On the Robustness and Prospects of Adaptive BDDC Methods for Finite Element Discretizations of Elliptic PDEs with High-Contrast Coefficients

Size: px
Start display at page:

Download "On the Robustness and Prospects of Adaptive BDDC Methods for Finite Element Discretizations of Elliptic PDEs with High-Contrast Coefficients"

Transcription

1 On the Robustness and Prospects of Adaptive BDDC Methods for Finite Element Discretizations of Elliptic PDEs with High-Contrast Coefficients Stefano Zampini Computer, Electrical and Mathematical Sciences & Engineering, Extreme Computing Research Center Saudi Arabia inty Logo Lock-up SHAXC KAUST, May 10th, 2016 S. Zampini BDDC 1 / 25

2 Motivation Iterative solution of large and sparse elliptic linear systems arising from FEM Ax = b, κ(a) = λ M(A) λ m(a) h 2 Preconditioned conjugate gradient M 1 Ax = M 1 b, κ(m 1 A) = λ M(M 1 A) λ m(m 1 A) Use domain decomposition preconditioners: Couple local Cholesky solvers through a suitable coarse space Obtain convergence rates which are independent of the number of subdomains, of the discretization space, and slowly deteriorates with the size of the subdomain problems. Accomodate heterogeneities in the coefficients of PDE. [A. Toselli and O. B. Widlund, Domain Decomposition Methods: algorithm and theory, 2005] S. Zampini BDDC 2 / 25

3 Introduction: a priori estimates The characterization of the BDDC method [Dohrmann, SISC 25, 2003] relies on the selection of primal (coarse) degrees of freedom the choice of an averaging procedure. Typical preconditioned spectra for elliptic problems (if a suitable primal space is found from the theory) κ(m 1 A) C(1 + log(h/h)) 2, H/h n loc with H maximum diameter of sudomains, h the mesh size and C independent on the number of subdomains and possibly independent on the coefficients of the PDE [Mandel, Dohrmann, Tezaur, Appl. Numer. Math. 54, 2005], [Li and Widlund, IJNME, 2008]. Dual of the FETI-DP method [C. Farhat et. al, IJNME 50, 2001]. S. Zampini BDDC 3 / 25

4 Introduction: some references Contact problems [P. Avery, G. Rebel, M. Lesoinne, C. Farhat. CMAME 93, 2004] Indefinite problems [J. Li, X. Tu. NLAA 16, 2009], [C. Farhat, J. Li ANM 54, 2005], [C. Farhat, J. Li, P. Avery IJNME 63, 2005] Porous media flow [X. Tu. ETNA 20, 2005] Electromagnetic problems [Y. J. Li, J. M. Jin IEEE Trans. Antennas Propag. 54, 2006] Incompressible Stokes [J. Li, O. B. Widlund. SISC 44, 2006] Linear elasticity [A. Klawonn, O. B. Widlund CPAM 59, 2006] Stokes problem [H. H. Kim, C. O. Lee, E. H. Park SISC 47, 2010] Stokes Darcy coupling [J. Galvis, M. Sarkis. CAMCS 5, 2010] Almost Incompressible Elasticity [L. Pavarino, O. B. Widlund, S. Z. SISC 32, 2010] S. Zampini BDDC 4 / 25

5 Introduction: some references Spectral Elements [L. F. Pavarino, CMAME 196, 2007] Lowest order Nédélec elements [A. Toselli, IMAJNA 26, 2006], [C. Dohrmann, O. B.Widlund, CPAM 2015], [S. Z. submitted 2016] Discontinuous Galerkin [M. Dryja, J. Galvis, M. Sarkis. J. Complexity 23, 2007] Mortar discretizations [H. H. Kim. SINUM 46, 2008], [H. H. Kim, M. Dryja, O. B. Widlund. SINUM 47, 2009] Reissner-Mindlin plates and Tu-Falk elements [J. H. Lee, SINUM, 2015] Naghdi shells and MITC elements [L. Beirão da Veiga, C. Chinosi, C. Lovadina, L. F. Pavarino. Comp. Struct. 102, 2012] IsoGeometric Analysis [L. Beirão da Veiga, L. Pavarino, S. Scacchi, O. B. Widlund, S.Z. SISC, 36, 2014] Lowest order Raviart-Thomas elements [D.-S. Oh, O. B. Widlund, S. Z., C. Dohrmann, TR, 2015] S. Zampini BDDC 5 / 25

6 Introduction: adaptive coarse space Convergence of DD algorithms usually deteriorates when jumps in the coefficients are not aligned with Γ. S. Zampini BDDC 6 / 25

7 Introduction: adaptive coarse space Convergence of DD algorithms usually deteriorates when jumps in the coefficients are not aligned with Γ. Coarse space has to be adaptively generated using generalized eigenvalue problems [J. Mandel and B. Sousedík, DD XVI, 2007], [B. Sousedík, J. Sístek, and J. Mandel, Computing, 95, 2013], [A. Klawonn, P. Radtke and O. Rheinbach, SINUM 53, 2015] [A. Klawonn, P. Kühn and O. Rheinbach, TR 2015], [H.H. Kim and E.T. Chung, SIAM J. Multiscale Model. Simul., 13, 2015, H.H. Kim, E.T. Chung and J. Wang CMAME, 2015], [C. Pechstein, C. R. Dohrmann, Seminar talk 2013], [J. Calvo and O. B. Widlund, submitted, 2015],[L. Beirão da Veiga, L. Pavarino, S. Scacchi, O. B. Widlund, S.Z. Submitted, 2015] S. Zampini BDDC 6 / 25

8 Introduction: adaptive coarse space Convergence of DD algorithms usually deteriorates when jumps in the coefficients are not aligned with Γ. Coarse space has to be adaptively generated using generalized eigenvalue problems [J. Mandel and B. Sousedík, DD XVI, 2007], [B. Sousedík, J. Sístek, and J. Mandel, Computing, 95, 2013], [A. Klawonn, P. Radtke and O. Rheinbach, SINUM 53, 2015] [A. Klawonn, P. Kühn and O. Rheinbach, TR 2015], [H.H. Kim and E.T. Chung, SIAM J. Multiscale Model. Simul., 13, 2015, H.H. Kim, E.T. Chung and J. Wang CMAME, 2015], [C. Pechstein, C. R. Dohrmann, Seminar talk 2013], [J. Calvo and O. B. Widlund, submitted, 2015],[L. Beirão da Veiga, L. Pavarino, S. Scacchi, O. B. Widlund, S.Z. Submitted, 2015] Given a user-defined threshold λ, we can guarantee that κ Cλ S. Zampini BDDC 6 / 25

9 Introduction: adaptive coarse space Convergence of DD algorithms usually deteriorates when jumps in the coefficients are not aligned with Γ. Coarse space has to be adaptively generated using generalized eigenvalue problems [J. Mandel and B. Sousedík, DD XVI, 2007], [B. Sousedík, J. Sístek, and J. Mandel, Computing, 95, 2013], [A. Klawonn, P. Radtke and O. Rheinbach, SINUM 53, 2015] [A. Klawonn, P. Kühn and O. Rheinbach, TR 2015], [H.H. Kim and E.T. Chung, SIAM J. Multiscale Model. Simul., 13, 2015, H.H. Kim, E.T. Chung and J. Wang CMAME, 2015], [C. Pechstein, C. R. Dohrmann, Seminar talk 2013], [J. Calvo and O. B. Widlund, submitted, 2015],[L. Beirão da Veiga, L. Pavarino, S. Scacchi, O. B. Widlund, S.Z. Submitted, 2015] Given a user-defined threshold λ, we can guarantee that κ Cλ Similar techniques have been also studied for enriching the coarse space of Schwarz algorithms and FETI [J. Galvis and Y. Efendiev, Multiscale Models Simul. 8, 2010], [N. Spillane and D. J. Rixen, IJNME, 2013], [N. Spillane et. al.,c.r. Math. Acad. Sci. Paris 2013], [N. Spillane et. al., Num. Math, 126, 2014] For multigrid, BootstrapAMG [A. Brandt et. al., SISC, 33, 2011]. S. Zampini BDDC 6 / 25

10 Introduction: on the road to exascale Adaptive BDDC satisfies 3 of the pillars for exascale algorithms [J. Dongarra, et al, Int. J. High Perf. Comp. Appl. 6, 2011] Reduces the global synchronization steps and MatVecs in Krylov methods Increases arithmetic intensity of the preconditioning step Increases concurrency of the preconditioning step S. Zampini BDDC 7 / 25

11 Introduction: on the road to exascale Adaptive BDDC satisfies 3 of the pillars for exascale algorithms [J. Dongarra, et al, Int. J. High Perf. Comp. Appl. 6, 2011] Reduces the global synchronization steps and MatVecs in Krylov methods Increases arithmetic intensity of the preconditioning step Increases concurrency of the preconditioning step Other key features of the algorithm Cholesky based Local and coarse problem additively combined (overlap) Multilevel extensions with high F/C coarsening ratios O(10 2 ) O(10 4 ) (however, convergence is exponentially dependent on the number of levels) S. Zampini BDDC 7 / 25

12 Introduction: on the road to exascale Adaptive BDDC satisfies 3 of the pillars for exascale algorithms [J. Dongarra, et al, Int. J. High Perf. Comp. Appl. 6, 2011] Reduces the global synchronization steps and MatVecs in Krylov methods Increases arithmetic intensity of the preconditioning step Increases concurrency of the preconditioning step Other key features of the algorithm Cholesky based Local and coarse problem additively combined (overlap) Multilevel extensions with high F/C coarsening ratios O(10 2 ) O(10 4 ) (however, convergence is exponentially dependent on the number of levels) Can it compete with optimally designed MG? S. Zampini BDDC 7 / 25

13 Introduction: on the road to exascale Adaptive BDDC satisfies 3 of the pillars for exascale algorithms [J. Dongarra, et al, Int. J. High Perf. Comp. Appl. 6, 2011] Reduces the global synchronization steps and MatVecs in Krylov methods Increases arithmetic intensity of the preconditioning step Increases concurrency of the preconditioning step Other key features of the algorithm Cholesky based Local and coarse problem additively combined (overlap) Multilevel extensions with high F/C coarsening ratios O(10 2 ) O(10 4 ) (however, convergence is exponentially dependent on the number of levels) Can it compete with optimally designed MG? Usually not, but there are problems where MG fails. S. Zampini BDDC 7 / 25

14 Non-overlapping DD: matrix subassembling Ω subdivided in N non-overlapping open subdomains N Ω = Ω i, Ω j Ω i =, Γ = Ω j Ω i. i=1 i j S. Zampini BDDC 8 / 25

15 Non-overlapping DD: matrix subassembling Ω subdivided in N non-overlapping open subdomains N Ω = Ω i, Ω j Ω i =, Γ = Ω j Ω i. i=1 i j A is never assembled explicitly; matrix vector product as A = R T A R, A = diag( ), with the matrix of the FEM problem on Ω i. S. Zampini BDDC 8 / 25

16 Non-overlapping DD: Block factorizations Block factorization for A based on the split Ŵ = ŴΓ W I [ ] [ ] [ A 1 I A 1 = A I Γ A 1 I I ΓΓ A T I ΓA 1 S 1 Γ I ΓΓ ] with S Γ = A ΓΓ A T I ΓA 1 A I Γ. S. Zampini BDDC 9 / 25

17 Non-overlapping DD: Block factorizations Block factorization for A based on the split Ŵ = ŴΓ W I [ ] [ ] [ A 1 I A 1 = A I Γ A 1 I I ΓΓ A T I ΓA 1 S 1 Γ with S Γ = A ΓΓ A T I ΓA 1 A I Γ. Block preconditioner κ(m 1 A) = κ(m 1 Γ S Γ) ] [ A 1 M 1 = [ I A 1 I ΓΓ A I Γ M 1 Γ ] [ I A T I ΓA 1 I ΓΓ I ΓΓ ] ] S. Zampini BDDC 9 / 25

18 Non-overlapping DD: Block factorizations Block factorization for A based on the split Ŵ = ŴΓ W I [ ] [ ] [ A 1 I A 1 = A I Γ A 1 I I ΓΓ A T I ΓA 1 S 1 Γ with S Γ = A ΓΓ A T I ΓA 1 A I Γ. Block preconditioner κ(m 1 A) = κ(m 1 Γ S Γ) ] [ A 1 M 1 = [ I A 1 I ΓΓ A I Γ M 1 Γ ] [ I A T I ΓA 1 I ΓΓ I ΓΓ ] ] DD solvers: BDD [J. Mandel, 1993] Algebraic solvers: ShyLU [S. Rajamanickam et al. IPDPS, 2012], STRUMPACK [P. Ghysels et. al. 2015] and many others (search the web for Schur hybrid solvers ) S. Zampini BDDC 9 / 25

19 BDDC: primal and dual spaces Basic idea of BDDC: instead of S Γ, invert S Γ, defined on a partially assembled space Ŵ W = W I W Γ W, WΓ = ŴΠ W Discontinuous on dual dofs, continuous on primals dofs Π. Primal vertices to prevent subdomains from floating. Additional primal dofs (functionals) can be needed for edges and faces of Γ to obtain an algorithmically scalable and robust method. S. Zampini BDDC 10 / 25

20 BDDC: preconditioner application M 1 Γ = R D,Γ S T 1 Γ R D,Γ, S. Zampini BDDC 11 / 25

21 BDDC: preconditioner application Block Cholesky S 1 Γ = R T Γ ( N [ i=1 M 1 Γ 0 R (i)t = R D,Γ S T 1 Γ R D,Γ, ] [ T I I ] 1 [ ] ) 0 R (i) R Γ + ΦS 1 ΠΠ ΦT. S. Zampini BDDC 11 / 25

22 BDDC: preconditioner application Block Cholesky Primal basis S 1 Γ = R T Γ ( N [ i=1 Φ = R T ΓΠ RT Γ M 1 Γ 0 R (i)t ( N [ i=1 = R D,Γ S T 1 Γ R D,Γ, ] [ T I 0 R (i)t I ] [ T I ] 1 [ ] ) 0 R (i) R Γ + ΦS 1 ΠΠ ΦT. I ] 1 [ I Π Π ] R (i) Π ). S. Zampini BDDC 11 / 25

23 BDDC: preconditioner application Block Cholesky Primal basis S 1 Γ = R T Γ Primal coarse problem ( N [ i=1 Φ = R T ΓΠ RT Γ M 1 Γ 0 R (i)t ( N [ i=1 S ΠΠ = R T Π S ΠΠ R Π, [ S (i) ΠΠ = A(i) ΠΠ T I Π = R D,Γ S T 1 Γ R D,Γ, ] [ T I 0 R (i)t I ] [ T I S ΠΠ = diag(s(i) ΠΠ ) ] [ T Π T I ] 1 [ ] ) 0 R (i) R Γ + ΦS 1 ΠΠ ΦT. I I [C. Dohrmann, SISC, 2003], [C. Dohrmann, NLAA 2007], [J. Li and O. B. Widlund 2008] ] 1 [ ] 1 [ I Π Π ] R (i) Π ] I Π Π ). S. Zampini BDDC 11 / 25

24 BDDC: preconditioner application Block Cholesky Primal basis S 1 Γ = R T Γ Primal coarse problem ( N [ i=1 Φ = R T ΓΠ RT Γ M 1 Γ 0 R (i)t ( N [ i=1 S ΠΠ = R T Π S ΠΠ R Π, [ S (i) ΠΠ = A(i) ΠΠ T I Π = R D,Γ S T 1 Γ R D,Γ, ] [ T I 0 R (i)t I ] [ T I S ΠΠ = diag(s(i) ΠΠ ) ] [ T Π T I ] 1 [ ] ) 0 R (i) R Γ + ΦS 1 ΠΠ ΦT. I I ] 1 [ ] 1 [ I Π Π ] R (i) Π ] I Π Π [C. Dohrmann, SISC, 2003], [C. Dohrmann, NLAA 2007], [J. Li and O. B. Widlund 2008] Coarse problem obtained by subassembling, we can rercurse multilevel BDDC ). S. Zampini BDDC 11 / 25

25 Introduction: current implementation More details on BDDC method and its implementation in PETSc: [S. Z. PCBDDC : a class of robust dual-primal methods in PETSc, SIAM CS&E special issue on software, 2015] S. Zampini BDDC 12 / 25

26 Introduction: current implementation More details on BDDC method and its implementation in PETSc: [S. Z. PCBDDC : a class of robust dual-primal methods in PETSc, SIAM CS&E special issue on software, 2015] 92% efficiency on 195K cores and 12.4B dofs (hexahedra, boxes, Poisson) Setup phase Solve phase Application phase time (s) time (s) time (s) K 100K 150K 200K 0 50K 100K 150K 200K Number of subdomains/processors 0 50K 100K 150K 200K S. Zampini BDDC 12 / 25

27 Introduction: current implementation More details on BDDC method and its implementation in PETSc: [S. Z. PCBDDC : a class of robust dual-primal methods in PETSc, SIAM CS&E special issue on software, 2015] 92% efficiency on 195K cores and 12.4B dofs (hexahedra, boxes, Poisson) Setup phase Solve phase Application phase time (s) time (s) time (s) K 100K 150K 200K 0 50K 100K 150K 200K Number of subdomains/processors 0 50K 100K 150K 200K 99% efficiency on 32K cores and 1B dofs (tetrahedra, ParMetis, H(div)) Setup phase 2-levels 3-levels Solve phase 2-levels 3-levels PCG iterations time (s) K 8K 16K 32K time (s) K 8K 16K 32K Number of subdomains/processors levels 3-levels 0 4K 8K 16K 32K S. Zampini BDDC 12 / 25

28 Introduction: current implementation More details on BDDC method and its implementation in PETSc: [S. Z. PCBDDC : a class of robust dual-primal methods in PETSc, SIAM CS&E special issue on software, 2015] 92% efficiency on 195K cores and 12.4B dofs (hexahedra, boxes, Poisson) Setup phase Solve phase Application phase time (s) time (s) time (s) K 100K 150K 200K 0 50K 100K 150K 200K Number of subdomains/processors 0 50K 100K 150K 200K 99% efficiency on 32K cores and 1B dofs (tetrahedra, ParMetis, H(div)) Setup phase 2-levels 3-levels Solve phase 2-levels 3-levels PCG iterations time (s) time (s) K 8K 16K 32K 2 0 4K 8K 16K 32K Number of subdomains/processors levels 3-levels 4K 8K 16K 32K Other implementations: Klawonn and Rheinbach [A. Klawonn and O. Rheinbach, ZAMM-Z, 90, 2010], [A. Klawonn, M. Lanser, and O. Rheinbach, SISC, 2014]. Badia s group in Barcelona [S. Badia, A. F. Martin and J. Principe, SISC, 2014]. BDDCML (J. Sístek, S. Zampini BDDC 12 / 25

29 BDDC: adaptive primal space With elliptic problems: κ C R D,Γ RT Γ 2 SΓ [J. Mandel, C. Dohrmann 2003] S. Zampini BDDC 13 / 25

30 BDDC: adaptive primal space With elliptic problems: κ C R D,Γ RT Γ 2 SΓ [J. Mandel, C. Dohrmann 2003] Key for efficiency, explicit knowledge of S (i) = ΓΓ A(i)T I Γ A(i) 1 I Γ S. Zampini BDDC 13 / 25

31 BDDC: adaptive primal space With elliptic problems: κ C R D,Γ RT Γ 2 SΓ [J. Mandel, C. Dohrmann 2003] Key for efficiency, explicit knowledge of S (i) = ΓΓ A(i)T I Γ A(i) 1 I Γ Solve for each subdomain face F (dense blocks) [C. Pechstein, C. R. Dohrmann, 2013] where ( S (i) F : (j) S F )φ = µ(s (i) F : S (j) F )φ A : B = (A 1 + B 1 ) 1, S (k) F = S (k) FF S (k) FF S (k) 1 F F S (k) F F S. Zampini BDDC 13 / 25

32 BDDC: adaptive primal space With elliptic problems: κ C R D,Γ RT Γ 2 SΓ [J. Mandel, C. Dohrmann 2003] Key for efficiency, explicit knowledge of S (i) = ΓΓ A(i)T I Γ A(i) 1 I Γ Solve for each subdomain face F (dense blocks) [C. Pechstein, C. R. Dohrmann, 2013] where ( S (i) F : (j) S F )φ = µ(s (i) F : S (j) F )φ A : B = (A 1 + B 1 ) 1, S (k) F = S (k) FF S (k) FF S (k) 1 F F S (k) F F Add to the primal space Ŵ Π {(S (i) F : S (j) F )φ k 1/µ k > λ} S. Zampini BDDC 13 / 25

33 BDDC: adaptive primal space With elliptic problems: κ C R D,Γ RT Γ 2 SΓ [J. Mandel, C. Dohrmann 2003] Key for efficiency, explicit knowledge of S (i) = ΓΓ A(i)T I Γ A(i) 1 I Γ Solve for each subdomain face F (dense blocks) [C. Pechstein, C. R. Dohrmann, 2013] where ( S (i) F : (j) S F )φ = µ(s (i) F : S (j) F )φ A : B = (A 1 + B 1 ) 1, S (k) F = S (k) FF S (k) FF S (k) 1 F F S (k) F F Add to the primal space Ŵ Π {(S (i) F : S (j) F )φ k 1/µ k > λ} More complicated formulas for edges in 3D lead to fully provable condition number bounds [A. Klawonn, M. Kühn and O. Rheinbach, 2015], [H.H. Kim, E.T. Chung and J. Wang, 2015], [J. Calvo, O. B. Widlund, 2015] S. Zampini BDDC 13 / 25

34 Adaptive primal space: implementation details Current BDDC code in PETSc 3.6 considers (S (i) E (S (i) F : S (j) E : S (j) (i) F )φ = µ( S F : F )φ : S (k) (i) (j) (k) E )φ = µ( S E : S E : S E )φ S (j) MUMPS or MKL PARDISO: factorize and compute S (i) at once Factorization of could be reused. S (i) F S (i) 1 F explicitly inverted. obtained by explicitly inverting S (i) S (i) 1 is reused to solve the substructure correction Nearest neighbor communication to assemble the sum of Schurs LAPACK used to solve each local GEP S. Zampini BDDC 14 / 25

35 Computational challenges in 3D (2D is easy) S. Zampini BDDC 15 / 25

36 Computational challenges in 3D (2D is easy) Costs of the factorizations: flops O(ni 2 ), memory O(n 4/3 i ) Size of largest frontal matrix With Schur Without Schur βx α,α = 0.66±0.05,β = 2.09±1.13 βx α,α = 0.67±0.02,β = 0.57± number of unknowns 10 S. Zampini BDDC 15 / 25

37 Computational challenges in 3D (2D is easy) Costs of the factorizations: flops O(ni 2 ), memory O(n 4/3 i ) Size of largest frontal matrix With Schur Without Schur βx α,α = 0.66±0.05,β = 2.09±1.13 βx α,α = 0.67±0.02,β = 0.57± number of unknowns 10 Explicit inversion of S (i) : O(n 3 Γ i ), n Γ i could be poorly load balanced procs S S 1 GEP min max min max min max Precompute basis functions O(n 4/3 i ) S. Zampini BDDC 15 / 25

38 Future directions S. Zampini BDDC 16 / 25

39 Future directions Exploit many-/multi- cores acceleration (does not solve the complexity problem) S. Zampini BDDC 16 / 25

40 Future directions Exploit many-/multi- cores acceleration (does not solve the complexity problem) Multiple subdomains per core flops O(n 2 i ), mem O(n 4/3 i ) flops O((n i /p) 2 ), mem O((n i /p) 4/3 ) S. Zampini BDDC 16 / 25

41 Future directions Exploit many-/multi- cores acceleration (does not solve the complexity problem) Multiple subdomains per core flops O(n 2 i ), mem O(n 4/3 i ) flops O((n i /p) 2 ), mem O((n i /p) 4/3 ) H-solvers for S (i) S. Zampini BDDC 16 / 25

42 Future directions Exploit many-/multi- cores acceleration (does not solve the complexity problem) Multiple subdomains per core flops O(n 2 i ), mem O(n 4/3 i ) flops O((n i /p) 2 ), mem O((n i /p) 4/3 ) H-solvers for S (i) Exact factorizations of 1 has to be spectrally equivalent. are not strictly required. However, the solver S. Zampini BDDC 16 / 25

43 Future directions Exploit many-/multi- cores acceleration (does not solve the complexity problem) Multiple subdomains per core flops O(n 2 i ), mem O(n 4/3 i ) flops O((n i /p) 2 ), mem O((n i /p) 4/3 ) H-solvers for S (i) Exact factorizations of 1 has to be spectrally equivalent. are not strictly required. However, the solver Can we partially factorize (with a given accuracy) and obtain 1 (possibly hierarchical) S (i)? and a S. Zampini BDDC 16 / 25

44 Numerical results: experimental setting FENICS library for finite elements: ParMETIS for mesh partitioning. PETSc-dev (branch stefano zampini/feature-pcbddc-saddlepoint) One MPI process/subdomain/core. Intel MKL as BLAS/LAPACK backend. MUMPS for local problems and Schur complements. PCG with random rhs, zero initial guesses, rtol 1.e-8. S. Zampini BDDC 17 / 25

45 BDDC for porous media flows Let U = {u H(div, Ω) : u n = 0 on Ω}, P = L 2 (Ω). Find (u, p) U P s.t. (v, q) U P u K(x) 1 v dx + p div v dx = 0, v U, Ω Ω div u q dx = gq, q P, Ω where K(x) uniformly positive definite tensor (mixed BC can be handled as well). Discretized with RT 0 or BDM 1 elements for velocities and C 0 polynomials elements (discontinuous) for pressures (LBB stable) Ω [Brezzi and Fortin, Mixed and Hybrid Finite elements methods, 1993] Joint work with X. Tu. [S. Z. and X. Tu, 2016, submitted] S. Zampini BDDC 18 / 25

46 BDDC for porous media flows: SPE10 SPE10 benchmark Ω = 1200ft 2200ft 170ft mesh , each hexahedron subdivided in 6 tetrahedra 6.7M cells dofs: 20.2M with RT 0, 45M with BDM 1. Diagonal permeability tensor s coefficients from SPE10 S. Zampini BDDC 19 / 25

47 BDDC for porous media flows: control SPE10 κ Condition number and number of iterations as a function of eigenvalue threshold λ and number of subdomains N. Left RT 0, right BDM 1 N λ = 10 λ = 5 λ = 2.5 λ = / / / / / / / / / / / / / / / /6 N λ = 10 λ = 5 λ = 2.5 λ = / / / / / / / / / / / / / / / /6 Coarsening ratios (F/C,Γ/C) as a function of eigenvalue threshold λ and number of subdomains N. Left RT 0, right BDM 1 N λ = 10 λ = 5 λ = 2.5 λ = /25 481/16 281/9 172/ /17 272/11 165/7 105/ /11 153/8 98/5 64/ /8 89/5 60/4 41/2 N λ = 10 λ = 5 λ = 2.5 λ = /61 795/35 408/18 230/ /42 458/25 243/13 140/ /29 263/18 146/10 86/ /20 155/13 90/7 54/4 S. Zampini BDDC 20 / 25

48 BDDC for porous media flows: timings SPE10 Setup/Solve times for 2-levels BDDC as a function of eigenvalue threshold λ and number of subdomains N. Left RT 0, right BDM 1 N λ = 10 λ = 5 λ = 2.5 λ = / / / / / / / / / / / / / / / /3.9 N λ = 10 λ = 5 λ = 2.5 λ = / / / / / / / / / / / / / / /5.9 **/** Setup/Solve times for 3-levels BDDC (coarsening ratio 16, coarse threshold 10, 2 Chebyshev its, eigs computed) as a function of eigenvalue threshold λ and number of subdomains N. Left RT 0, right BDM 1 N λ = 10 λ = 5 λ = 2.5 λ = / / / / / / / / / / / / / / / /1.8 N λ = 10 λ = 5 λ = 2.5 λ = / / / / / / / / / / / / / / / /2.3 S. Zampini BDDC 21 / 25

49 BDDC for Controlled Source EM Let U = {u H(curl, Ω) : u n = 0 on Ω}. Consider the following problem: find u U s.t. v U α u v dx + β u v dx = Ω Ω Ω f v Arises in time-domain quasi-static approximation of Maxwell s equations: α = µ 1 0 (µ 0 the magnetic permeability) β = σ/δ t, with σ > 0 conductivity (anisotropic case could be handled as well) δ t the time step. or in block preconditioning of frequency domain problems. Discretized with Nédélec elements on tetrahedra. [Brezzi and Fortin, Mixed and Hybrid Finite elements methods, 1993] [S. Z., submitted, 2015]. S. Zampini BDDC 22 / 25

50 BDDC for Controlled Source EM: 2D, higher order elements κ κ Threshold test, fixed mesh. Dofs from 800K to 11M (depending on the order), 64 subdomains. p=1 10 p=2 p=3 p=4 κ= µ µ p=1 10 p=2 p=3 p=4 κ= µ µ iterations iterations First kind 20 p=1 p=2 15 p=3 p= µ Second kind 20 p=1 p=2 15 p=3 p= µ W Π / W Γ W Π / W Γ 0.1 p= p=2 p=3 p= µ 0.1 p= p=2 p=3 p= µ S. Zampini BDDC 23 / 25

51 BDDC for Controlled Source EM: 2D, lowest order elements Threshold 1.01, fixed mesh. Dofs from 50K to 11M, 64 subdomains PASTIX MUMPS BDDC Setup phase PASTIX MUMPS BDDC Solve phase time(s) time (s) N N Comparision against MUMPS and PASTIX parallel Cholesky S. Zampini BDDC 24 / 25

52 BDDC for CSEM: reservoir test Domain 10km 8km 4km Mesh unif. refin. 18M dofs, λ =10 δ t = Ocean σ = 0.5 Background 0.02 Reservoir Figure taken from [Carcione, Progr. Electromagnetics Res. B, 26, 2010] N t set t sol it n I n Γ mem l mem c rel c eff n I, n Γ average number (K) of subdomain and local interface dofs, mem l and mem c in GB, eff = eqs (K) /core/second S. Zampini BDDC 25 / 25

Parallel Sums and Adaptive BDDC Deluxe

Parallel Sums and Adaptive BDDC Deluxe 249 Parallel Sums and Adaptive BDDC Deluxe Olof B. Widlund 1 and Juan G. Calvo 2 1 Introduction There has recently been a considerable activity in developing adaptive methods for the selection of primal

More information

Extending the theory for domain decomposition algorithms to less regular subdomains

Extending the theory for domain decomposition algorithms to less regular subdomains Extending the theory for domain decomposition algorithms to less regular subdomains Olof Widlund Courant Institute of Mathematical Sciences New York University http://www.cs.nyu.edu/cs/faculty/widlund/

More information

Multilevel and Adaptive Iterative Substructuring Methods. Jan Mandel University of Colorado Denver

Multilevel and Adaptive Iterative Substructuring Methods. Jan Mandel University of Colorado Denver Multilevel and Adaptive Iterative Substructuring Methods Jan Mandel University of Colorado Denver The multilevel BDDC method is joint work with Bedřich Sousedík, Czech Technical University, and Clark Dohrmann,

More information

BDDC deluxe for Isogeometric Analysis

BDDC deluxe for Isogeometric Analysis BDDC deluxe for sogeometric Analysis L. Beirão da Veiga 1, L.. Pavarino 1, S. Scacchi 1, O. B. Widlund 2, and S. Zampini 3 1 ntroduction The main goal of this paper is to design, analyze, and test a BDDC

More information

AN ADAPTIVE CHOICE OF PRIMAL CONSTRAINTS FOR BDDC DOMAIN DECOMPOSITION ALGORITHMS

AN ADAPTIVE CHOICE OF PRIMAL CONSTRAINTS FOR BDDC DOMAIN DECOMPOSITION ALGORITHMS lectronic Transactions on Numerical Analysis. Volume 45, pp. 524 544, 2016. Copyright c 2016,. ISSN 1068 9613. TNA AN ADAPTIV CHOIC O PRIMAL CONSTRAINTS OR BDDC DOMAIN DCOMPOSITION ALGORITHMS JUAN G. CALVO

More information

ASM-BDDC Preconditioners with variable polynomial degree for CG- and DG-SEM

ASM-BDDC Preconditioners with variable polynomial degree for CG- and DG-SEM ASM-BDDC Preconditioners with variable polynomial degree for CG- and DG-SEM C. Canuto 1, L. F. Pavarino 2, and A. B. Pieri 3 1 Introduction Discontinuous Galerkin (DG) methods for partial differential

More information

Multispace and Multilevel BDDC. Jan Mandel University of Colorado at Denver and Health Sciences Center

Multispace and Multilevel BDDC. Jan Mandel University of Colorado at Denver and Health Sciences Center Multispace and Multilevel BDDC Jan Mandel University of Colorado at Denver and Health Sciences Center Based on joint work with Bedřich Sousedík, UCDHSC and Czech Technical University, and Clark R. Dohrmann,

More information

Auxiliary space multigrid method for elliptic problems with highly varying coefficients

Auxiliary space multigrid method for elliptic problems with highly varying coefficients Auxiliary space multigrid method for elliptic problems with highly varying coefficients Johannes Kraus 1 and Maria Lymbery 2 1 Introduction The robust preconditioning of linear systems of algebraic equations

More information

Domain Decomposition Preconditioners for Isogeometric Discretizations

Domain Decomposition Preconditioners for Isogeometric Discretizations Domain Decomposition Preconditioners for Isogeometric Discretizations Luca F Pavarino, Università di Milano, Italy Lorenzo Beirao da Veiga, Università di Milano, Italy Durkbin Cho, Dongguk University,

More information

Substructuring for multiscale problems

Substructuring for multiscale problems Substructuring for multiscale problems Clemens Pechstein Johannes Kepler University Linz (A) jointly with Rob Scheichl Marcus Sarkis Clark Dohrmann DD 21, Rennes, June 2012 Outline 1 Introduction 2 Weighted

More information

Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations

Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations Dual-Primal Isogeometric Tearing and Interconnecting Solvers for Continuous and Discontinuous Galerkin IgA Equations Christoph Hofer and Ulrich Langer Doctoral Program Computational Mathematics Numerical

More information

Electronic Transactions on Numerical Analysis Volume 49, 2018

Electronic Transactions on Numerical Analysis Volume 49, 2018 Electronic Transactions on Numerical Analysis Volume 49, 2018 Contents 1 Adaptive FETI-DP and BDDC methods with a generalized transformation of basis for heterogeneous problems. Axel Klawonn, Martin Kühn,

More information

Toward black-box adaptive domain decomposition methods

Toward black-box adaptive domain decomposition methods Toward black-box adaptive domain decomposition methods Frédéric Nataf Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Univ. Paris VI joint work with Victorita Dolean (Univ. Nice Sophia-Antipolis)

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY 11, USA Dan Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

SOME PRACTICAL ASPECTS OF PARALLEL ADAPTIVE BDDC METHOD

SOME PRACTICAL ASPECTS OF PARALLEL ADAPTIVE BDDC METHOD Conference Applications of Mathematics 2012 in honor of the 60th birthday of Michal Křížek. Institute of Mathematics AS CR, Prague 2012 SOME PRACTICAL ASPECTS OF PARALLEL ADAPTIVE BDDC METHOD Jakub Šístek1,2,

More information

Adaptive Coarse Space Selection in BDDC and FETI-DP Iterative Substructuring Methods: Towards Fast and Robust Solvers

Adaptive Coarse Space Selection in BDDC and FETI-DP Iterative Substructuring Methods: Towards Fast and Robust Solvers Adaptive Coarse Space Selection in BDDC and FETI-DP Iterative Substructuring Methods: Towards Fast and Robust Solvers Jan Mandel University of Colorado at Denver Bedřich Sousedík Czech Technical University

More information

Parallel scalability of a FETI DP mortar method for problems with discontinuous coefficients

Parallel scalability of a FETI DP mortar method for problems with discontinuous coefficients Parallel scalability of a FETI DP mortar method for problems with discontinuous coefficients Nina Dokeva and Wlodek Proskurowski University of Southern California, Department of Mathematics Los Angeles,

More information

Algebraic Coarse Spaces for Overlapping Schwarz Preconditioners

Algebraic Coarse Spaces for Overlapping Schwarz Preconditioners Algebraic Coarse Spaces for Overlapping Schwarz Preconditioners 17 th International Conference on Domain Decomposition Methods St. Wolfgang/Strobl, Austria July 3-7, 2006 Clark R. Dohrmann Sandia National

More information

Adaptive Coarse Spaces and Multiple Search Directions: Tools for Robust Domain Decomposition Algorithms

Adaptive Coarse Spaces and Multiple Search Directions: Tools for Robust Domain Decomposition Algorithms Adaptive Coarse Spaces and Multiple Search Directions: Tools for Robust Domain Decomposition Algorithms Nicole Spillane Center for Mathematical Modelling at the Universidad de Chile in Santiago. July 9th,

More information

ISOGEOMETRIC BDDC PRECONDITIONERS WITH DELUXE SCALING TR

ISOGEOMETRIC BDDC PRECONDITIONERS WITH DELUXE SCALING TR ISOGOMTRIC BDDC PRCONDITIONRS WITH DLUX SCALING L. BIRÃO DA VIGA, L.. PAVARINO, S. SCACCHI, O. B. WIDLUND, AND S. ZAMPINI TR2013-955 Abstract. A BDDC (Balancing Domain Decomposition by Constraints) preconditioner

More information

A High-Performance Parallel Hybrid Method for Large Sparse Linear Systems

A High-Performance Parallel Hybrid Method for Large Sparse Linear Systems Outline A High-Performance Parallel Hybrid Method for Large Sparse Linear Systems Azzam Haidar CERFACS, Toulouse joint work with Luc Giraud (N7-IRIT, France) and Layne Watson (Virginia Polytechnic Institute,

More information

A Balancing Algorithm for Mortar Methods

A Balancing Algorithm for Mortar Methods A Balancing Algorithm for Mortar Methods Dan Stefanica Baruch College, City University of New York, NY, USA. Dan_Stefanica@baruch.cuny.edu Summary. The balancing methods are hybrid nonoverlapping Schwarz

More information

Parallel Implementation of BDDC for Mixed-Hybrid Formulation of Flow in Porous Media

Parallel Implementation of BDDC for Mixed-Hybrid Formulation of Flow in Porous Media Parallel Implementation of BDDC for Mixed-Hybrid Formulation of Flow in Porous Media Jakub Šístek1 joint work with Jan Březina 2 and Bedřich Sousedík 3 1 Institute of Mathematics of the AS CR Nečas Center

More information

AN ADAPTIVE CHOICE OF PRIMAL CONSTRAINTS FOR BDDC DOMAIN DECOMPOSITION ALGORITHMS TR

AN ADAPTIVE CHOICE OF PRIMAL CONSTRAINTS FOR BDDC DOMAIN DECOMPOSITION ALGORITHMS TR AN ADAPTIVE CHOICE OF PRIMAL CONSTRAINTS FOR BDDC DOMAIN DECOMPOSITION ALGORITHMS JUAN G. CALVO AND OLOF B. WIDLUND TR2015-979 Abstract. An adaptive choice for primal spaces, based on parallel sums, is

More information

A BDDC ALGORITHM FOR RAVIART-THOMAS VECTOR FIELDS TR

A BDDC ALGORITHM FOR RAVIART-THOMAS VECTOR FIELDS TR A BDDC ALGORITHM FOR RAVIART-THOMAS VECTOR FIELDS DUK-SOON OH, OLOF B WIDLUND, AND CLARK R DOHRMANN TR013-951 Abstract A BDDC preconditioner is defined by a coarse component, expressed in terms of primal

More information

BDDC ALGORITHMS WITH DELUXE SCALING AND ADAPTIVE SELECTION OF PRIMAL CONSTRAINTS FOR RAVIART-THOMAS VECTOR FIELDS

BDDC ALGORITHMS WITH DELUXE SCALING AND ADAPTIVE SELECTION OF PRIMAL CONSTRAINTS FOR RAVIART-THOMAS VECTOR FIELDS MATHEMATICS OF COMPUTATION Volume 00, Number 0, Pages 000 000 S 0025-5718(XX)0000-0 BDDC ALGORITHMS WITH DELUXE SCALING AND ADAPTIVE SELECTION OF PRIMAL CONSTRAINTS FOR RAVIART-THOMAS VECTOR FIELDS DUK-SOON

More information

Two new enriched multiscale coarse spaces for the Additive Average Schwarz method

Two new enriched multiscale coarse spaces for the Additive Average Schwarz method 346 Two new enriched multiscale coarse spaces for the Additive Average Schwarz method Leszek Marcinkowski 1 and Talal Rahman 2 1 Introduction We propose additive Schwarz methods with spectrally enriched

More information

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations Fourteenth International Conference on Domain Decomposition Methods Editors: Ismael Herrera, David E. Keyes, Olof B. Widlund, Robert Yates c 23 DDM.org 2. A Dual-Primal FEI Method for solving Stokes/Navier-Stokes

More information

On the Use of Inexact Subdomain Solvers for BDDC Algorithms

On the Use of Inexact Subdomain Solvers for BDDC Algorithms On the Use of Inexact Subdomain Solvers for BDDC Algorithms Jing Li a, and Olof B. Widlund b,1 a Department of Mathematical Sciences, Kent State University, Kent, OH, 44242-0001 b Courant Institute of

More information

Parallel Scalability of a FETI DP Mortar Method for Problems with Discontinuous Coefficients

Parallel Scalability of a FETI DP Mortar Method for Problems with Discontinuous Coefficients Parallel Scalability of a FETI DP Mortar Method for Problems with Discontinuous Coefficients Nina Dokeva and Wlodek Proskurowski Department of Mathematics, University of Southern California, Los Angeles,

More information

Multipréconditionnement adaptatif pour les méthodes de décomposition de domaine. Nicole Spillane (CNRS, CMAP, École Polytechnique)

Multipréconditionnement adaptatif pour les méthodes de décomposition de domaine. Nicole Spillane (CNRS, CMAP, École Polytechnique) Multipréconditionnement adaptatif pour les méthodes de décomposition de domaine Nicole Spillane (CNRS, CMAP, École Polytechnique) C. Bovet (ONERA), P. Gosselet (ENS Cachan), A. Parret Fréaud (SafranTech),

More information

CONVERGENCE ANALYSIS OF A BALANCING DOMAIN DECOMPOSITION METHOD FOR SOLVING A CLASS OF INDEFINITE LINEAR SYSTEMS

CONVERGENCE ANALYSIS OF A BALANCING DOMAIN DECOMPOSITION METHOD FOR SOLVING A CLASS OF INDEFINITE LINEAR SYSTEMS CONVERGENCE ANALYSIS OF A BALANCING DOMAIN DECOMPOSITION METHOD FOR SOLVING A CLASS OF INDEFINITE LINEAR SYSTEMS JING LI AND XUEMIN TU Abstract A variant of balancing domain decomposition method by constraints

More information

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems

Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Scalable Domain Decomposition Preconditioners For Heterogeneous Elliptic Problems Pierre Jolivet, F. Hecht, F. Nataf, C. Prud homme Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann INRIA Rocquencourt

More information

Selecting Constraints in Dual-Primal FETI Methods for Elasticity in Three Dimensions

Selecting Constraints in Dual-Primal FETI Methods for Elasticity in Three Dimensions Selecting Constraints in Dual-Primal FETI Methods for Elasticity in Three Dimensions Axel Klawonn 1 and Olof B. Widlund 2 1 Universität Duisburg-Essen, Campus Essen, Fachbereich Mathematik, (http://www.uni-essen.de/ingmath/axel.klawonn/)

More information

Une méthode parallèle hybride à deux niveaux interfacée dans un logiciel d éléments finis

Une méthode parallèle hybride à deux niveaux interfacée dans un logiciel d éléments finis Une méthode parallèle hybride à deux niveaux interfacée dans un logiciel d éléments finis Frédéric Nataf Laboratory J.L. Lions (LJLL), CNRS, Alpines Inria and Univ. Paris VI Victorita Dolean (Univ. Nice

More information

Domain Decomposition solvers (FETI)

Domain Decomposition solvers (FETI) Domain Decomposition solvers (FETI) a random walk in history and some current trends Daniel J. Rixen Technische Universität München Institute of Applied Mechanics www.amm.mw.tum.de rixen@tum.de 8-10 October

More information

arxiv: v1 [math.na] 28 Feb 2008

arxiv: v1 [math.na] 28 Feb 2008 BDDC by a frontal solver and the stress computation in a hip joint replacement arxiv:0802.4295v1 [math.na] 28 Feb 2008 Jakub Šístek a, Jaroslav Novotný b, Jan Mandel c, Marta Čertíková a, Pavel Burda a

More information

Convergence analysis of a balancing domain decomposition method for solving a class of indefinite linear systems

Convergence analysis of a balancing domain decomposition method for solving a class of indefinite linear systems NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS Numer. Linear Algebra Appl. 2000; 00:1 6 [Version: 2002/09/18 v1.02] Convergence analysis of a balancing domain decomposition method for solving a class of indefinite

More information

Avancées récentes dans le domaine des solveurs linéaires Pierre Jolivet Journées inaugurales de la machine de calcul June 10, 2015

Avancées récentes dans le domaine des solveurs linéaires Pierre Jolivet Journées inaugurales de la machine de calcul June 10, 2015 spcl.inf.ethz.ch @spcl eth Avancées récentes dans le domaine des solveurs linéaires Pierre Jolivet Journées inaugurales de la machine de calcul June 10, 2015 Introduction Domain decomposition methods The

More information

Short title: Total FETI. Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ Ostrava, Czech Republic

Short title: Total FETI. Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ Ostrava, Czech Republic Short title: Total FETI Corresponding author: Zdenek Dostal, VŠB-Technical University of Ostrava, 17 listopadu 15, CZ-70833 Ostrava, Czech Republic mail: zdenek.dostal@vsb.cz fax +420 596 919 597 phone

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES. A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES A virtual overlapping Schwarz method for scalar elliptic problems in two dimensions Juan Gabriel Calvo Preprint No. 25-2017 PRAHA 2017 A VIRTUAL

More information

Some Domain Decomposition Methods for Discontinuous Coefficients

Some Domain Decomposition Methods for Discontinuous Coefficients Some Domain Decomposition Methods for Discontinuous Coefficients Marcus Sarkis WPI RICAM-Linz, October 31, 2011 Marcus Sarkis (WPI) Domain Decomposition Methods RICAM-2011 1 / 38 Outline Discretizations

More information

FETI-DP for Elasticity with Almost Incompressible 2 Material Components 3 UNCORRECTED PROOF. Sabrina Gippert, Axel Klawonn, and Oliver Rheinbach 4

FETI-DP for Elasticity with Almost Incompressible 2 Material Components 3 UNCORRECTED PROOF. Sabrina Gippert, Axel Klawonn, and Oliver Rheinbach 4 1 FETI-DP for Elasticity with Almost Incompressible 2 Material Components 3 Sabrina Gippert, Axel Klawonn, and Oliver Rheinbach 4 Lehrstuhl für Numerische Mathematik, Fakultät für Mathematik, Universität

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 31, pp. 384-402, 2008. Copyright 2008,. ISSN 1068-9613. ETNA ON THE EQUIVALENCE OF PRIMAL AND DUAL SUBSTRUCTURING PRECONDITIONERS BEDŘICH SOUSEDÍK

More information

A FETI-DP Method for Mortar Finite Element Discretization of a Fourth Order Problem

A FETI-DP Method for Mortar Finite Element Discretization of a Fourth Order Problem A FETI-DP Method for Mortar Finite Element Discretization of a Fourth Order Problem Leszek Marcinkowski 1 and Nina Dokeva 2 1 Department of Mathematics, Warsaw University, Banacha 2, 02 097 Warszawa, Poland,

More information

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions Bernhard Hientzsch Courant Institute of Mathematical Sciences, New York University, 51 Mercer Street, New

More information

OVERLAPPING SCHWARZ ALGORITHMS FOR ALMOST INCOMPRESSIBLE LINEAR ELASTICITY TR

OVERLAPPING SCHWARZ ALGORITHMS FOR ALMOST INCOMPRESSIBLE LINEAR ELASTICITY TR OVERLAPPING SCHWARZ ALGORITHMS FOR ALMOST INCOMPRESSIBLE LINEAR ELASTICITY MINGCHAO CAI, LUCA F. PAVARINO, AND OLOF B. WIDLUND TR2014-969 Abstract. Low order finite element discretizations of the linear

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 11, pp. 1-24, 2000. Copyright 2000,. ISSN 1068-9613. ETNA NEUMANN NEUMANN METHODS FOR VECTOR FIELD PROBLEMS ANDREA TOSELLI Abstract. In this paper,

More information

The All-floating BETI Method: Numerical Results

The All-floating BETI Method: Numerical Results The All-floating BETI Method: Numerical Results Günther Of Institute of Computational Mathematics, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria, of@tugraz.at Summary. The all-floating

More information

Algebraic Adaptive Multipreconditioning applied to Restricted Additive Schwarz

Algebraic Adaptive Multipreconditioning applied to Restricted Additive Schwarz Algebraic Adaptive Multipreconditioning applied to Restricted Additive Schwarz Nicole Spillane To cite this version: Nicole Spillane. Algebraic Adaptive Multipreconditioning applied to Restricted Additive

More information

Fast Iterative Solution of Saddle Point Problems

Fast Iterative Solution of Saddle Point Problems Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA Acknowledgments NSF (Computational Mathematics) Maxim Olshanskii (Mech-Math, Moscow State U.) Zhen Wang (PhD student,

More information

A Unified Framework for Adaptive BDDC

A Unified Framework for Adaptive BDDC www.oeaw.ac.at A Unified Framework for Adaptive BDDC C. Pechstein, C.R. Dohrmann RICAM-Report 2016-20 www.ricam.oeaw.ac.at A UNIFIED FRAMEWORK FOR ADAPTIVE BDDC CLEMENS PECHSTEIN 1 AND CLARK R. DOHRMANN

More information

Parallel Scalable Iterative Substructuring: Robust Exact and Inexact FETI-DP Methods with Applications to Elasticity

Parallel Scalable Iterative Substructuring: Robust Exact and Inexact FETI-DP Methods with Applications to Elasticity Parallel Scalable Iterative Substructuring: Robust Exact and Inexact FETI-DP Methods with Applications to Elasticity Oliver Rheinbach geboren in Hilden Fachbereich Mathematik Universität Duisburg-Essen

More information

Overlapping Schwarz preconditioners for Fekete spectral elements

Overlapping Schwarz preconditioners for Fekete spectral elements Overlapping Schwarz preconditioners for Fekete spectral elements R. Pasquetti 1, L. F. Pavarino 2, F. Rapetti 1, and E. Zampieri 2 1 Laboratoire J.-A. Dieudonné, CNRS & Université de Nice et Sophia-Antipolis,

More information

PANM 17. Marta Čertíková; Jakub Šístek; Pavel Burda Different approaches to interface weights in the BDDC method in 3D

PANM 17.  Marta Čertíková; Jakub Šístek; Pavel Burda Different approaches to interface weights in the BDDC method in 3D PANM 17 Marta Čertíková; Jakub Šístek; Pavel Burda Different approaches to interface weights in the BDDC method in 3D In: Jan Chleboun and Petr Přikryl and Karel Segeth and Jakub Šístek and Tomáš Vejchodský

More information

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses P. Boyanova 1, I. Georgiev 34, S. Margenov, L. Zikatanov 5 1 Uppsala University, Box 337, 751 05 Uppsala,

More information

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms

Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms www.oeaw.ac.at Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms Y. Efendiev, J. Galvis, R. Lazarov, J. Willems RICAM-Report 2011-05 www.ricam.oeaw.ac.at

More information

TR THREE-LEVEL BDDC IN THREE DIMENSIONS

TR THREE-LEVEL BDDC IN THREE DIMENSIONS R2005-862 REE-LEVEL BDDC IN REE DIMENSIONS XUEMIN U Abstract BDDC methods are nonoverlapping iterative substructuring domain decomposition methods for the solution of large sparse linear algebraic systems

More information

Fakultät für Mathematik und Informatik

Fakultät für Mathematik und Informatik Fakultät für Mathematik und Informatik Preprint 2015-17 Axel Klawonn, Martin Lanser and Oliver Rheinbach A Highly Scalable Implementation of Inexact Nonlinear FETI-DP without Sparse Direct Solvers ISSN

More information

Uncertainty analysis of large-scale systems using domain decomposition

Uncertainty analysis of large-scale systems using domain decomposition Center for Turbulence Research Annual Research Briefs 2007 143 Uncertainty analysis of large-scale systems using domain decomposition By D. Ghosh, C. Farhat AND P. Avery 1. Motivation and objectives A

More information

From Direct to Iterative Substructuring: some Parallel Experiences in 2 and 3D

From Direct to Iterative Substructuring: some Parallel Experiences in 2 and 3D From Direct to Iterative Substructuring: some Parallel Experiences in 2 and 3D Luc Giraud N7-IRIT, Toulouse MUMPS Day October 24, 2006, ENS-INRIA, Lyon, France Outline 1 General Framework 2 The direct

More information

ROBUST BDDC PRECONDITIONERS FOR REISSNER-MINDLIN PLATE BENDING PROBLEMS AND MITC ELEMENTS

ROBUST BDDC PRECONDITIONERS FOR REISSNER-MINDLIN PLATE BENDING PROBLEMS AND MITC ELEMENTS ROBUST BDDC PRECONDITIONERS FOR REISSNER-MINDLIN PLATE BENDING PROBLEMS AND MITC ELEMENTS L. BEIRÃO DA VEIGA, C. CHINOSI, C. LOVADINA, AND L. F. PAVARINO Abstract. A Balancing Domain Decomposition Method

More information

BETI for acoustic and electromagnetic scattering

BETI for acoustic and electromagnetic scattering BETI for acoustic and electromagnetic scattering O. Steinbach, M. Windisch Institut für Numerische Mathematik Technische Universität Graz Oberwolfach 18. Februar 2010 FWF-Project: Data-sparse Boundary

More information

ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow

ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow ANR Project DEDALES Algebraic and Geometric Domain Decomposition for Subsurface Flow Michel Kern Inria Paris Rocquencourt Maison de la Simulation C2S@Exa Days, Inria Paris Centre, Novembre 2016 M. Kern

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Weak Galerkin Finite Element Methods and Applications

Weak Galerkin Finite Element Methods and Applications Weak Galerkin Finite Element Methods and Applications Lin Mu mul1@ornl.gov Computational and Applied Mathematics Computationa Science and Mathematics Division Oak Ridge National Laboratory Georgia Institute

More information

Hybrid (DG) Methods for the Helmholtz Equation

Hybrid (DG) Methods for the Helmholtz Equation Hybrid (DG) Methods for the Helmholtz Equation Joachim Schöberl Computational Mathematics in Engineering Institute for Analysis and Scientific Computing Vienna University of Technology Contributions by

More information

18. Balancing Neumann-Neumann for (In)Compressible Linear Elasticity and (Generalized) Stokes Parallel Implementation

18. Balancing Neumann-Neumann for (In)Compressible Linear Elasticity and (Generalized) Stokes Parallel Implementation Fourteenth nternational Conference on Domain Decomposition Methods Editors: smael Herrera, David E Keyes, Olof B Widlund, Robert Yates c 23 DDMorg 18 Balancing Neumann-Neumann for (n)compressible Linear

More information

Nonoverlapping Domain Decomposition Methods with Simplified Coarse Spaces for Solving Three-dimensional Elliptic Problems

Nonoverlapping Domain Decomposition Methods with Simplified Coarse Spaces for Solving Three-dimensional Elliptic Problems Nonoverlapping Domain Decomposition Methods with Simplified Coarse Spaces for Solving Three-dimensional Elliptic Problems Qiya Hu 1, Shi Shu 2 and Junxian Wang 3 Abstract In this paper we propose a substructuring

More information

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Olivier Dubois 1 and Martin J. Gander 2 1 IMA, University of Minnesota, 207 Church St. SE, Minneapolis, MN 55455 dubois@ima.umn.edu

More information

On Iterative Substructuring Methods for Multiscale Problems

On Iterative Substructuring Methods for Multiscale Problems On Iterative Substructuring Methods for Multiscale Problems Clemens Pechstein Introduction Model Problem Let Ω R 2 or R 3 be a Lipschitz polytope with boundary Ω = Γ D Γ N, where Γ D Γ N = /0. We are interested

More information

Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems

Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems Application of Preconditioned Coupled FETI/BETI Solvers to 2D Magnetic Field Problems U. Langer A. Pohoaţǎ O. Steinbach 27th September 2004 Institute of Computational Mathematics Johannes Kepler University

More information

Multispace and Multilevel BDDC

Multispace and Multilevel BDDC Multispace and Multilevel BDDC Jan Mandel Bedřich Sousedík Clark R. Dohrmann February 11, 2018 arxiv:0712.3977v2 [math.na] 21 Jan 2008 Abstract BDDC method is the most advanced method from the Balancing

More information

arxiv: v1 [math.na] 11 Jul 2011

arxiv: v1 [math.na] 11 Jul 2011 Multigrid Preconditioner for Nonconforming Discretization of Elliptic Problems with Jump Coefficients arxiv:07.260v [math.na] Jul 20 Blanca Ayuso De Dios, Michael Holst 2, Yunrong Zhu 2, and Ludmil Zikatanov

More information

Multilevel spectral coarse space methods in FreeFem++ on parallel architectures

Multilevel spectral coarse space methods in FreeFem++ on parallel architectures Multilevel spectral coarse space methods in FreeFem++ on parallel architectures Pierre Jolivet Laboratoire Jacques-Louis Lions Laboratoire Jean Kuntzmann DD 21, Rennes. June 29, 2012 In collaboration with

More information

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems

Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems Additive Average Schwarz Method for a Crouzeix-Raviart Finite Volume Element Discretization of Elliptic Problems Atle Loneland 1, Leszek Marcinkowski 2, and Talal Rahman 3 1 Introduction In this paper

More information

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal FEniCS Course Lecture 0: Introduction to FEM Contributors Anders Logg, Kent-Andre Mardal 1 / 46 What is FEM? The finite element method is a framework and a recipe for discretization of mathematical problems

More information

Divergence-conforming multigrid methods for incompressible flow problems

Divergence-conforming multigrid methods for incompressible flow problems Divergence-conforming multigrid methods for incompressible flow problems Guido Kanschat IWR, Universität Heidelberg Prague-Heidelberg-Workshop April 28th, 2015 G. Kanschat (IWR, Uni HD) Hdiv-DG Práha,

More information

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS

PARTITION OF UNITY FOR THE STOKES PROBLEM ON NONMATCHING GRIDS PARTITION OF UNITY FOR THE STOES PROBLEM ON NONMATCHING GRIDS CONSTANTIN BACUTA AND JINCHAO XU Abstract. We consider the Stokes Problem on a plane polygonal domain Ω R 2. We propose a finite element method

More information

GRUPO DE GEOFÍSICA MATEMÁTICA Y COMPUTACIONAL MEMORIA Nº 8

GRUPO DE GEOFÍSICA MATEMÁTICA Y COMPUTACIONAL MEMORIA Nº 8 GRUPO DE GEOFÍSICA MATEMÁTICA Y COMPUTACIONAL MEMORIA Nº 8 MÉXICO 2014 MEMORIAS GGMC INSTITUTO DE GEOFÍSICA UNAM MIEMBROS DEL GGMC Dr. Ismael Herrera Revilla iherrerarevilla@gmail.com Dr. Luis Miguel de

More information

Schwarz Preconditioner for the Stochastic Finite Element Method

Schwarz Preconditioner for the Stochastic Finite Element Method Schwarz Preconditioner for the Stochastic Finite Element Method Waad Subber 1 and Sébastien Loisel 2 Preprint submitted to DD22 conference 1 Introduction The intrusive polynomial chaos approach for uncertainty

More information

Lecture Note III: Least-Squares Method

Lecture Note III: Least-Squares Method Lecture Note III: Least-Squares Method Zhiqiang Cai October 4, 004 In this chapter, we shall present least-squares methods for second-order scalar partial differential equations, elastic equations of solids,

More information

Numerical Simulation of Flows in Highly Heterogeneous Porous Media

Numerical Simulation of Flows in Highly Heterogeneous Porous Media Numerical Simulation of Flows in Highly Heterogeneous Porous Media R. Lazarov, Y. Efendiev, J. Galvis, K. Shi, J. Willems The Second International Conference on Engineering and Computational Mathematics

More information

AN ANALYSIS OF A FETI DP ALGORITHM ON IRREGULAR SUBDOMAINS IN THE PLANE TR

AN ANALYSIS OF A FETI DP ALGORITHM ON IRREGULAR SUBDOMAINS IN THE PLANE TR AN ANALYSIS OF A FETI DP ALGORITHM ON IRREGULAR SUBDOMAINS IN THE PLANE TR27 889 AXEL KLAWONN, OLIVER RHEINBACH, AND OLOF B. WIDLUND Abstract. In the theory for domain decomposition algorithms of the iterative

More information

1. Fast Solvers and Schwarz Preconditioners for Spectral Nédélec Elements for a Model Problem in H(curl)

1. Fast Solvers and Schwarz Preconditioners for Spectral Nédélec Elements for a Model Problem in H(curl) DDM Preprint Editors: editor1, editor2, editor3, editor4 c DDM.org 1. Fast Solvers and Schwarz Preconditioners for Spectral Nédélec Elements for a Model Problem in H(curl) Bernhard Hientzsch 1 1. Introduction.

More information

Inexact Data-Sparse BETI Methods by Ulrich Langer. (joint talk with G. Of, O. Steinbach and W. Zulehner)

Inexact Data-Sparse BETI Methods by Ulrich Langer. (joint talk with G. Of, O. Steinbach and W. Zulehner) Inexact Data-Sparse BETI Methods by Ulrich Langer (joint talk with G. Of, O. Steinbach and W. Zulehner) Radon Institute for Computational and Applied Mathematics Austrian Academy of Sciences http://www.ricam.oeaw.ac.at

More information

Adaptive algebraic multigrid methods in lattice computations

Adaptive algebraic multigrid methods in lattice computations Adaptive algebraic multigrid methods in lattice computations Karsten Kahl Bergische Universität Wuppertal January 8, 2009 Acknowledgements Matthias Bolten, University of Wuppertal Achi Brandt, Weizmann

More information

Preconditioning of Saddle Point Systems by Substructuring and a Penalty Approach

Preconditioning of Saddle Point Systems by Substructuring and a Penalty Approach Preconditioning of Saddle Point Systems by Substructuring and a Penalty Approach Clark R. Dohrmann 1 Sandia National Laboratories, crdohrm@sandia.gov. Sandia is a multiprogram laboratory operated by Sandia

More information

C. Vuik 1 R. Nabben 2 J.M. Tang 1

C. Vuik 1 R. Nabben 2 J.M. Tang 1 Deflation acceleration of block ILU preconditioned Krylov methods C. Vuik 1 R. Nabben 2 J.M. Tang 1 1 Delft University of Technology J.M. Burgerscentrum 2 Technical University Berlin Institut für Mathematik

More information

Multigrid and Iterative Strategies for Optimal Control Problems

Multigrid and Iterative Strategies for Optimal Control Problems Multigrid and Iterative Strategies for Optimal Control Problems John Pearson 1, Stefan Takacs 1 1 Mathematical Institute, 24 29 St. Giles, Oxford, OX1 3LB e-mail: john.pearson@worc.ox.ac.uk, takacs@maths.ox.ac.uk

More information

IsogEometric Tearing and Interconnecting

IsogEometric Tearing and Interconnecting IsogEometric Tearing and Interconnecting Christoph Hofer and Ludwig Mitter Johannes Kepler University, Linz 26.01.2017 Doctoral Program Computational Mathematics Numerical Analysis and Symbolic Computation

More information

Key words. Parallel iterative solvers, saddle-point linear systems, preconditioners, timeharmonic

Key words. Parallel iterative solvers, saddle-point linear systems, preconditioners, timeharmonic PARALLEL NUMERICAL SOLUTION OF THE TIME-HARMONIC MAXWELL EQUATIONS IN MIXED FORM DAN LI, CHEN GREIF, AND DOMINIK SCHÖTZAU Numer. Linear Algebra Appl., Vol. 19, pp. 525 539, 2012 Abstract. We develop a

More information

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes www.oeaw.ac.at From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes D. Copeland, U. Langer, D. Pusch RICAM-Report 2008-10 www.ricam.oeaw.ac.at From the Boundary Element

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS MICHAEL HOLST AND FAISAL SAIED Abstract. We consider multigrid and domain decomposition methods for the numerical

More information

The Virtual Element Method: an introduction with focus on fluid flows

The Virtual Element Method: an introduction with focus on fluid flows The Virtual Element Method: an introduction with focus on fluid flows L. Beirão da Veiga Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca VEM people (or group representatives): P.

More information

Accomodating Irregular Subdomains in Domain Decomposition Theory

Accomodating Irregular Subdomains in Domain Decomposition Theory Accomodating Irregular Subdomains in Domain Decomposition Theory Olof B. Widlund 1 Courant Institute, 251 Mercer Street, New York, NY 10012, USA widlund@cims.nyu.edu Summary. In the theory for domain decomposition

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

J.I. Aliaga 1 M. Bollhöfer 2 A.F. Martín 1 E.S. Quintana-Ortí 1. March, 2009

J.I. Aliaga 1 M. Bollhöfer 2 A.F. Martín 1 E.S. Quintana-Ortí 1. March, 2009 Parallel Preconditioning of Linear Systems based on ILUPACK for Multithreaded Architectures J.I. Aliaga M. Bollhöfer 2 A.F. Martín E.S. Quintana-Ortí Deparment of Computer Science and Engineering, Univ.

More information

HPDDM une bibliothèque haute performance unifiée pour les méthodes de décomposition de domaine

HPDDM une bibliothèque haute performance unifiée pour les méthodes de décomposition de domaine HPDDM une bibliothèque haute performance unifiée pour les méthodes de décomposition de domaine P. Jolivet and Frédéric Nataf Laboratory J.L. Lions, Univ. Paris VI, Equipe Alpines INRIA-LJLL et CNRS joint

More information