Online Kernel PCA with Entropic Matrix Updates

Size: px
Start display at page:

Download "Online Kernel PCA with Entropic Matrix Updates"

Transcription

1 Online Kernel PCA with Entropic Matrix Updates Dima Kuzmin Manfred K. Warmuth University of California - Santa Cruz ICML 2007, Corvallis, Oregon April 23, 2008 D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

2 Outline 1 Batch PCA 2 Online PCA alg 3 Kernelization D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

3 Outline Batch PCA 1 Batch PCA 2 Online PCA alg 3 Kernelization D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

4 Batch PCA PCA: dimensionality reduction project onto subspace preserve most information D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

5 Objective of batch PCA Batch PCA inf center c inf k-dim. proj. matrix P t P(x t c) }{{} compressed (x t c) 2 2 }{{} uncompressed Solution: c = P = average point subspace spanned by k longest axes of covariance matrix (x t c )(x t c ) t D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

6 What we do Batch PCA Online PCA Update subspace after each point Goals Total compression loss close to batch PCA Regret bounds logarithmic in the dimension Kernelize the online algorithm D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

7 Outline Online PCA alg 1 Batch PCA 2 Online PCA alg 3 Kernelization D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

8 Why online? Online PCA alg Data points produced online Data changes over time Our algorithms can be adapted to that case Want to exploit the sequential nature of the data D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

9 Protocol Online PCA alg For t=1 to T Algorithm picks k-dimensional projection P t Nature picks data point x t Algorithm suffers loss P t x t x t 2 2 End For Regret T P t x t x t 2 2 t=1 } {{ } online loss T inf Px t x t 2 2 P t=1 }{{} batch loss D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

10 How do we do it? Online PCA alg Lift methods from expert setting of online learning to matrix setting Use density matrices to express uncertainty over best subspace D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

11 Trick 1: density matrices Online PCA alg Natural parameter for expressing uncertainty over directions Symmetric positive definite matrix of trace 1 Eigenvalues λ i form probability vector (mixture) W = n λ i w i w i i=1 Many mixtures give same matrix Decomposition into n eigendirections D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

12 Online PCA alg Trick 2: capping the eigenvalues of density matrix Probability vector: uncertainty over eigendirections Capping prevents concentration on single corner 1 m capped probability vector: uncertainty over m-sets of directions Such sets represented as m-corners: (0, 1 m, 0, 0, 1 m, 0, 1 m ) The convex hull of the m-corners = capped probability simplex Any distribution in hull decomposable into n out of ( n m) corners D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

13 Online PCA alg Trick 3: rewrite quadratic loss as linear loss Assume c = 0 for now }{{} P x x 2 2 = (P I)x 2 2 k = x (I P) 2 x I P proj.matr. = tr((i P) }{{} n k xx ) Want to choose n k dimensional subspace of minimum variance Projection matrices are symmetric positive matrices w. {0, 1} eigenvals P 2 = P, (I P) 2 = I P D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

14 Online PCA alg Online PCA alg Initalize W 0 = 1 n I Pick n k dimensional subspace based on capped density matrix W }{{} t n k Choose complementary subspace P }{{} t k Receive instance x t Incur loss P t x t x t 2 2 = tr((i } {{ P t) x } t x t ) n k and expected loss (n k) tr(w t x t x t ) Update W t+1 = exp(log W t ηx t x t )/Z, where exp, log are matrix ops Cap eigenvals of W t+1 to 1 n k D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

15 Online PCA alg Update and Winnow-like bound Ŵ t = exp(log W t η x t x t ) tr(exp(log W t η x t x t )) W t+1 = inf W dens.matrix w.eigenvals 1 n k (W, Ŵ t ) regret 2 loss of best k subspace k log n k + k log n k D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

16 Outline Kernelization 1 Batch PCA 2 Online PCA alg 3 Kernelization D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

17 Feature maps Kernelization Expand instance vectors: φ : R n R N, N >> n Example: φ((x 1,..., x n )) = (x 2 1, x 1x 2,..., x 1 x n, x 2 2,...,..., x n 1x n, x 2 n), N = n 2 Dot products can often be computed efficiently: φ(x) φ(y) = (x y) 2 }{{} k(x,y) Kernel PCA computes normal PCA for expanded data instances φ(x 1 ),..., φ(x m ) D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

18 Kernelization Covariance and kernel matrices ( ) Data matrix X X = φ(x 1 )... φ(x n ) }{{} expanded instances as cols Covariance matrix - too big C = XX N N = m i=1 φ(x i)φ(x i ) Kernel matrix - small K = X X m m, K ij = φ(x i ) φ(x j ) }{{} k(x,y) Eigensystems of K and C are related! D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

19 Kernelization Eigendecomposition of K and C Theorem If K has eigensystem (λ i, u i ), then C has eigensystem ( ) λ i, Xu i λi Proof. Eigenvalue: C Xu i λi = XX Xu i λi = XKu i λi = λ i Xu i λi Orthogonality: ( Xui λi ) ( Xuj λj ) = u i X Xu j λi λ j = u i Ku j λi λ j = λ j u i u j λi λ j = 0 Normalization: Xu i λi 2 2 = 1 λ i (Xu i ) (Xu i ) = 1 λ i u i Ku i = 1 λ i λ i u i u i D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

20 Batch Kernel PCA Kernelization Top k eigenvectors of C are implicitly given by top k eigenvectors of K Projections can be computed based on small K matrix D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

21 Online Kernel PCA Kernelization Batch PCA: max Pick the k eigenvectors of C with largest eigenvalues. Online PCA: soft max Pick a subset of k eigenvectors of C probabilistically, based on eigenvalues of exp( ηc) Online KPCA Can compute everything about exp( ηc) i.t.o. K D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

22 Bound Kernelization regret 2 loss of best k subspace k log N k + k log N k N - dimension of feature space D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

23 Kernelization Kernelizable? Vector case: Additive updates w t φ(x t) Multiplicative updates w i e η P φ(x t,i ) ( ) Our results: Matrix multiplicative updates W exp( η t φ(x t)φ(x t ) ) Essentially any matrix update based on spectral function f W f( η t φ(x t )φ(x t ) ) Works only for rank 1 instances φ(x)φ(x) Standard basis vectors in vector case D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

24 Derivation and analysis Kernelization Online PCA W t+1 = argmin tr(w)=1 W 1 N r I {}}{ (W, W t ) + η tr(w x t x t ) quantum relative entropy Kernel Online PCA W t+1 = argmin tr(w)=1 W 1 N r I ( (W, 1 N I) + η t tr(w φ(x t )φ(x t ) ) ) Analysis Bregman projection methods or duality (W, U) = tr(w(log W log U)) D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

25 What s next Kernelization Bounds for estimating the center online Shifting with kernels, in particular long term memory Approximation algs - efficiency Other apps for matrix soft min and soft smallest k D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

26 Kernelization Additional loss of online algorithm D. Kuzmin, M. Warmuth (UCSC) Online Kernel PCA with Entropic Matrix Updates ICML / 26

On-line Variance Minimization

On-line Variance Minimization On-line Variance Minimization Manfred Warmuth Dima Kuzmin University of California - Santa Cruz 19th Annual Conference on Learning Theory M. Warmuth, D. Kuzmin (UCSC) On-line Variance Minimization COLT06

More information

Online Kernel PCA with Entropic Matrix Updates

Online Kernel PCA with Entropic Matrix Updates Dima Kuzmin Manfred K. Warmuth Computer Science Department, University of California - Santa Cruz dima@cse.ucsc.edu manfred@cse.ucsc.edu Abstract A number of updates for density matrices have been developed

More information

Randomized Online PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension

Randomized Online PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension Journal of Machine Learning Research 9 (2008) 2287-2320 Submitted 9/07; Published 10/08 Randomized Online PCA Algorithms with Regret Bounds that are Logarithmic in the Dimension Manfred K. Warmuth Dima

More information

The Free Matrix Lunch

The Free Matrix Lunch The Free Matrix Lunch Wouter M. Koolen Wojciech Kot lowski Manfred K. Warmuth Tuesday 24 th April, 2012 Koolen, Kot lowski, Warmuth (RHUL) The Free Matrix Lunch Tuesday 24 th April, 2012 1 / 26 Introduction

More information

Large Scale Matrix Analysis and Inference

Large Scale Matrix Analysis and Inference Large Scale Matrix Analysis and Inference Wouter M. Koolen - Manfred Warmuth Reza Bosagh Zadeh - Gunnar Carlsson - Michael Mahoney Dec 9, NIPS 2013 1 / 32 Introductory musing What is a matrix? a i,j 1

More information

UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations

UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations Title Optimal Online Learning with Matrix Parameters Permalink https://escholarship.org/uc/item/7xf477q3 Author Nie, Jiazhong Publication

More information

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work.

Assignment 1 Math 5341 Linear Algebra Review. Give complete answers to each of the following questions. Show all of your work. Assignment 1 Math 5341 Linear Algebra Review Give complete answers to each of the following questions Show all of your work Note: You might struggle with some of these questions, either because it has

More information

Noisy Streaming PCA. Noting g t = x t x t, rearranging and dividing both sides by 2η we get

Noisy Streaming PCA. Noting g t = x t x t, rearranging and dividing both sides by 2η we get Supplementary Material A. Auxillary Lemmas Lemma A. Lemma. Shalev-Shwartz & Ben-David,. Any update of the form P t+ = Π C P t ηg t, 3 for an arbitrary sequence of matrices g, g,..., g, projection Π C onto

More information

The Blessing and the Curse

The Blessing and the Curse The Blessing and the Curse of the Multiplicative Updates Manfred K. Warmuth University of California, Santa Cruz CMPS 272, Feb 31, 2012 Thanks to David Ilstrup and Anindya Sen for helping with the slides

More information

Leaving The Span Manfred K. Warmuth and Vishy Vishwanathan

Leaving The Span Manfred K. Warmuth and Vishy Vishwanathan Leaving The Span Manfred K. Warmuth and Vishy Vishwanathan UCSC and NICTA Talk at NYAS Conference, 10-27-06 Thanks to Dima and Jun 1 Let s keep it simple Linear Regression 10 8 6 4 2 0 2 4 6 8 8 6 4 2

More information

Kernelization of matrix updates, when and how?

Kernelization of matrix updates, when and how? Kernelization of matrix updates, when and how? Manfred K. Warmuth 1, Wojciech Kotλowski 2, and Shuisheng Zhou 3 1 Department of Computer Science, University of California, Santa Cruz, CA 95064 manfred@cse.ucsc.edu

More information

Learning with Large Number of Experts: Component Hedge Algorithm

Learning with Large Number of Experts: Component Hedge Algorithm Learning with Large Number of Experts: Component Hedge Algorithm Giulia DeSalvo and Vitaly Kuznetsov Courant Institute March 24th, 215 1 / 3 Learning with Large Number of Experts Regret of RWM is O( T

More information

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017

COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 COMS 4721: Machine Learning for Data Science Lecture 19, 4/6/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University PRINCIPAL COMPONENT ANALYSIS DIMENSIONALITY

More information

Principal Component Analysis

Principal Component Analysis CSci 5525: Machine Learning Dec 3, 2008 The Main Idea Given a dataset X = {x 1,..., x N } The Main Idea Given a dataset X = {x 1,..., x N } Find a low-dimensional linear projection The Main Idea Given

More information

Convergence of Eigenspaces in Kernel Principal Component Analysis

Convergence of Eigenspaces in Kernel Principal Component Analysis Convergence of Eigenspaces in Kernel Principal Component Analysis Shixin Wang Advanced machine learning April 19, 2016 Shixin Wang Convergence of Eigenspaces April 19, 2016 1 / 18 Outline 1 Motivation

More information

Bregman Divergences for Data Mining Meta-Algorithms

Bregman Divergences for Data Mining Meta-Algorithms p.1/?? Bregman Divergences for Data Mining Meta-Algorithms Joydeep Ghosh University of Texas at Austin ghosh@ece.utexas.edu Reflects joint work with Arindam Banerjee, Srujana Merugu, Inderjit Dhillon,

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis

Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Connection of Local Linear Embedding, ISOMAP, and Kernel Principal Component Analysis Alvina Goh Vision Reading Group 13 October 2005 Connection of Local Linear Embedding, ISOMAP, and Kernel Principal

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen PCA. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen PCA. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen PCA Tobias Scheffer Overview Principal Component Analysis (PCA) Kernel-PCA Fisher Linear Discriminant Analysis t-sne 2 PCA: Motivation

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

Machine learning with quantum relative entropy

Machine learning with quantum relative entropy Journal of Physics: Conference Series Machine learning with quantum relative entropy To cite this article: Koji Tsuda 2009 J. Phys.: Conf. Ser. 143 012021 View the article online for updates and enhancements.

More information

Kernel Principal Component Analysis

Kernel Principal Component Analysis Kernel Principal Component Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

1 Review and Overview

1 Review and Overview DRAFT a final version will be posted shortly CS229T/STATS231: Statistical Learning Theory Lecturer: Tengyu Ma Lecture # 16 Scribe: Chris Cundy, Ananya Kumar November 14, 2018 1 Review and Overview Last

More information

Principal Component Analysis

Principal Component Analysis B: Chapter 1 HTF: Chapter 1.5 Principal Component Analysis Barnabás Póczos University of Alberta Nov, 009 Contents Motivation PCA algorithms Applications Face recognition Facial expression recognition

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA

MACHINE LEARNING. Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 1 MACHINE LEARNING Methods for feature extraction and reduction of dimensionality: Probabilistic PCA and kernel PCA 2 Practicals Next Week Next Week, Practical Session on Computer Takes Place in Room GR

More information

Computation. For QDA we need to calculate: Lets first consider the case that

Computation. For QDA we need to calculate: Lets first consider the case that Computation For QDA we need to calculate: δ (x) = 1 2 log( Σ ) 1 2 (x µ ) Σ 1 (x µ ) + log(π ) Lets first consider the case that Σ = I,. This is the case where each distribution is spherical, around the

More information

PCA, Kernel PCA, ICA

PCA, Kernel PCA, ICA PCA, Kernel PCA, ICA Learning Representations. Dimensionality Reduction. Maria-Florina Balcan 04/08/2015 Big & High-Dimensional Data High-Dimensions = Lot of Features Document classification Features per

More information

Kernel Learning with Bregman Matrix Divergences

Kernel Learning with Bregman Matrix Divergences Kernel Learning with Bregman Matrix Divergences Inderjit S. Dhillon The University of Texas at Austin Workshop on Algorithms for Modern Massive Data Sets Stanford University and Yahoo! Research June 22,

More information

ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization

ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization ICS 6N Computational Linear Algebra Symmetric Matrices and Orthogonal Diagonalization Xiaohui Xie University of California, Irvine xhx@uci.edu Xiaohui Xie (UCI) ICS 6N 1 / 21 Symmetric matrices An n n

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Nina Balcan] slide 1 Goals for the lecture you should understand

More information

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning

Tutorial: PART 2. Online Convex Optimization, A Game- Theoretic Approach to Learning Tutorial: PART 2 Online Convex Optimization, A Game- Theoretic Approach to Learning Elad Hazan Princeton University Satyen Kale Yahoo Research Exploiting curvature: logarithmic regret Logarithmic regret

More information

Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection

Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection Koji Tsuda, Gunnar Rätsch and Manfred K. Warmuth Max Planck Institute for Biological Cybernetics Spemannstr. 38, 72076

More information

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Principal Component Analysis (PCA) Additional reading can be found from non-assessed exercises (week 8) in this course unit teaching page. Textbooks: Sect. 6.3 in [1] and Ch. 12 in [2] Outline Introduction

More information

Subsampling for Ridge Regression via Regularized Volume Sampling

Subsampling for Ridge Regression via Regularized Volume Sampling Subsampling for Ridge Regression via Regularized Volume Sampling Micha l Dereziński and Manfred Warmuth University of California at Santa Cruz AISTATS 18, 4-9-18 1 / 22 Linear regression y x 2 / 22 Optimal

More information

A PROJECT SUMMARY A 1 B TABLE OF CONTENTS B 1

A PROJECT SUMMARY A 1 B TABLE OF CONTENTS B 1 A PROJECT SUMMARY There has been a recent revolution in machine learning based on the following simple idea. Instead of using for example a complicated neural net as your hypotheses class, map the instances

More information

Data Mining and Analysis: Fundamental Concepts and Algorithms

Data Mining and Analysis: Fundamental Concepts and Algorithms Data Mining and Analysis: Fundamental Concepts and Algorithms dataminingbook.info Mohammed J. Zaki 1 Wagner Meira Jr. 2 1 Department of Computer Science Rensselaer Polytechnic Institute, Troy, NY, USA

More information

Principal Components Analysis (PCA)

Principal Components Analysis (PCA) Principal Components Analysis (PCA) Principal Components Analysis (PCA) a technique for finding patterns in data of high dimension Outline:. Eigenvectors and eigenvalues. PCA: a) Getting the data b) Centering

More information

1 Principal Components Analysis

1 Principal Components Analysis Lecture 3 and 4 Sept. 18 and Sept.20-2006 Data Visualization STAT 442 / 890, CM 462 Lecture: Ali Ghodsi 1 Principal Components Analysis Principal components analysis (PCA) is a very popular technique for

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2 MA 575 Linear Models: Cedric E. Ginestet, Boston University Regularization: Ridge Regression and Lasso Week 14, Lecture 2 1 Ridge Regression Ridge regression and the Lasso are two forms of regularized

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

Linear Systems. Class 27. c 2008 Ron Buckmire. TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5.4

Linear Systems. Class 27. c 2008 Ron Buckmire. TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5.4 Linear Systems Math Spring 8 c 8 Ron Buckmire Fowler 9 MWF 9: am - :5 am http://faculty.oxy.edu/ron/math//8/ Class 7 TITLE Projection Matrices and Orthogonal Diagonalization CURRENT READING Poole 5. Summary

More information

What is Principal Component Analysis?

What is Principal Component Analysis? What is Principal Component Analysis? Principal component analysis (PCA) Reduce the dimensionality of a data set by finding a new set of variables, smaller than the original set of variables Retains most

More information

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto

Unsupervised Learning Techniques Class 07, 1 March 2006 Andrea Caponnetto Unsupervised Learning Techniques 9.520 Class 07, 1 March 2006 Andrea Caponnetto About this class Goal To introduce some methods for unsupervised learning: Gaussian Mixtures, K-Means, ISOMAP, HLLE, Laplacian

More information

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent

Unsupervised Machine Learning and Data Mining. DS 5230 / DS Fall Lecture 7. Jan-Willem van de Meent Unsupervised Machine Learning and Data Mining DS 5230 / DS 4420 - Fall 2018 Lecture 7 Jan-Willem van de Meent DIMENSIONALITY REDUCTION Borrowing from: Percy Liang (Stanford) Dimensionality Reduction Goal:

More information

Maximum variance formulation

Maximum variance formulation 12.1. Principal Component Analysis 561 Figure 12.2 Principal component analysis seeks a space of lower dimensionality, known as the principal subspace and denoted by the magenta line, such that the orthogonal

More information

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University FEATURE EXPANSIONS FEATURE EXPANSIONS

More information

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision)

CS4495/6495 Introduction to Computer Vision. 8B-L2 Principle Component Analysis (and its use in Computer Vision) CS4495/6495 Introduction to Computer Vision 8B-L2 Principle Component Analysis (and its use in Computer Vision) Wavelength 2 Wavelength 2 Principal Components Principal components are all about the directions

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Nonlinear Dimensionality Reduction

Nonlinear Dimensionality Reduction Nonlinear Dimensionality Reduction Piyush Rai CS5350/6350: Machine Learning October 25, 2011 Recap: Linear Dimensionality Reduction Linear Dimensionality Reduction: Based on a linear projection of the

More information

Manfred K. Warmuth - UCSC S.V.N. Vishwanathan - Purdue & Microsoft Research. Updated: March 23, Warmuth (UCSC) ICML 09 Boosting Tutorial 1 / 62

Manfred K. Warmuth - UCSC S.V.N. Vishwanathan - Purdue & Microsoft Research. Updated: March 23, Warmuth (UCSC) ICML 09 Boosting Tutorial 1 / 62 Updated: March 23, 2010 Warmuth (UCSC) ICML 09 Boosting Tutorial 1 / 62 ICML 2009 Tutorial Survey of Boosting from an Optimization Perspective Part I: Entropy Regularized LPBoost Part II: Boosting from

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Laurenz Wiskott Institute for Theoretical Biology Humboldt-University Berlin Invalidenstraße 43 D-10115 Berlin, Germany 11 March 2004 1 Intuition Problem Statement Experimental

More information

Lecture 7 Spectral methods

Lecture 7 Spectral methods CSE 291: Unsupervised learning Spring 2008 Lecture 7 Spectral methods 7.1 Linear algebra review 7.1.1 Eigenvalues and eigenvectors Definition 1. A d d matrix M has eigenvalue λ if there is a d-dimensional

More information

CSC411: Final Review. James Lucas & David Madras. December 3, 2018

CSC411: Final Review. James Lucas & David Madras. December 3, 2018 CSC411: Final Review James Lucas & David Madras December 3, 2018 Agenda 1. A brief overview 2. Some sample questions Basic ML Terminology The final exam will be on the entire course; however, it will be

More information

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to:

System 1 (last lecture) : limited to rigidly structured shapes. System 2 : recognition of a class of varying shapes. Need to: System 2 : Modelling & Recognising Modelling and Recognising Classes of Classes of Shapes Shape : PDM & PCA All the same shape? System 1 (last lecture) : limited to rigidly structured shapes System 2 :

More information

Principal components analysis COMS 4771

Principal components analysis COMS 4771 Principal components analysis COMS 4771 1. Representation learning Useful representations of data Representation learning: Given: raw feature vectors x 1, x 2,..., x n R d. Goal: learn a useful feature

More information

MLCC 2015 Dimensionality Reduction and PCA

MLCC 2015 Dimensionality Reduction and PCA MLCC 2015 Dimensionality Reduction and PCA Lorenzo Rosasco UNIGE-MIT-IIT June 25, 2015 Outline PCA & Reconstruction PCA and Maximum Variance PCA and Associated Eigenproblem Beyond the First Principal Component

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Approximate Kernel PCA with Random Features

Approximate Kernel PCA with Random Features Approximate Kernel PCA with Random Features (Computational vs. Statistical Tradeoff) Bharath K. Sriperumbudur Department of Statistics, Pennsylvania State University Journées de Statistique Paris May 28,

More information

Interpolation via Barycentric Coordinates

Interpolation via Barycentric Coordinates Interpolation via Barycentric Coordinates Pierre Alliez Inria Some material from D. Anisimov Outline Barycenter Convexity Barycentric coordinates For Simplices For point sets Inverse distance (Shepard)

More information

A Quick Tour of Linear Algebra and Optimization for Machine Learning

A Quick Tour of Linear Algebra and Optimization for Machine Learning A Quick Tour of Linear Algebra and Optimization for Machine Learning Masoud Farivar January 8, 2015 1 / 28 Outline of Part I: Review of Basic Linear Algebra Matrices and Vectors Matrix Multiplication Operators

More information

Matrix Vector Products

Matrix Vector Products We covered these notes in the tutorial sessions I strongly recommend that you further read the presented materials in classical books on linear algebra Please make sure that you understand the proofs and

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Week 2: Latent Variable Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College

More information

Immediate Reward Reinforcement Learning for Projective Kernel Methods

Immediate Reward Reinforcement Learning for Projective Kernel Methods ESANN'27 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), 25-27 April 27, d-side publi., ISBN 2-9337-7-2. Immediate Reward Reinforcement Learning for Projective Kernel Methods

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Linear Algebra Practice Problems Page of 7 Linear Algebra Practice Problems These problems cover Chapters 4, 5, 6, and 7 of Elementary Linear Algebra, 6th ed, by Ron Larson and David Falvo (ISBN-3 = 978--68-78376-2,

More information

Spectral Regularization

Spectral Regularization Spectral Regularization Lorenzo Rosasco 9.520 Class 07 February 27, 2008 About this class Goal To discuss how a class of regularization methods originally designed for solving ill-posed inverse problems,

More information

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University

Lecture 24: Principal Component Analysis. Aykut Erdem May 2016 Hacettepe University Lecture 4: Principal Component Analysis Aykut Erdem May 016 Hacettepe University This week Motivation PCA algorithms Applications PCA shortcomings Autoencoders Kernel PCA PCA Applications Data Visualization

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

Math 312 Final Exam Jerry L. Kazdan May 5, :00 2:00

Math 312 Final Exam Jerry L. Kazdan May 5, :00 2:00 Math 32 Final Exam Jerry L. Kazdan May, 204 2:00 2:00 Directions This exam has three parts. Part A has shorter questions, (6 points each), Part B has 6 True/False questions ( points each), and Part C has

More information

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis Massimiliano Pontil 1 Today s plan SVD and principal component analysis (PCA) Connection

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

1 Invariant subspaces

1 Invariant subspaces MATH 2040 Linear Algebra II Lecture Notes by Martin Li Lecture 8 Eigenvalues, eigenvectors and invariant subspaces 1 In previous lectures we have studied linear maps T : V W from a vector space V to another

More information

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26 Principal Component Analysis Brett Bernstein CDS at NYU April 25, 2017 Brett Bernstein (CDS at NYU) Lecture 13 April 25, 2017 1 / 26 Initial Question Intro Question Question Let S R n n be symmetric. 1

More information

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 7-8pm in 117 MacMillan What will be covered The exam will cover material from the lectures

More information

Bregman Divergences. Barnabás Póczos. RLAI Tea Talk UofA, Edmonton. Aug 5, 2008

Bregman Divergences. Barnabás Póczos. RLAI Tea Talk UofA, Edmonton. Aug 5, 2008 Bregman Divergences Barnabás Póczos RLAI Tea Talk UofA, Edmonton Aug 5, 2008 Contents Bregman Divergences Bregman Matrix Divergences Relation to Exponential Family Applications Definition Properties Generalization

More information

Regularization via Spectral Filtering

Regularization via Spectral Filtering Regularization via Spectral Filtering Lorenzo Rosasco MIT, 9.520 Class 7 About this class Goal To discuss how a class of regularization methods originally designed for solving ill-posed inverse problems,

More information

Machine Learning - MT & 14. PCA and MDS

Machine Learning - MT & 14. PCA and MDS Machine Learning - MT 2016 13 & 14. PCA and MDS Varun Kanade University of Oxford November 21 & 23, 2016 Announcements Sheet 4 due this Friday by noon Practical 3 this week (continue next week if necessary)

More information

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs

Ma/CS 6b Class 23: Eigenvalues in Regular Graphs Ma/CS 6b Class 3: Eigenvalues in Regular Graphs By Adam Sheffer Recall: The Spectrum of a Graph Consider a graph G = V, E and let A be the adjacency matrix of G. The eigenvalues of G are the eigenvalues

More information

https://goo.gl/kfxweg KYOTO UNIVERSITY Statistical Machine Learning Theory Sparsity Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT OF INTELLIGENCE SCIENCE AND TECHNOLOGY 1 KYOTO UNIVERSITY Topics:

More information

1 Feature Vectors and Time Series

1 Feature Vectors and Time Series PCA, SVD, LSI, and Kernel PCA 1 Feature Vectors and Time Series We now consider a sample x 1,..., x of objects (not necessarily vectors) and a feature map Φ such that for any object x we have that Φ(x)

More information

Lecture 1 and 2: Random Spanning Trees

Lecture 1 and 2: Random Spanning Trees Recent Advances in Approximation Algorithms Spring 2015 Lecture 1 and 2: Random Spanning Trees Lecturer: Shayan Oveis Gharan March 31st Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Principal Component Analysis. Applied Multivariate Statistics Spring 2012

Principal Component Analysis. Applied Multivariate Statistics Spring 2012 Principal Component Analysis Applied Multivariate Statistics Spring 2012 Overview Intuition Four definitions Practical examples Mathematical example Case study 2 PCA: Goals Goal 1: Dimension reduction

More information

The Jordan Normal Form and its Applications

The Jordan Normal Form and its Applications The and its Applications Jeremy IMPACT Brigham Young University A square matrix A is a linear operator on {R, C} n. A is diagonalizable if and only if it has n linearly independent eigenvectors. What happens

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

Probabilistic Latent Semantic Analysis

Probabilistic Latent Semantic Analysis Probabilistic Latent Semantic Analysis Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr

More information

Linear Regression and Its Applications

Linear Regression and Its Applications Linear Regression and Its Applications Predrag Radivojac October 13, 2014 Given a data set D = {(x i, y i )} n the objective is to learn the relationship between features and the target. We usually start

More information

Background Mathematics (2/2) 1. David Barber

Background Mathematics (2/2) 1. David Barber Background Mathematics (2/2) 1 David Barber University College London Modified by Samson Cheung (sccheung@ieee.org) 1 These slides accompany the book Bayesian Reasoning and Machine Learning. The book and

More information

2 Tikhonov Regularization and ERM

2 Tikhonov Regularization and ERM Introduction Here we discusses how a class of regularization methods originally designed to solve ill-posed inverse problems give rise to regularized learning algorithms. These algorithms are kernel methods

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Kernel Methods. Machine Learning A W VO

Kernel Methods. Machine Learning A W VO Kernel Methods Machine Learning A 708.063 07W VO Outline 1. Dual representation 2. The kernel concept 3. Properties of kernels 4. Examples of kernel machines Kernel PCA Support vector regression (Relevance

More information

Lecture 5 Supspace Tranformations Eigendecompositions, kernel PCA and CCA

Lecture 5 Supspace Tranformations Eigendecompositions, kernel PCA and CCA Lecture 5 Supspace Tranformations Eigendecompositions, kernel PCA and CCA Pavel Laskov 1 Blaine Nelson 1 1 Cognitive Systems Group Wilhelm Schickard Institute for Computer Science Universität Tübingen,

More information

1 Singular Value Decomposition and Principal Component

1 Singular Value Decomposition and Principal Component Singular Value Decomposition and Principal Component Analysis In these lectures we discuss the SVD and the PCA, two of the most widely used tools in machine learning. Principal Component Analysis (PCA)

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

Approximate Kernel Methods

Approximate Kernel Methods Lecture 3 Approximate Kernel Methods Bharath K. Sriperumbudur Department of Statistics, Pennsylvania State University Machine Learning Summer School Tübingen, 207 Outline Motivating example Ridge regression

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015

EE613 Machine Learning for Engineers. Kernel methods Support Vector Machines. jean-marc odobez 2015 EE613 Machine Learning for Engineers Kernel methods Support Vector Machines jean-marc odobez 2015 overview Kernel methods introductions and main elements defining kernels Kernelization of k-nn, K-Means,

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Notes for EE7C (Spring 08): Convex Optimization and Approximation Instructor: Moritz Hardt Email: hardt+ee7c@berkeley.edu Graduate Instructor: Max Simchowitz Email: msimchow+ee7c@berkeley.edu October

More information

Preprocessing & dimensionality reduction

Preprocessing & dimensionality reduction Introduction to Data Mining Preprocessing & dimensionality reduction CPSC/AMTH 445a/545a Guy Wolf guy.wolf@yale.edu Yale University Fall 2016 CPSC 445 (Guy Wolf) Dimensionality reduction Yale - Fall 2016

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 6 1 / 22 Overview

More information