find and a characteristic ten- ments of asymmetry in the spatial distribution d 0Þ=m quark and gluon the p-pole helicitymasses operatorsat m phys of transversely polarized quarks. This asymmetry is very similar in to parity invariance: magnitude hðp to the analogous asymmetry we previously obtained for quarks in the nucleon. Our results e- tion. The dashed-dotted 0 Þj 3 jðpþi ¼ 0, B Tn0, for quarks 3 ¼ q 3 support the hypothesis linesthat show all Boer-Mulders the uncertainty functions from are alike. 5 q. An instructive quaning the extrapolation spin structure DOI: of (light hadrons /PhysRevLett Z 1 a ChPT shaded is the probaty ðx; b? Þ of quarks in impact parameter space Z 1 band). dx x n 1 H ðx; ¼ 0;b 2? Þ¼A n0 PACS ðb2? Þ; 1 numbers: Gc, Aq (2) is the longitudinal momentum fraction carried dx x n 1 E ðx; ¼ 0;b 2 Þ¼B ðb 2 Þ: FSI + distortion FSIs sor are generalized negative form factors (GFFs) of the pion A grow with Color! n0 from a linear extrapola- and, respectively, are moments of the GPDs: I(x=0.2,b T ) U(1) SU(2) SU(3) Perturbative!= b T xm 2 " h# Figure 3: Left: The lensing function 0

43 Prediction for Boer-Mulders Function of PION L.G. & Marc Schlegel Phys.Lett.B685:95-103,2010 & Mod.Phys.Lett.A24: , xm 2 " h# U(1) SU(2) SU(3) x Relations produce a BM funct. approx equiv. to Sivers from HERMES Expected sign i.e. FSI are negative Answer will come from pion BM from COMPASS πn Drell Yan

44 Results for u & d-quark Sivers f 1T (1) u(x) Diehl SU(3) Guidal SU(3) -up quark Guidal SU(3)-down quark Diquark x Relations produce a Sivers effect Nc=1 to 3 Torino extraction ~ 0.05 SU(3)! agrees with Chromodynamic LENSING Sivers effect increases with color Color tracing gives result of N c counting of Pobylitsa however there are subleading contributions that are non-trivial in performing color tracing x! f (x) x! f (x) (1) u N (1) d N !0.02!0.04!0.06! Q = 2.4 GeV!2 10! x

45 Sivers function increases with color SU(2) SU(3) U(1) xf 1T x

46 Reality Check Parm. of GTMD correlator hermiticity parity time-reversal from Andreas Metz INT talk (x, ξ, k T, T ) W q = 1 2 Z Z dz 2π d 2 z T eik z p ; λ ψ z γ + z W (2π) 2 GT MD ψ p; λ z+=0 2 2 Projection onto GPDs and TMDs F q = 1 2 Z = Z dz 2π eik z p ; λ ψ d 2 kt W q z z γ + W GP D ψ p; λ z+=zt 2 2 =0 Φ q = 1 2 Z dz 2π d 2 z T eik z p; λ ψ z z γ + W (2π) 2 T MD ψ p; λ z+=0 2 2 = W q =0

47 GTMD-Wigner Function Correlator Parameterization of GTMD-correlator Miessner Metz & Schlegel JHEP 2008 & 2009 Example: W q [γ+] = 1 2M ū(p, λ )» F 1,1 + iσi+ k i T P + F 1,2+ iσi+ i T P + F 1,3 + iσij k i T j T F M 2 1,4 u(p, λ) GTMDs are complex functions: F 1,n = F e 1,n + if o 1,n Implications for potential nontrivial relations Relations of second type E(x, 0, 2 T ) = Z d 2 kt» F e 1,1 +2 kt T 2 T F e 1,2 + F e 1,3 «f 1T (x, k 2 T ) = F o 1,2 (x, 0, k 2 T, 0, 0) No model-independent nontrivial relation between E and f 1T possible Relation in spectator model due to simplicity of the model No information on numerical violation of relation Likewise for nontrivial relation involving h 1

48 Conclusions Going beyond one loop in spectator framework transverse distortion of T-odd TMDs from FSIs as path ordered Gauge link, factorize into Lensing function times transverse distortion Approximate dynamical relation good for phenomenological approach for model builders Pheno-Transverse Structure TMDs and TSSAs b and k asymm. An improved dynamical approach for FSI & model building QCD calc FSIs Gauge Links-Color Gauge Inv. T-odd TMDs

49 Calculation of M!! Calculate the amplitude M in a relativistice eikonal model: [1970's: Fried, Quiros, Levy, Sucher, Zuber, etc...]!! (! Exact 4-point " function for quark-diquark scattering: # ( # #(!&' "! (! & " ' "" %!$!" " # " $ " )) $ "( $ $ # " %& '( "! ( ) " # & (! & " '!! '!$!* " # * $ " )) " "(! $ $%& " %& '( #! ( )! # &&& " )(" # $ # *( )! *+ neglect neglect! " #! Linkage operator:! 1 &, # # 2-3 $ " 4 )) &!3 $ " (!$!+ $ # 3 " " 4 )),!3 " "! # Eikonal approximation: 1 && %!$ # +

50 TMDs & Impact GPDs Project from GTMDs W [Γ] λ,λ (P, x, k T,,n)= dk W [Γ] λ,λ (P, k,,n) d 2 k T Integ. small component, GTMD--Meissner Metz Schlegel, 07 =0 F [Γ] λ,λ (x, ξ, t) = d 2 k T W [Γ] λ,λ (P, x, k T,,n) ξ =0 W [Γ] λ,λ (P, x, k T, 0,n) =Φ( x, k T ) TMD FT : T b T F λ,λ (x, b)= Impact-GPD d 2 T (2π) 2 ei T b F λ,λ (x, 0, T )

51 Unifying Transverse Structure of Nucleon GTMDs GTMD--Meissner Metz Schlegel 07, 08 W [Γ] λ,λ (P, x, k T,,n)= dk W [Γ] λ,λ (P, k,,n) Integ. small component!!! FT : b W [Γ] λ,λ (P, k, ; n) W [Γ] λ,λ (P, k, b; n) Wigner functions--belitsky Ji Yuan, 04 Reduce to TMDs, GPDs, Impact GPDs Relations among them?

The transverse spin and momentum structure of hadrons. 03/26/10 talk #2 Parton Model, SIDIS & TMDs. Leonard Gamberg Penn State University

The transverse spin and momentum structure of hadrons. 03/26/10 talk #2 Parton Model, SIDIS & TMDs. Leonard Gamberg Penn State University The transverse spin and momentum structure of hadrons 03/26/10 talk #2 Parton Model, SIDIS & TMDs Leonard Gamberg Penn State University The Transverse Spin and Momentum Structure of Hadrons Details TMDs

More information

The transverse spin and momentum structure of hadrons. 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs. Leonard Gamberg Penn State University

The transverse spin and momentum structure of hadrons. 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs. Leonard Gamberg Penn State University The transverse spin and momentum structure of hadrons 03/26/10 talk #3 Parton Model Gauge Links T-odd TMDs Leonard Gamberg Penn State University T-Odd Effects From Color Gauge Inv. via Wilson Line Gauge

More information

Possible relations between GPDs and TMDs

Possible relations between GPDs and TMDs Possible relations between GPDs and TMDs Marc Schlegel, Theory Center, Jefferson Lab Hall C summer meeting: Physics opportunities in Hall C at 12 GeV Generalized Parton Distributions Exclusive processes

More information

Relations between GPDs and TMDs (?)

Relations between GPDs and TMDs (?) Relations between GPDs and TMDs (?) Marc Schlegel Tuebingen University Ferrara International School Niccolo Cabeo, May 28, 2010 Generalizations of collinear Parton Distributions Collinear PDFs f 1 (x;

More information

Transverse Spin Effects and k T -dependent Functions

Transverse Spin Effects and k T -dependent Functions Transverse Spin Effects and k T -dependent Functions Daniël Boer Free University, Amsterdam Outline Left-right single spin asymmetries Azimuthal spin asymmetries; Sivers and Collins effects Transversity

More information

(Bessel-)weighted asymmetries

(Bessel-)weighted asymmetries QCD Evolution Workshop, Jefferson Lab 20-04-09 (Bessel-)weighted asymmetries Bernhard Musch (Jefferson Lab) presenting work in collaboration with Daniël Boer (University of Groningen), Leonard Gamberg

More information

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs

Three-Quark Light-Cone Wave function of the Nucleon. Spin-Spin and Spin-Orbit Correlations in T-even TMDs TMDs and Azimuthal Spin Asymmetries in Light-Cone Quark Models Barbara Pasquini (Uni Pavia & INFN Pavia, Italy) in collaboration with: S. Boffi (Uni Pavia & INFN Pavia) A.V. Efremov (JINR, Dubna) P. Schweitzer

More information

Toward the QCD Theory for SSA

Toward the QCD Theory for SSA Toward the QCD Theory for SSA Feng Yuan Lawrence Berkeley National Laboratory RBRC, Brookhaven National Laboratory 5/6/2009 1 Outline Introduction Great progress has been made recently Transverse momentum

More information

Transverse Momentum Dependent Parton Distributions

Transverse Momentum Dependent Parton Distributions Transverse Momentum Dependent Parton Distributions Feng Yuan Lawrence Berkeley National Laboratory 8/14/2012 1 Feynman Parton: one-dimension Inclusive cross sections probe the momentum (longitudinal) distributions

More information

TMDs at Electron Ion Collider Alexei Prokudin

TMDs at Electron Ion Collider Alexei Prokudin TMDs at Electron Ion Collider Alexei Prokudin 2 3 Why Electron Ion Collider? Eur. Phys. J. A (2016) 52: 268 DOI 10.1140/epja/i2016-16268-9 THE EUROPEAN PHYSICAL JOURNAL A Review Electron-Ion Collider:

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/27 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.

Hadron Tomography. Matthias Burkardt. New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p. Hadron Tomography Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Hadron Tomography p.1/24 Outline GPDs: probabilistic interpretation as Fourier transforms

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

Transverse Momentum Distributions of Partons in the Nucleon

Transverse Momentum Distributions of Partons in the Nucleon Lattice 2008, Williamsburg 2008-07-18 Transverse Momentum Distributions of Partons in the Nucleon Bernhard Musch Technische Universität München presenting work in collaboration with LHPC and Philipp Hägler

More information

Spin-Orbit Correlations and SSAs

Spin-Orbit Correlations and SSAs Spin-Orbit Correlations and SSAs Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. Spin-Orbit Correlations and SSAs p.1/38 Outline GPDs: probabilistic interpretation

More information

TMDs and the Drell-Yan process

TMDs and the Drell-Yan process TMDs and the Drell-Yan process Marc Schlegel Theory Center Jefferson Lab Jefferson Lab upgrade at 12 GeV, INT Kinematics (less intuitive than DIS): The Drell Yan process d¾ d 4 l d 4 l 0 = d¾ d 4 q d 4

More information

SSA and polarized collisions

SSA and polarized collisions SSA and polarized collisions Matthias Burkardt New Mexico State University August 20, 2012 Outline 2 Deeply virtual Compton scattering (DVCS) Generalized parton distributions (GPDs) transverse imaging

More information

light-cone (LC) variables

light-cone (LC) variables light-cone (LC) variables 4-vector a µ scalar product metric LC basis : transverse metric 24-Apr-13 1 hadron target at rest inclusive DIS target absorbes momentum from γ * ; for example, if q z P z =0

More information

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions

QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions QCD Factorization and Transverse Single-Spin Asymmetry in ep collisions Jianwei Qiu Brookhaven National Laboratory Theory seminar at Jefferson Lab, November 7, 2011 Jefferson Lab, Newport News, VA Based

More information

Gluonic Spin Orbit Correlations

Gluonic Spin Orbit Correlations Gluonic Spin Orbit Correlations Marc Schlegel University of Tuebingen in collaboration with W. Vogelsang, J.-W. Qiu; D. Boer, C. Pisano, W. den Dunnen Orbital Angular Momentum in QCD INT, Seattle, Feb.

More information

Quark-Gluon Correlations in the Nucleon

Quark-Gluon Correlations in the Nucleon Quark-Gluon Correlations in the Nucleon Matthias Burkardt New Mexico State University April 5, 2017 Outline 2 GPDs F T q(x, b ) 3d imaging polarization deformation force from twist 3 correlations L q JM

More information

GPDs and Quark Orbital Angular Momentum

GPDs and Quark Orbital Angular Momentum GPDs and Quark Orbital Angular Momentum Matthias Burkardt NMSU May 14, 2014 Outline background proton spin puzzle 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs), Quark orbital angular momentum

More information

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin,

Quark/gluon orbital motion and nucleon spin. Alexei Prokudin. JLab December 8, Alexei Prokudin, Quark/gluon orbital motion and nucleon spin Alexei Prokudin JLab December 8, 20 EIC Golden Topic # 2 talk Bob McKeown @ INT workshop Map the spin and spatial quark-gluon structure of nucleons Image the

More information

TMD phenomenology: from HERMES and COMPASS to JLAB and EIC. Alexei Prokudin. Alexei Prokudin 1

TMD phenomenology: from HERMES and COMPASS to JLAB and EIC. Alexei Prokudin. Alexei Prokudin 1 TMD phenomenology: from HERMES and COMPASS to JLAB and EIC Alexei Prokudin Alexei Prokudin Semi Inclusive Deep Inelastic Scattering l W P q l xp Cross section xp + q X h dσ Y l + P l + h + X Kinematical

More information

Recent Development in Proton Spin Physics

Recent Development in Proton Spin Physics Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,USA RIKEN BNL Research Center, Building 510A, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: fyuan@lbl.gov

More information

arxiv: v1 [hep-ph] 30 Jan 2016 Abha Rajan

arxiv: v1 [hep-ph] 30 Jan 2016 Abha Rajan Twist Three Generalized Parton Distributions for Orbital Angular Momentum arxiv:160.00160v1 [hep-ph] 30 Jan 016 University of Virginia E-mail: ar5xc@virginia.edu Simonetta Liuti University of Virginia

More information

Factorization, Evolution and Soft factors

Factorization, Evolution and Soft factors Factorization, Evolution and Soft factors Jianwei Qiu Brookhaven National Laboratory INT Workshop: Perturbative and nonperturbative aspects of QCD at collider energies University of Washington, Seattle,

More information

QCD Collinear Factorization for Single Transverse Spin Asymmetries

QCD Collinear Factorization for Single Transverse Spin Asymmetries INT workshop on 3D parton structure of nucleon encoded in GPD s and TMD s September 14 18, 2009 QCD Collinear Factorization for Single Transverse Spin Asymmetries Iowa State University Based on work with

More information

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University

Lattice QCD investigations of quark transverse momentum in hadrons. Michael Engelhardt New Mexico State University Lattice QCD investigations of quark transverse momentum in hadrons Michael Engelhardt New Mexico State University In collaboration with: B. Musch, P. Hägler, J. Negele, A. Schäfer J. R. Green, S. Meinel,

More information

Distribution Functions

Distribution Functions Distribution Functions Also other distribution functions f 1 = g = 1L g 1T = h 1T = f 1T = h 1 = h 1L = h 1T = Full list of PDF at Twist-2 (Mulders et al) Dirk Ryckbosch, Feldberg, Oct.2006 p.1/33 Factorization

More information

Scale dependence of Twist-3 correlation functions

Scale dependence of Twist-3 correlation functions Scale dependence of Twist-3 correlation functions Jianwei Qiu Brookhaven National Laboratory Based on work with Z. Kang QCD Evolution Workshop: from collinear to non collinear case Thomas Jefferson National

More information

High Energy Transverse Single-Spin Asymmetry Past, Present and Future

High Energy Transverse Single-Spin Asymmetry Past, Present and Future High Energy Transverse Single-Spin Asymmetry Past, Present and Future Jianwei Qiu Brookhaven National Laboratory Stony Brook University Transverse single-spin asymmetry (TSSA) q Consistently observed for

More information

Wigner Distributions and Orbital Angular Momentum of Quarks

Wigner Distributions and Orbital Angular Momentum of Quarks Wigner Distributions and Orbital Angular Momentum of Quarks Asmita Mukherjee Indian Institute of Technology, Mumbai, India Wigner distribution for the quarks Reduced wigner distributions in position and

More information

Experimental Program of the Future COMPASS-II Experiment at CERN

Experimental Program of the Future COMPASS-II Experiment at CERN Experimental Program of the Future COMPASS-II Experiment at CERN Luís Silva LIP Lisbon lsilva@lip.pt 24 Aug 2012 On behalf of the COMPASS Collaboration co-financed by THE COMPASS EXPERIMENT Common Muon

More information

Transverse Spin Phenomena and Their Impact on QCD In Honor of Gary Goldstein's 70th Birthday October 28-29, October 2010 Jefferson Lab

Transverse Spin Phenomena and Their Impact on QCD In Honor of Gary Goldstein's 70th Birthday October 28-29, October 2010 Jefferson Lab Transverse Spin Phenomena and Their Impact on QCD In Honor of Gary Goldstein's 70th Birthday October 28-29, 2010 28-29 October 2010 Jefferson Lab Transverse SPIN Observables SSA (TSSA) P P πx Single Spin

More information

Transverse momentum distributions inside the nucleon from lattice QCD

Transverse momentum distributions inside the nucleon from lattice QCD Transverse momentum distributions inside the nucleon from lattice QCD The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As

More information

TMDs and simulations for EIC

TMDs and simulations for EIC POETIC 2012, August 19 22, Indiana University Jefferson Lab TMDs and simulations for EIC F E Nucleon landscape Nucleon is a many body dynamical system of quarks and gluons Changing x we probe different

More information

Generalized Parton Distributions and Nucleon Structure

Generalized Parton Distributions and Nucleon Structure Generalized Parton Distributions and Nucleon Structure Volker D. Burkert Jefferson Lab With pqcd established we have the tool to understand matter at a deeper level. Nobel prize 2004 - D. Gross, D. Politzer,

More information

hermes Collaboration

hermes Collaboration Probes of Orbital Angular Momentum at HERMES - a drama with prologe, some slides, and a (not yet so) happy end - G Schnell Universiteit Gent gunarschnell@desyde For the hermes Collaboration Gunar Schnell,

More information

Factorization and Factorization Breaking with TMD PDFs

Factorization and Factorization Breaking with TMD PDFs Factorization and Factorization Breaking with TMD PDFs Ted C. Rogers Vrije Universiteit Amsterdam trogers@few.vu.nl Standard PDFs, Gauge Links and TMD PDFs in DIS. TMD factorization breaking in pp hadrons.

More information

Spin physics at Electron-Ion Collider

Spin physics at Electron-Ion Collider Spin physics at Electron-Ion Collider Jianwei Qiu Brookhaven National Laboratory Workshop on The Science Case for an EIC November 16-19, 2010; INT, University of Washington, Seattle, WA Outline of my talk

More information

arxiv:hep-ph/ v2 12 Jul 2006

arxiv:hep-ph/ v2 12 Jul 2006 Light-cone divergence in twist-3 correlation functions L.P. Gamberg a, D.S. Hwang b, A. Metz c, and M. Schlegel c a Division of Science, Penn State Berks, Reading, PA 19610, USA arxiv:hep-ph/0604022v2

More information

Transverse SSA Measured at RHIC

Transverse SSA Measured at RHIC May 21-24, 2007 Jefferson Lab Transverse SSA Measured at RHIC Jan Balewski, IUCF Exclusive Reactions Where does the proton s spin come from? p is made of 2 u and 1d quark S = ½ = Σ S q u u Explains magnetic

More information

arxiv: v3 [hep-ph] 30 Jun 2014

arxiv: v3 [hep-ph] 30 Jun 2014 Quark Wigner Distributions and Orbital Angular Momentum in Light-front Dressed Quark Model Asmita Mukherjee, Sreeraj Nair and Vikash Kumar Ojha Department of Physics, Indian Institute of Technology Bombay,

More information

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India

Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India . p.1/26 Sivers Asymmetry in e + p e + J/ψ + X Asmita Mukherjee Indian Institute of Technology Bombay, Mumbai, India Single spin asymmetry Model for J/ψ production Formalism for calculating the asymmetry

More information

Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes. Filippo Delcarro

Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes. Filippo Delcarro Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes Filippo Delcarro What is the structure of the nucleons?! Is this structure explained by QCD?!!"#$%&' () *+,-. /0 Where does the spin of

More information

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt NMSU May 29, 2015 Outline 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs) quark-gluon correlations color force angular momentum decompositions

More information

Low-x gluon TMDs, the dipole picture and diffraction

Low-x gluon TMDs, the dipole picture and diffraction Diffraction16 (Catania) Low-x gluon MDs, the dipole picture and diffraction Daniel Boer, Sabrina Cotogno, om van Daal, Piet J Mulders, Andrea Signori and Yajin Zhou mulders@few.vu.nl 1 Abstract Abstract

More information

Twist Three Generalized Parton Distributions For Orbital Angular Momentum. Abha Rajan University of Virginia HUGS, 2015

Twist Three Generalized Parton Distributions For Orbital Angular Momentum. Abha Rajan University of Virginia HUGS, 2015 Twist Three Generalized Parton Distributions For Orbital Angular Momentum Abha Rajan University of Virginia HUGS, 2015 Simonetta Liuti, Aurore Courtoy, Michael Engelhardt Proton Spin Crisis Quark and gluon

More information

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University

Transverse momentum-dependent parton distributions from lattice QCD. Michael Engelhardt New Mexico State University Transverse momentum-dependent parton distributions from lattice QCD Michael Engelhardt New Mexico State University In collaboration with: B. Musch P. Hägler J. Negele A. Schäfer Lattice theorists go shopping...

More information

Two Photon Exchange in Inclusive and Semi Inclusive DIS

Two Photon Exchange in Inclusive and Semi Inclusive DIS Two Photon Exchange in Inclusive and Semi Inclusive DIS Marc Schlegel Theory Center, Jefferson Lab In collaboration with Christian Weiss, Andrei Afanasev, Andreas Metz Two Photon Exchange in elastic scattering

More information

Measurements with Polarized Hadrons

Measurements with Polarized Hadrons Aug 15, 003 Lepton-Photon 003 Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Contents: Introduction: Spin of Proton Polarized Deep Inelastic Lepton-Nucleon Scattering 1.

More information

TMD Theory and TMD Topical Collaboration

TMD Theory and TMD Topical Collaboration 3D Nucleon Tomography Workshop Modeling and Extracting Methodology March 15-17, 2017 Jefferson Lab, Newport News, VA TMD Theory and TMD Topical Collaboration Jianwei Qiu Theory Center, Jefferson Lab 3D

More information

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt NMSU September 21, 2015 Outline 3D imaging of the nucleon, Single-Spin Asymmetries (SSAs) quark-gluon correlations color force angular momentum decompositions

More information

Nucleon structure from lattice QCD

Nucleon structure from lattice QCD Nucleon structure from lattice QCD M. Göckeler, P. Hägler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, A. Schäfer, G. Schierholz, W. Schroers, H. Stüben, Th. Streuer, J.M. Zanotti QCDSF Collaboration

More information

Transverse Momentum Dependent Distribution Functions of Definite Rank

Transverse Momentum Dependent Distribution Functions of Definite Rank QCD204: QCD Evolution 204 Workshop Santa Fe, 2-6 May 204 ransverse Momentum Dependent Distribution Functions of Definite Rank Piet Mulders mulders@few.vu.nl ABSRAC MDs of definite rank Piet Mulders (Nikhef/VU

More information

Central Questions in Nucleon Structure

Central Questions in Nucleon Structure Central Questions in Nucleon Structure Werner Vogelsang BNL Nuclear Theory QCD and Hadron Physics Town Meeting, 01/13/2007 Exploring the nucleon: Of fundamental importance in science Know what we are made

More information

Nucleon Spin Structure: Overview

Nucleon Spin Structure: Overview Nucleon Spin Structure: Overview Jen-Chieh Peng University of Illinois at Urbana-Champaign Workshop on Spin Structure of Nucleons and Nuclei from Low to High Energy Scales EINN2015, Paphos, Cyprus, Nov.

More information

Transversity: present and future. Alessandro Bacchetta

Transversity: present and future. Alessandro Bacchetta Transversity: present and future Alessandro Bacchetta Outline Trento, 11.06.07 Alessandro Bacchetta Transversity: present and future 2 Outline Overview of experimental possibilities Trento, 11.06.07 Alessandro

More information

Transverse Momentum Dependent distributions:theory...phenomenology, future

Transverse Momentum Dependent distributions:theory...phenomenology, future Transverse Momentum Dependent distributions:theory...phenomenology, future Umberto D Alesio Physics Department and INFN University of Cagliari, Italy QCD-N6, 2 nd Workshop on the QCD structure of the nucleon

More information

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion

hunting the OAM Delia Hasch a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM conclusion INT workshop on gluons and the quark sea at high energies, INT Seattle, Sep-Nov, 2010 Delia Hasch hunting the OAM a very brief review of the spin sum rule observables of OAM some attempts to quantify OAM

More information

PARTON OAM: EXPERIMENTAL LEADS

PARTON OAM: EXPERIMENTAL LEADS PARTON OAM: EXPERIMENTAL LEADS 7 TH GHP WORKSHOP FEBRUARY 1-3, 2017 WASHINGTON, DC Simonetta Liuti University of Virginia 2/1/17 2 and A. Rajan et al., soon to be posted 2/1/17 3 Outline 1. Definitions

More information

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS

Present and Future Exploration of the Nucleon Spin and Structure at COMPASS Present and Future Exploration of the Nucleon Spin and Structure at COMPASS 1 2 3 4 5 6 Longitudinal spin structure Transverse spin structure Gluon polarization Primakov: pion polarizabilities DY: Transverse

More information

Nucleon Structure at Twist-3

Nucleon Structure at Twist-3 Nucleon Structure at Twist-3 F. Aslan, MB, C. Lorcé, A. Metz, B. Pasquini New Mexico State University October 10, 2017 Outline 2 Motivation: why twist-3 GPDs twist-3 GPD G q 2 Lq twist 3 PDF g 2(x) force

More information

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target University of Illinois E-mail: rsheitz2@illinois.edu On behalf

More information

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration

Hall A/C collaboration Meeting June Xuefei Yan Duke University E Collaboration Hall A collaboration Hall A SIDIS Hall A/C collaboration Meeting June 24 2016 Xuefei Yan Duke University E06-010 Collaboration Hall A collaboration The Incomplete Nucleon: Spin Puzzle [X. Ji, 1997] DIS DΣ 0.30 RHIC + DIS Dg

More information

arxiv:hep-lat/ v1 9 Oct 2006

arxiv:hep-lat/ v1 9 Oct 2006 Distribution Amplitudes of Pseudoscalar Mesons arxiv:hep-lat/0610055v1 9 Oct 006 V. M. Braun a, M. Göckeler a, R. Horsley b, H. Perlt c, D. Pleiter d, P. E. L. Rakow e, G. Schierholz d f, A. Schiller c,

More information

Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008.

Realistic parameterization of GPDs and its applications. Simonetta Liuti University of Virginia. Jlab Theory Group Seminar November 10th, 2008. Realistic parameterization of GPDs and its applications Simonetta Liuti University of Virginia Jlab Theory Group Seminar November 10th, 2008. Collaborations Gary Goldstein (Tufts University) Leonard Gamberg

More information

Nucleon Structure from Lattice QCD

Nucleon Structure from Lattice QCD Nucleon Structure from Lattice QCD Philipp Hägler supported by excellence cluster universe Charges, magnetic moments, (r)ms radii,... Form factors PDFs Distribution in (longitudinal) momentum u xp z q/g

More information

arxiv: v1 [hep-ph] 13 Nov 2017

arxiv: v1 [hep-ph] 13 Nov 2017 Using Light-Front Wave Functions arxiv:7.0460v [hep-ph] 3 Nov 07 Department of Physics, Indian Institute of Technology Bombay; Powai, Mumbai 400076, India E-mail: asmita@phy.iitb.ac.in We report on some

More information

Structure of Generalized Parton Distributions

Structure of Generalized Parton Distributions =Hybrids Generalized Parton Distributions A.V. Radyushkin June 2, 201 Hadrons in Terms of Quarks and Gluons =Hybrids Situation in hadronic physics: All relevant particles established QCD Lagrangian is

More information

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington High t form factors & Compton Scattering - quark based models Gerald A. Miller University of Washington Basic Philosophy- model wave function Ψ Given compute form factors, densities, Compton scattering...

More information

Observability of Partonic Orbital Angular Momentum. Abha Rajan PhD Advisor Dr Simonetta Liuti

Observability of Partonic Orbital Angular Momentum. Abha Rajan PhD Advisor Dr Simonetta Liuti Observability of Partonic Orbital Angular Momentum Abha Rajan PhD Advisor Dr Simonetta Liuti From Nucleons to Partons Scattering experiments probe internal structure of matter. By increasing energy we

More information

Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects

Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects Anomalous Drell-Yan asymmetry from hadronic or QCD vacuum effects Daniël Boer Free University, Amsterdam Outline Anomalously large cos(2φ) asymmetry in Drell-Yan A QCD vacuum effect? A hadronic effect?

More information

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator

NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator NLO weighted Sivers asymmetry in SIDIS and Drell-Yan: three-gluon correlator Lingyun Dai Indiana University Based on the work done with Kang, Prokudin, Vitev arxiv:1409.5851, and in preparation 1 2 Outlines

More information

Spin Densities and Chiral Odd Generalized Parton Distributions

Spin Densities and Chiral Odd Generalized Parton Distributions Spin Densities and Chiral Odd Generalized Parton Distributions Harleen Dahiya Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, PUNJAB 144011 XVI International Conference on Hadron Spectroscopy

More information

Zhongbo Kang. TMDs: Mechanism/universality with ep and pp collisions. Theoretical Division Los Alamos National Laboratory

Zhongbo Kang. TMDs: Mechanism/universality with ep and pp collisions. Theoretical Division Los Alamos National Laboratory TMDs: Mechanism/universality with ep and pp collisions Zhongbo Kang Theoretical Division Los Alamos National Laboratory QCD Frontier 213 Thomas Jefferson National Accelerator Facility Newport News, VA,

More information

arxiv: v1 [hep-ph] 5 Apr 2012

arxiv: v1 [hep-ph] 5 Apr 2012 A strategy towards the extraction of the Sivers function with TMD evolution arxiv:14.139v1 [hep-ph] 5 Apr 1 M. Anselmino, 1, M. Boglione, 1, and S. Melis 3 1 Dipartimento di Fisica Teorica, Università

More information

Gluon TMDs and Heavy Quark Production at an EIC

Gluon TMDs and Heavy Quark Production at an EIC Gluon TMDs and Heavy Quark Production at an EIC Cristian Pisano INT-7-3 Workshop Hadron imaging at Jefferson Lab and at a future EIC September 25-29 27 Seattle (USA) Quark TMDs Angeles-Martinez et al.,

More information

A first determination of the unpolarized quark TMDs from a global analysis

A first determination of the unpolarized quark TMDs from a global analysis A first determination of the unpolarized quark TMDs from a global analysis Cristian Pisano QCD Evolution 2017 Thomas Jefferson National Accelerator Facility Newport News, VA (USA) May 22-26, 2017 In collaboration

More information

Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR

Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR Contributions to our Understanding of TMDs from Polarized Proton Collisions at STAR Stephen Trentalange University of California at Los Angeles, for the STAR Collaboration QCD-N16 Bilbao, Spain July 15,

More information

Preliminary plan. 1.Introduction. 2.Inclusive and semi-inclusive DIS (structure functions)

Preliminary plan. 1.Introduction. 2.Inclusive and semi-inclusive DIS (structure functions) Preliminary plan 1.Introduction 2.Inclusive and semi-inclusive DIS (structure functions) Basics of collinear PDFs at tree level (definition, gauge link) 3.Basics of collinear PDFs (interpretation) Basics

More information

Twist-3 approach to hyperon polarization in unpolarized proton-proton collision

Twist-3 approach to hyperon polarization in unpolarized proton-proton collision Twist-3 approach to hyperon polarization in unpolarized proton-proton collision Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata 950-2181, Japan E-mail: yabe.niigata.hadron0127@gmail.com

More information

Impact of SoLID Experiment on TMDs

Impact of SoLID Experiment on TMDs Impact of SoLID Experiment on TMDs QCD Evolution 2017 @ Jefferson Lab, Newport News May 22-26 th 2017 Tianbo Liu Duke University and Duke Kunshan University In collaboration with: N. Sato, A. Prokudin,

More information

The g 2 Structure Function

The g 2 Structure Function The g 2 Structure Function or: transverse force on quarks in DIS Matthias Burkardt burkardt@nmsu.edu New Mexico State University Las Cruces, NM, 88003, U.S.A. The g 2 Structure Function p.1/38 Motivation

More information

Nucleon spin decomposition at twist-three. Yoshitaka Hatta (Yukawa inst., Kyoto U.)

Nucleon spin decomposition at twist-three. Yoshitaka Hatta (Yukawa inst., Kyoto U.) Nucleon spin decomposition at twist-three Yoshitaka Hatta (Yukawa inst., Kyoto U.) Outline Ji decomposition Complete decomposition Canonical orbital angular momentum Twist analysis Transversely polarized

More information

Single Spin Asymmetry at large x F and k T

Single Spin Asymmetry at large x F and k T 1 Single Spin Asymmetry at large x F and k T Paul Hoyer University of Helsinki Workshop on Transverse momentum, spin, and position distributions of partons in hadrons ECT*, 11-15 June 2007 PH and M. Järvinen,

More information

Nucleon spin and parton distribution functions

Nucleon spin and parton distribution functions Nucleon spin and parton distribution functions Jörg Pretz Physikalisches Institut, Universität Bonn on behalf of the COMPASS collaboration COMPASS Hadron 2011, Munich Jörg Pretz Nucleon Spin and pdfs 1

More information

Measuring the gluon Sivers function at a future Electron-Ion Collider

Measuring the gluon Sivers function at a future Electron-Ion Collider Measuring the gluon Sivers function at a future Electron-Ion Collider Speaker: Liang Zheng Central China Normal University In collaboration with: E.C. Aschenauer (BNL) J.H.Lee (BNL) Bo-wen Xiao (CCNU)

More information

The Physics Program of CLAS12

The Physics Program of CLAS12 1 The Physics Program of CLAS1 S. Niccolai a, for the CLAS collaboration a Institut de Physique Nucléaire d Orsay, Orsay (France) The experimental program to study nucleon structure at the 1-GeV upgraded

More information

Nucleon tomography. Journal of Physics: Conference Series OPEN ACCESS. To cite this article: Marco Radici 2014 J. Phys.: Conf. Ser.

Nucleon tomography. Journal of Physics: Conference Series OPEN ACCESS. To cite this article: Marco Radici 2014 J. Phys.: Conf. Ser. Journal of Physics: Conference Series OPEN ACCESS Nucleon tomography To cite this article: Marco Radici 2014 J. Phys.: Conf. Ser. 527 012025 View the article online for updates and enhancements. This content

More information

Bessel Weighted Asymmetries Alexei Prokudin

Bessel Weighted Asymmetries Alexei Prokudin Bessel Weighted Asymmetries May 29, 2015 Unified View of Nucleon Structure Wigner WignerDistribution Distribution 5D Transverse Momentum Distributions Generalized Parton Distributions 3D GPDs DVCS TMDs

More information

Zhongbo Kang. QCD evolution and resummation for transverse momentum distribution. Theoretical Division, Group T-2 Los Alamos National Laboratory

Zhongbo Kang. QCD evolution and resummation for transverse momentum distribution. Theoretical Division, Group T-2 Los Alamos National Laboratory QCD evolution and resummation for transverse momentum distribution Zhongbo Kang Theoretical Division, Group T-2 Los Alamos National Laboratory QCD Evolution Worshop Jefferson Lab, Newport News, VA Outline:

More information

TMD physics with e.m. probes at COMPASS

TMD physics with e.m. probes at COMPASS INT-18-3-PROBING NUCLEONS AND NUCLEI IN HIGH ENERGY COLLISIONS SYMPOSIUM 22-26 OCTOBER, UW, SEATTLE TMD physics with e.m. probes at COMPASS Andrea Bressan University of Trieste and INFN (on behalf of the

More information

Motivation: X.Ji, PRL 78, 61 (1997): DVCS, GPDs, ~J q,! GPDs are interesting physical observable! But do GPDs have a simple physical interpretation?

Motivation: X.Ji, PRL 78, 61 (1997): DVCS, GPDs, ~J q,! GPDs are interesting physical observable! But do GPDs have a simple physical interpretation? Geometric Interpretation of Generalized Parton Distributions or: what DVCS has to do with the distribution of partons in the transverse plane PRD 62, 7153 (2). M.Burkardt New Mexico State Univ. & TU Munchen

More information

Quark Orbital Angular Momentum

Quark Orbital Angular Momentum Quark Orbital Angular Momentum Matthias Burkardt New Mexico State University August 31, 2017 Outline 2 GPDs F T q(x, b ) 3d imaging polarization deformation L q JM Lq Ji = change in OAM as quark leaves

More information

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is

The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is The nucleon is an excitation of 3 quarks in the QCD vacuum. Understanding the vacuum structure and its properties, such as color confinement, is essential. Light quarks (up and down) are nearly massless,

More information

Spin-Momentum Correlations, Aharonov-Bohm, and Color Entanglement in Quantum Chromodynamics

Spin-Momentum Correlations, Aharonov-Bohm, and Color Entanglement in Quantum Chromodynamics Spin-Momentum Correlations, Aharonov-Bohm, and Color Entanglement in Quantum Chromodynamics Christine A. Aidala University of Michigan left right CENPA Seminar University of Washington February 1, 2018

More information

陽子スピンの分解 八田佳孝 ( 京大基研 )

陽子スピンの分解 八田佳孝 ( 京大基研 ) 陽子スピンの分解 八田佳孝 ( 京大基研 ) Outline QCD spin physics Proton spin decomposition: Problems and resolution Orbital angular momentum Twist analysis Transverse polarization Method to compute G on a lattice 1101.5989

More information

Fragmentation Function studied with e+-e- data and its impact on the nucleon spin structure analysis

Fragmentation Function studied with e+-e- data and its impact on the nucleon spin structure analysis Fragmentation Function studied with e+-e- data and its impact on the nucleon spin structure analysis Yoshiyuki Miyachi, Tokyo Tech Contents Fragmentation and parton distribution function Resent fragmentation

More information