Bregman Divergences. Barnabás Póczos. RLAI Tea Talk UofA, Edmonton. Aug 5, 2008

Size: px
Start display at page:

Download "Bregman Divergences. Barnabás Póczos. RLAI Tea Talk UofA, Edmonton. Aug 5, 2008"

Transcription

1 Bregman Divergences Barnabás Póczos RLAI Tea Talk UofA, Edmonton Aug 5, 2008

2 Contents Bregman Divergences Bregman Matrix Divergences Relation to Exponential Family Applications Definition Properties Generalization of PCA to Exponential Family Generalized2 Linear2 Models Clustering / Coclustering with Bregman Divergences Generalized Nonnegative Matrix Factorization Conclusion 2

3 Bregman Divergences (Euclidean distance) 2 Squared Euclidean distance is a Bregman divergence 3 (upcoming figs are borrowed from Dhillon)

4 Bregman Divergences (KL-divergence) Generalized Relative Entropy (also called generalized KL-divergence) is another Bregman divergence 4

5 Bregman Divergences (Itakura-Saito) Itakura-Saito distance is another Bregman divergence (used in signal processing, also known as Burg entropy) 5

6 Examples of Bregman Divergences 6

7 Properties of the Bregman Divergences z γ a b y x c Euclidean special case: 7

8 Properties of the Bregman Divergences Nearness in Bregman divergence: the Bregman projection of y onto a convex set Ω. Ω When Ω is affine set, the Pythagoras theorem holds with equality. Generalized Pythagoras theorem: Opposite to triangle inequality: 8

9 (Regular) Exponential Families 9

10 Gaussian Distribution Note: Gaussian distribution $ Squared Loss from the expected value µ 10

11 Poisson Distribution The Poisson distribution: The Poisson distribution is a member of exponential family. Its expected value µ=λ. Is there a Divergence associated with the Poisson distribution? Yes! p(x) can be rewritten as Implication: Poisson distribution $ Relative Entropy Implication: Poisson distribution $ Relative Entropy 11

12 Exponential Distribution The Exponential distribution: The Exponential distribution is a member of exponential family. Its expected value µ=1/λ. Is there a Divergence associated with the Exponential distribution? Yes! p(x) can be rewritten as Implication: Exponential distribution $ Itakura-Saito Distribution 12

13 Fenchel Conjugate Defintion: The Fenchel conjugate of function f is defined as: Properties of the Fenchel conjugate: 13

14 Bregman Divergences and the Exponential Family Bijection Theorem 14

15 15

16 Bregman Matrix Divergences An immediate solution would be the componentwise sum of Bregman divergences. However, we can get more interesting divergences using the general definition. 16

17 Bregman Divergences of Hermitian matrices A complex square matrix A is Hermitian, if A = A*. The eigenvalues of a Hermitian matrix are real. Let 17

18 Burg Matrix Divergence (Logdet divergence) 18

19 Von Neumann Matrix Divergence 19

20 Applications, Matrix inequalities Hadamard inequality: Proof: Another inequality: Proof: What is more, here we can arbitrarily permute the eigenvalues! 20

21 Applications of Bregman divergences Clustering Co-clustering Partition the columns of a data matrix, so that similar columns are in the same partition (Banerjee et al. JMLR, 2005) Simultaneously partition both the rows and columns of a data matrix (Banerjee et al. JMLR, 2007) Low-Rank Matrix Approximation Exponential Family PCA (Collins et al, NIPS 2001) Non-negative matrix factorization (Dhillon & Sra, NIPS 2005) Generalized2 Linear2 Models POMDP (Gordon, NIPS,2002) (Gordon, NIPS,2002) Online learning (Warmuth, COLT2000) Metric Nearness Problem Given a matrix of distances, find the nearest matrix of distances such that all distances satisfy the triangle inequality (Dhillon et al, 2004) 21

22 Generalized2 Linear2 Models (GL)2M Goal: GLM Special cases: PCA, SVD Exp-family PCA Infomax ICA Linear regression Nonnegative matrix factorization 22

23 What is a good loss function? Euclidean metric as a loss function: instead of 1000 predicting 1010 is just as bad as predicting 3 instead of -7 Sigmoid regression exp many local minima in dim The log loss function is convex in θ! We say f(z) and the log loss match each other. 23

24 Searching for matching loss 24

25 Searching for matching loss 25

26 Special cases Thus, Log loss, entropic loss Other special cases: 26

27 Logistic regression 27

28 (GL)2M algorithm GLM goal: GLM cost: (GL)2M goal: (GL)2M cost: The (GL)2M algorithm, fix point equations:: 28

29 Robot Navigation A corridor in the CMU CS building with initial belief: (it doesn t know which end) Belief space = R states. (275 positons x 2 orientation) Robot can: - sense both side walls - compute an accurate estimate of its lateral position Robot cannot: - resolve its position along the corridor, unless its near an observable feature - tell whether its pointing left or right 29

30 Robot Navigation The belief space is large, but sparse and compressible. The belief vectors lie on a nonlinear manifold. This method can be used for planning, too. They factored a matrix of 400 beliefs using feature space ranks l=3,4,5. f(z)=exp(z), H*=10-12 V 2, G*= U 2+ (U) A belief vector using belief tracker algorithm Reconstructions using l=3,4,5 ranks With PCA, they need 85 dimensions to match (GL)^2M rank-5 decomposition and 25 dimension for the rank-3 decomposition 30

31 Nonnegative matrix factorization Goal: Cost functions: Algorithms: 31

32 Nonnegative matrix factorization, results With sparse constraints Without constraints CBCL face image database P. Hoyer, sparse NMF algorithm. 32

33 Exponential Family PCA PCA 1 PCA 2 Cost function Special case 33

34 Exponential family PCA, Results 34

35 Clustering with Bregman Divergences 35

36 The Original Problem of Bregman 36

37 Conclusion Introduced the Bregman divergence Relationship to Exponential family Generalization to matrices Applications: Matrix inequalities Exponential family PCA NMF GLM Clustering / Biclustering Online learning Bregman divergences propose new algorithms Lots of existing algorithms turn to be special case Matching loss function can help to decrease the number of local minima 37

38 References Matrix Nearness Problems with Bregman Divergences I. S. Dhillon and J. A. Tropp SIAM Journal on Matrix Analysis and Applications, vol. 29, no. 4, pages , November A Generalized Maximum Entropy Approach to Bregman Co-Clustering and Matrix Approximations A. Banerjee, I. S. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha Journal of Machine Learning Research (JMLR), vol. 8, pages , August Clustering with Bregman Divergences A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh Journal of Machine Learning Research (JMLR), vol. 6, pages , October A Generalized Maximum Entropy Approach to Bregman Co-Clustering and Matrix Approximations A. Banerjee, I. S. Dhillon, J. Ghosh, S. Merugu, and D. S. Modha Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pages , August Clustering with Bregman Divergences A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh Proceedings of the Fourth SIAM International Conference on Data Mining, pages , April 2004 Nonnegative Matrix Approximation: Algorithms and Applications S. Sra and I. S. Dhillon UTCS Technical Report #TR-06-27, June 2006 Generalized Nonnegative Matrix Approximations with Bregman Divergences I. S. Dhillon and S. Sra NIPS, pages , Vancouver Canada, December (Also appears as UTCS Technical Report #TR-05-31, June 1,

39 PPT slides Irina Rish Bregman Divergences in Clustering and Dimensionality reduction Manfred K. Warmuth COLT2000 Inderjit S. Dhillon Machine Learning with Bregman Divergences Low-Rank Kernel Learning with Bregman Matrix Divergences Matrix Nearness Problems Using Bregman Divergences Information Theoretic Clustering, Co-clustering and Matrix Approximations 39

Bregman Divergences for Data Mining Meta-Algorithms

Bregman Divergences for Data Mining Meta-Algorithms p.1/?? Bregman Divergences for Data Mining Meta-Algorithms Joydeep Ghosh University of Texas at Austin ghosh@ece.utexas.edu Reflects joint work with Arindam Banerjee, Srujana Merugu, Inderjit Dhillon,

More information

Kernel Learning with Bregman Matrix Divergences

Kernel Learning with Bregman Matrix Divergences Kernel Learning with Bregman Matrix Divergences Inderjit S. Dhillon The University of Texas at Austin Workshop on Algorithms for Modern Massive Data Sets Stanford University and Yahoo! Research June 22,

More information

Relative Loss Bounds for Multidimensional Regression Problems

Relative Loss Bounds for Multidimensional Regression Problems Relative Loss Bounds for Multidimensional Regression Problems Jyrki Kivinen and Manfred Warmuth Presented by: Arindam Banerjee A Single Neuron For a training example (x, y), x R d, y [0, 1] learning solves

More information

A Generalized Maximum Entropy Approach to Bregman Co-clustering and Matrix Approximation

A Generalized Maximum Entropy Approach to Bregman Co-clustering and Matrix Approximation A Generalized Maximum Entropy Approach to Bregman Co-clustering and Matrix Approximation ABSTRACT Arindam Banerjee Inderjit Dhillon Joydeep Ghosh Srujana Merugu University of Texas Austin, TX, USA Co-clustering

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Saniv Kumar, Google Research, NY EECS-6898, Columbia University - Fall, 010 Saniv Kumar 9/13/010 EECS6898 Large Scale Machine Learning 1 Curse of Dimensionality Gaussian Mixture Models

More information

Generalized Nonnegative Matrix Approximations with Bregman Divergences

Generalized Nonnegative Matrix Approximations with Bregman Divergences Generalized Nonnegative Matrix Approximations with Bregman Divergences Inderjit S. Dhillon Suvrit Sra Dept. of Computer Sciences The Univ. of Texas at Austin Austin, TX 78712. {inderjit,suvrit}@cs.utexas.edu

More information

MULTIPLICATIVE ALGORITHM FOR CORRENTROPY-BASED NONNEGATIVE MATRIX FACTORIZATION

MULTIPLICATIVE ALGORITHM FOR CORRENTROPY-BASED NONNEGATIVE MATRIX FACTORIZATION MULTIPLICATIVE ALGORITHM FOR CORRENTROPY-BASED NONNEGATIVE MATRIX FACTORIZATION Ehsan Hosseini Asl 1, Jacek M. Zurada 1,2 1 Department of Electrical and Computer Engineering University of Louisville, Louisville,

More information

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang.

Machine Learning. CUNY Graduate Center, Spring Lectures 11-12: Unsupervised Learning 1. Professor Liang Huang. Machine Learning CUNY Graduate Center, Spring 2013 Lectures 11-12: Unsupervised Learning 1 (Clustering: k-means, EM, mixture models) Professor Liang Huang huang@cs.qc.cuny.edu http://acl.cs.qc.edu/~lhuang/teaching/machine-learning

More information

A Generalization of Principal Component Analysis to the Exponential Family

A Generalization of Principal Component Analysis to the Exponential Family A Generalization of Principal Component Analysis to the Exponential Family Michael Collins Sanjoy Dasgupta Robert E. Schapire AT&T Labs Research 8 Park Avenue, Florham Park, NJ 7932 mcollins, dasgupta,

More information

Riemannian Metric Learning for Symmetric Positive Definite Matrices

Riemannian Metric Learning for Symmetric Positive Definite Matrices CMSC 88J: Linear Subspaces and Manifolds for Computer Vision and Machine Learning Riemannian Metric Learning for Symmetric Positive Definite Matrices Raviteja Vemulapalli Guide: Professor David W. Jacobs

More information

A Generalized Maximum Entropy Approach to Bregman Co-clustering and Matrix Approximation

A Generalized Maximum Entropy Approach to Bregman Co-clustering and Matrix Approximation Bregman Co-clustering and Matrix Approximation A Generalized Maximum Entropy Approach to Bregman Co-clustering and Matrix Approximation Arindam Banerjee Department of Computer Science and Engg, University

More information

A Geometric View of Conjugate Priors

A Geometric View of Conjugate Priors Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence A Geometric View of Conjugate Priors Arvind Agarwal Department of Computer Science University of Maryland College

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 02-01-2018 Biomedical data are usually high-dimensional Number of samples (n) is relatively small whereas number of features (p) can be large Sometimes p>>n Problems

More information

arxiv: v1 [cs.lg] 1 May 2010

arxiv: v1 [cs.lg] 1 May 2010 A Geometric View of Conjugate Priors Arvind Agarwal and Hal Daumé III School of Computing, University of Utah, Salt Lake City, Utah, 84112 USA {arvind,hal}@cs.utah.edu arxiv:1005.0047v1 [cs.lg] 1 May 2010

More information

Online Kernel PCA with Entropic Matrix Updates

Online Kernel PCA with Entropic Matrix Updates Dima Kuzmin Manfred K. Warmuth Computer Science Department, University of California - Santa Cruz dima@cse.ucsc.edu manfred@cse.ucsc.edu Abstract A number of updates for density matrices have been developed

More information

A Geometric View of Conjugate Priors

A Geometric View of Conjugate Priors A Geometric View of Conjugate Priors Arvind Agarwal and Hal Daumé III School of Computing, University of Utah, Salt Lake City, Utah, 84112 USA {arvind,hal}@cs.utah.edu Abstract. In Bayesian machine learning,

More information

Online Kernel PCA with Entropic Matrix Updates

Online Kernel PCA with Entropic Matrix Updates Online Kernel PCA with Entropic Matrix Updates Dima Kuzmin Manfred K. Warmuth University of California - Santa Cruz ICML 2007, Corvallis, Oregon April 23, 2008 D. Kuzmin, M. Warmuth (UCSC) Online Kernel

More information

cross-language retrieval (by concatenate features of different language in X and find co-shared U). TOEFL/GRE synonym in the same way.

cross-language retrieval (by concatenate features of different language in X and find co-shared U). TOEFL/GRE synonym in the same way. 10-708: Probabilistic Graphical Models, Spring 2015 22 : Optimization and GMs (aka. LDA, Sparse Coding, Matrix Factorization, and All That ) Lecturer: Yaoliang Yu Scribes: Yu-Xiang Wang, Su Zhou 1 Introduction

More information

Principal Component Analysis

Principal Component Analysis Machine Learning Michaelmas 2017 James Worrell Principal Component Analysis 1 Introduction 1.1 Goals of PCA Principal components analysis (PCA) is a dimensionality reduction technique that can be used

More information

Information Geometry of Positive Measures and Positive-Definite Matrices: Decomposable Dually Flat Structure

Information Geometry of Positive Measures and Positive-Definite Matrices: Decomposable Dually Flat Structure Entropy 014, 16, 131-145; doi:10.3390/e1604131 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Information Geometry of Positive Measures and Positive-Definite Matrices: Decomposable

More information

MATRIX NEARNESS PROBLEMS WITH BREGMAN DIVERGENCES

MATRIX NEARNESS PROBLEMS WITH BREGMAN DIVERGENCES MATRIX NEARNESS PROBLEMS WITH BREGMAN DIVERGENCES INDERJIT S. DHILLON AND JOEL A. TROPP Abstract. This paper discusses a new class of matrix nearness problems that measure approximation error using a directed

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

The Free Matrix Lunch

The Free Matrix Lunch The Free Matrix Lunch Wouter M. Koolen Wojciech Kot lowski Manfred K. Warmuth Tuesday 24 th April, 2012 Koolen, Kot lowski, Warmuth (RHUL) The Free Matrix Lunch Tuesday 24 th April, 2012 1 / 26 Introduction

More information

Journée Interdisciplinaire Mathématiques Musique

Journée Interdisciplinaire Mathématiques Musique Journée Interdisciplinaire Mathématiques Musique Music Information Geometry Arnaud Dessein 1,2 and Arshia Cont 1 1 Institute for Research and Coordination of Acoustics and Music, Paris, France 2 Japanese-French

More information

Inderjit Dhillon The University of Texas at Austin

Inderjit Dhillon The University of Texas at Austin Inderjit Dhillon The University of Texas at Austin ( Universidad Carlos III de Madrid; 15 th June, 2012) (Based on joint work with J. Brickell, S. Sra, J. Tropp) Introduction 2 / 29 Notion of distance

More information

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang

Matrix Factorization & Latent Semantic Analysis Review. Yize Li, Lanbo Zhang Matrix Factorization & Latent Semantic Analysis Review Yize Li, Lanbo Zhang Overview SVD in Latent Semantic Indexing Non-negative Matrix Factorization Probabilistic Latent Semantic Indexing Vector Space

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Machine Learning CSE546 Carlos Guestrin University of Washington November 13, 2014 1 E.M.: The General Case E.M. widely used beyond mixtures of Gaussians The recipe is the same

More information

Non-negative matrix factorization and term structure of interest rates

Non-negative matrix factorization and term structure of interest rates Non-negative matrix factorization and term structure of interest rates Hellinton H. Takada and Julio M. Stern Citation: AIP Conference Proceedings 1641, 369 (2015); doi: 10.1063/1.4906000 View online:

More information

Improving Response Prediction for Dyadic Data

Improving Response Prediction for Dyadic Data Improving Response Prediction for Dyadic Data Stat 598T Statistical Network Analysis Project Report Nik Tuzov* April 2008 Keywords: Dyadic data, Co-clustering, PDLF model, Neural networks, Unsupervised

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Deriving Principal Component Analysis (PCA)

Deriving Principal Component Analysis (PCA) -0 Mathematical Foundations for Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Deriving Principal Component Analysis (PCA) Matt Gormley Lecture 11 Oct.

More information

Transductive De-Noising and Dimensionality Reduction using Total Bregman Regression

Transductive De-Noising and Dimensionality Reduction using Total Bregman Regression Transductive De-Noising and Dimensionality Reduction using Total Bregman Regression Sreangsu Acharyya niversity Of Texas at Austin Electrical Engineering Abstract Our goal on one hand is to use labels

More information

Mirror Descent for Metric Learning. Gautam Kunapuli Jude W. Shavlik

Mirror Descent for Metric Learning. Gautam Kunapuli Jude W. Shavlik Mirror Descent for Metric Learning Gautam Kunapuli Jude W. Shavlik And what do we have here? We have a metric learning algorithm that uses composite mirror descent (COMID): Unifying framework for metric

More information

Preserving Privacy in Data Mining using Data Distortion Approach

Preserving Privacy in Data Mining using Data Distortion Approach Preserving Privacy in Data Mining using Data Distortion Approach Mrs. Prachi Karandikar #, Prof. Sachin Deshpande * # M.E. Comp,VIT, Wadala, University of Mumbai * VIT Wadala,University of Mumbai 1. prachiv21@yahoo.co.in

More information

Functional Bregman Divergence and Bayesian Estimation of Distributions Béla A. Frigyik, Santosh Srivastava, and Maya R. Gupta

Functional Bregman Divergence and Bayesian Estimation of Distributions Béla A. Frigyik, Santosh Srivastava, and Maya R. Gupta 5130 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 11, NOVEMBER 2008 Functional Bregman Divergence and Bayesian Estimation of Distributions Béla A. Frigyik, Santosh Srivastava, and Maya R. Gupta

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

EUSIPCO

EUSIPCO EUSIPCO 2013 1569741067 CLUSERING BY NON-NEGAIVE MARIX FACORIZAION WIH INDEPENDEN PRINCIPAL COMPONEN INIIALIZAION Liyun Gong 1, Asoke K. Nandi 2,3 1 Department of Electrical Engineering and Electronics,

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds

Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds Orthogonal Nonnegative Matrix Factorization: Multiplicative Updates on Stiefel Manifolds Jiho Yoo and Seungjin Choi Department of Computer Science Pohang University of Science and Technology San 31 Hyoja-dong,

More information

Improved Bounds on the Dot Product under Random Projection and Random Sign Projection

Improved Bounds on the Dot Product under Random Projection and Random Sign Projection Improved Bounds on the Dot Product under Random Projection and Random Sign Projection Ata Kabán School of Computer Science The University of Birmingham Birmingham B15 2TT, UK http://www.cs.bham.ac.uk/

More information

Discriminative Direction for Kernel Classifiers

Discriminative Direction for Kernel Classifiers Discriminative Direction for Kernel Classifiers Polina Golland Artificial Intelligence Lab Massachusetts Institute of Technology Cambridge, MA 02139 polina@ai.mit.edu Abstract In many scientific and engineering

More information

Accelerated Training of Max-Margin Markov Networks with Kernels

Accelerated Training of Max-Margin Markov Networks with Kernels Accelerated Training of Max-Margin Markov Networks with Kernels Xinhua Zhang University of Alberta Alberta Innovates Centre for Machine Learning (AICML) Joint work with Ankan Saha (Univ. of Chicago) and

More information

ONP-MF: An Orthogonal Nonnegative Matrix Factorization Algorithm with Application to Clustering

ONP-MF: An Orthogonal Nonnegative Matrix Factorization Algorithm with Application to Clustering ONP-MF: An Orthogonal Nonnegative Matrix Factorization Algorithm with Application to Clustering Filippo Pompili 1, Nicolas Gillis 2, P.-A. Absil 2,andFrançois Glineur 2,3 1- University of Perugia, Department

More information

Advanced Introduction to Machine Learning CMU-10715

Advanced Introduction to Machine Learning CMU-10715 Advanced Introduction to Machine Learning CMU-10715 Independent Component Analysis Barnabás Póczos Independent Component Analysis 2 Independent Component Analysis Model original signals Observations (Mixtures)

More information

Non-negative Matrix Factorization: Algorithms, Extensions and Applications

Non-negative Matrix Factorization: Algorithms, Extensions and Applications Non-negative Matrix Factorization: Algorithms, Extensions and Applications Emmanouil Benetos www.soi.city.ac.uk/ sbbj660/ March 2013 Emmanouil Benetos Non-negative Matrix Factorization March 2013 1 / 25

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab Lecture 11-1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed

More information

Machine Learning (CSE 446): Learning as Minimizing Loss; Least Squares

Machine Learning (CSE 446): Learning as Minimizing Loss; Least Squares Machine Learning (CSE 446): Learning as Minimizing Loss; Least Squares Sham M Kakade c 2018 University of Washington cse446-staff@cs.washington.edu 1 / 13 Review 1 / 13 Alternate View of PCA: Minimizing

More information

Note on Algorithm Differences Between Nonnegative Matrix Factorization And Probabilistic Latent Semantic Indexing

Note on Algorithm Differences Between Nonnegative Matrix Factorization And Probabilistic Latent Semantic Indexing Note on Algorithm Differences Between Nonnegative Matrix Factorization And Probabilistic Latent Semantic Indexing 1 Zhong-Yuan Zhang, 2 Chris Ding, 3 Jie Tang *1, Corresponding Author School of Statistics,

More information

Online Nonnegative Matrix Factorization with General Divergences

Online Nonnegative Matrix Factorization with General Divergences Online Nonnegative Matrix Factorization with General Divergences Vincent Y. F. Tan (ECE, Mathematics, NUS) Joint work with Renbo Zhao (NUS) and Huan Xu (GeorgiaTech) IWCT, Shanghai Jiaotong University

More information

CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization

CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization CS264: Beyond Worst-Case Analysis Lecture #15: Topic Modeling and Nonnegative Matrix Factorization Tim Roughgarden February 28, 2017 1 Preamble This lecture fulfills a promise made back in Lecture #1,

More information

Non-Negative Matrix Factorization with Quasi-Newton Optimization

Non-Negative Matrix Factorization with Quasi-Newton Optimization Non-Negative Matrix Factorization with Quasi-Newton Optimization Rafal ZDUNEK, Andrzej CICHOCKI Laboratory for Advanced Brain Signal Processing BSI, RIKEN, Wako-shi, JAPAN Abstract. Non-negative matrix

More information

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center 1 Outline Part I - Applications Motivation and Introduction Patient similarity application Part II

More information

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina.

Approximation. Inderjit S. Dhillon Dept of Computer Science UT Austin. SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina. Using Quadratic Approximation Inderjit S. Dhillon Dept of Computer Science UT Austin SAMSI Massive Datasets Opening Workshop Raleigh, North Carolina Sept 12, 2012 Joint work with C. Hsieh, M. Sustik and

More information

CS Lecture 19. Exponential Families & Expectation Propagation

CS Lecture 19. Exponential Families & Expectation Propagation CS 6347 Lecture 19 Exponential Families & Expectation Propagation Discrete State Spaces We have been focusing on the case of MRFs over discrete state spaces Probability distributions over discrete spaces

More information

Lecture: Face Recognition and Feature Reduction

Lecture: Face Recognition and Feature Reduction Lecture: Face Recognition and Feature Reduction Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 Recap - Curse of dimensionality Assume 5000 points uniformly distributed in the

More information

The Bregman Variational Dual-Tree Framework

The Bregman Variational Dual-Tree Framework The Bregman Variational Dual-Tree Framework Saeed Amizadeh Intelligent Systems Program University of Pittsburgh Pittsburgh, PA 15213 Bo Thiesson Department of Computer Science Aalborg University Aalborg,

More information

Dimensionality Reduction with Generalized Linear Models

Dimensionality Reduction with Generalized Linear Models Dimensionality Reduction with Generalized Linear Models Mo Chen 1 Wei Li 1 Wei Zhang 2 Xiaogang Wang 1 1 Department of Electronic Engineering 2 Department of Information Engineering The Chinese University

More information

Unsupervised learning: beyond simple clustering and PCA

Unsupervised learning: beyond simple clustering and PCA Unsupervised learning: beyond simple clustering and PCA Liza Rebrova Self organizing maps (SOM) Goal: approximate data points in R p by a low-dimensional manifold Unlike PCA, the manifold does not have

More information

The Informativeness of k-means for Learning Mixture Models

The Informativeness of k-means for Learning Mixture Models The Informativeness of k-means for Learning Mixture Models Vincent Y. F. Tan (Joint work with Zhaoqiang Liu) National University of Singapore June 18, 2018 1/35 Gaussian distribution For F dimensions,

More information

Matrix Decomposition in Privacy-Preserving Data Mining JUN ZHANG DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF KENTUCKY

Matrix Decomposition in Privacy-Preserving Data Mining JUN ZHANG DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF KENTUCKY Matrix Decomposition in Privacy-Preserving Data Mining JUN ZHANG DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF KENTUCKY OUTLINE Why We Need Matrix Decomposition SVD (Singular Value Decomposition) NMF (Nonnegative

More information

Fast Bregman Divergence NMF using Taylor Expansion and Coordinate Descent

Fast Bregman Divergence NMF using Taylor Expansion and Coordinate Descent Fast Bregman Divergence NMF using Taylor Expansion and Coordinate Descent Liangda Li, Guy Lebanon, Haesun Park School of Computational Science and Engineering Georgia Institute of Technology Atlanta, GA

More information

Matrix factorization models for patterns beyond blocks. Pauli Miettinen 18 February 2016

Matrix factorization models for patterns beyond blocks. Pauli Miettinen 18 February 2016 Matrix factorization models for patterns beyond blocks 18 February 2016 What does a matrix factorization do?? A = U V T 2 For SVD that s easy! 3 Inner-product interpretation Element (AB) ij is the inner

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2017 CPSC 340: Machine Learning and Data Mining More PCA Fall 2017 Admin Assignment 4: Due Friday of next week. No class Monday due to holiday. There will be tutorials next week on MAP/PCA (except Monday).

More information

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien

Independent Component Analysis and Unsupervised Learning. Jen-Tzung Chien Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent voices Nonparametric likelihood

More information

Independent Component Analysis and Unsupervised Learning

Independent Component Analysis and Unsupervised Learning Independent Component Analysis and Unsupervised Learning Jen-Tzung Chien National Cheng Kung University TABLE OF CONTENTS 1. Independent Component Analysis 2. Case Study I: Speech Recognition Independent

More information

This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author s institution, sharing

More information

Fast Coordinate Descent methods for Non-Negative Matrix Factorization

Fast Coordinate Descent methods for Non-Negative Matrix Factorization Fast Coordinate Descent methods for Non-Negative Matrix Factorization Inderjit S. Dhillon University of Texas at Austin SIAM Conference on Applied Linear Algebra Valencia, Spain June 19, 2012 Joint work

More information

Must-read Material : Multimedia Databases and Data Mining. Indexing - Detailed outline. Outline. Faloutsos

Must-read Material : Multimedia Databases and Data Mining. Indexing - Detailed outline. Outline. Faloutsos Must-read Material 15-826: Multimedia Databases and Data Mining Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. Technical Report SAND2007-6702, Sandia National Laboratories,

More information

Relational Learning via Collective Matrix Factorization. June 2008 CMU-ML

Relational Learning via Collective Matrix Factorization. June 2008 CMU-ML Relational Learning via Collective Matrix Factorization Ajit P. Singh Geoffrey J. Gordon June 2008 CMU-ML-08-109 Relational Learning via Collective Matrix Factorization Ajit P. Singh Geoffrey J. Gordon

More information

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2018

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2018 CPSC 340: Machine Learning and Data Mining Sparse Matrix Factorization Fall 2018 Last Time: PCA with Orthogonal/Sequential Basis When k = 1, PCA has a scaling problem. When k > 1, have scaling, rotation,

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Some material on these is slides borrowed from Andrew Moore's excellent machine learning tutorials located at: http://www.cs.cmu.edu/~awm/tutorials/ Where Should We Draw the Line????

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Online Passive-Aggressive Algorithms

Online Passive-Aggressive Algorithms Online Passive-Aggressive Algorithms Koby Crammer Ofer Dekel Shai Shalev-Shwartz Yoram Singer School of Computer Science & Engineering The Hebrew University, Jerusalem 91904, Israel {kobics,oferd,shais,singer}@cs.huji.ac.il

More information

Big Data Analytics. Special Topics for Computer Science CSE CSE Jan 21

Big Data Analytics. Special Topics for Computer Science CSE CSE Jan 21 Big Data Analytics Special Topics for Computer Science CSE 09-001 CSE 09-00 Jan 1 Fei Wang Associate Professor Department of Computer Science and Engineering fei_wang@uconn.edu Project Rules Literature

More information

The Information Bottleneck Revisited or How to Choose a Good Distortion Measure

The Information Bottleneck Revisited or How to Choose a Good Distortion Measure The Information Bottleneck Revisited or How to Choose a Good Distortion Measure Peter Harremoës Centrum voor Wiskunde en Informatica PO 94079, 1090 GB Amsterdam The Nederlands PHarremoes@cwinl Naftali

More information

A Unified View of Matrix Factorization Models

A Unified View of Matrix Factorization Models A Unified View of Matrix Factorization Models Ajit P. Singh and Geoffrey J. Gordon Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213, USA, {ajit,ggordon}@cs.cmu.edu Abstract. We

More information

Introduction to Machine Learning

Introduction to Machine Learning 10-701 Introduction to Machine Learning PCA Slides based on 18-661 Fall 2018 PCA Raw data can be Complex, High-dimensional To understand a phenomenon we measure various related quantities If we knew what

More information

Collaborative Filtering Using Orthogonal Nonnegative Matrix Tri-factorization

Collaborative Filtering Using Orthogonal Nonnegative Matrix Tri-factorization Collaborative Filtering Using Orthogonal Nonnegative Matrix Tri-factorization Gang Chen 1,FeiWang 1, Changshui Zhang 2 State Key Laboratory of Intelligent Technologies and Systems Tsinghua University 1

More information

Star-Structured High-Order Heterogeneous Data Co-clustering based on Consistent Information Theory

Star-Structured High-Order Heterogeneous Data Co-clustering based on Consistent Information Theory Star-Structured High-Order Heterogeneous Data Co-clustering based on Consistent Information Theory Bin Gao Tie-an Liu Wei-ing Ma Microsoft Research Asia 4F Sigma Center No. 49 hichun Road Beijing 00080

More information

Part 2: Generalized output representations and structure

Part 2: Generalized output representations and structure Part 2: Generalized output representations and structure Dale Schuurmans University of Alberta Output transformation Output transformation What if targets y special? E.g. what if y nonnegative y 0 y probability

More information

Tailored Bregman Ball Trees for Effective Nearest Neighbors

Tailored Bregman Ball Trees for Effective Nearest Neighbors Tailored Bregman Ball Trees for Effective Nearest Neighbors Frank Nielsen 1 Paolo Piro 2 Michel Barlaud 2 1 Ecole Polytechnique, LIX, Palaiseau, France 2 CNRS / University of Nice-Sophia Antipolis, Sophia

More information

Approximate Principal Components Analysis of Large Data Sets

Approximate Principal Components Analysis of Large Data Sets Approximate Principal Components Analysis of Large Data Sets Daniel J. McDonald Department of Statistics Indiana University mypage.iu.edu/ dajmcdon April 27, 2016 Approximation-Regularization for Analysis

More information

Compressive Sensing, Low Rank models, and Low Rank Submatrix

Compressive Sensing, Low Rank models, and Low Rank Submatrix Compressive Sensing,, and Low Rank Submatrix NICTA Short Course 2012 yi.li@nicta.com.au http://users.cecs.anu.edu.au/~yili Sep 12, 2012 ver. 1.8 http://tinyurl.com/brl89pk Outline Introduction 1 Introduction

More information

Visual Tracking via Geometric Particle Filtering on the Affine Group with Optimal Importance Functions

Visual Tracking via Geometric Particle Filtering on the Affine Group with Optimal Importance Functions Monday, June 22 Visual Tracking via Geometric Particle Filtering on the Affine Group with Optimal Importance Functions Junghyun Kwon 1, Kyoung Mu Lee 1, and Frank C. Park 2 1 Department of EECS, 2 School

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

From Last Meeting. Studied Fisher Linear Discrimination. - Mathematics. - Point Cloud view. - Likelihood view. - Toy examples

From Last Meeting. Studied Fisher Linear Discrimination. - Mathematics. - Point Cloud view. - Likelihood view. - Toy examples From Last Meeting Studied Fisher Linear Discrimination - Mathematics - Point Cloud view - Likelihood view - Toy eamples - Etensions (e.g. Principal Discriminant Analysis) Polynomial Embedding Aizerman,

More information

Unsupervised Learning: K- Means & PCA

Unsupervised Learning: K- Means & PCA Unsupervised Learning: K- Means & PCA Unsupervised Learning Supervised learning used labeled data pairs (x, y) to learn a func>on f : X Y But, what if we don t have labels? No labels = unsupervised learning

More information

Information-Theoretic Metric Learning

Information-Theoretic Metric Learning Jason V. Davis Brian Kulis Prateek Jain Suvrit Sra Inderjit S. Dhillon Dept. of Computer Science, University of Texas at Austin, Austin, TX 7872 Abstract In this paper, we present an information-theoretic

More information

A geometric view of conjugate priors

A geometric view of conjugate priors Mach Learn (2010) 81: 99 113 DOI 10.1007/s10994-010-5203-x A geometric view of conjugate priors Arvind Agarwal Hal Daumé III Received: 30 April 2010 / Accepted: 20 June 2010 / Published online: 22 July

More information

Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology

Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology Neural Networks and Machine Learning research at the Laboratory of Computer and Information Science, Helsinki University of Technology Erkki Oja Department of Computer Science Aalto University, Finland

More information

c Springer, Reprinted with permission.

c Springer, Reprinted with permission. Zhijian Yuan and Erkki Oja. A FastICA Algorithm for Non-negative Independent Component Analysis. In Puntonet, Carlos G.; Prieto, Alberto (Eds.), Proceedings of the Fifth International Symposium on Independent

More information

CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu

CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu Feature engineering is hard 1. Extract informative features from domain knowledge

More information

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 7: Multiclass Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 7: Multiclass Classification Princeton University COS 495 Instructor: Yingyu Liang Example: image classification indoor Indoor outdoor Example: image classification (multiclass)

More information

Tensor intro 1. SIAM Rev., 51(3), Tensor Decompositions and Applications, Kolda, T.G. and Bader, B.W.,

Tensor intro 1. SIAM Rev., 51(3), Tensor Decompositions and Applications, Kolda, T.G. and Bader, B.W., Overview 1. Brief tensor introduction 2. Stein s lemma 3. Score and score matching for fitting models 4. Bringing it all together for supervised deep learning Tensor intro 1 Tensors are multidimensional

More information

Kernel Methods. Barnabás Póczos

Kernel Methods. Barnabás Póczos Kernel Methods Barnabás Póczos Outline Quick Introduction Feature space Perceptron in the feature space Kernels Mercer s theorem Finite domain Arbitrary domain Kernel families Constructing new kernels

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

Data Mining and Matrices

Data Mining and Matrices Data Mining and Matrices 08 Boolean Matrix Factorization Rainer Gemulla, Pauli Miettinen June 13, 2013 Outline 1 Warm-Up 2 What is BMF 3 BMF vs. other three-letter abbreviations 4 Binary matrices, tiles,

More information

Memory Efficient Kernel Approximation

Memory Efficient Kernel Approximation Si Si Department of Computer Science University of Texas at Austin ICML Beijing, China June 23, 2014 Joint work with Cho-Jui Hsieh and Inderjit S. Dhillon Outline Background Motivation Low-Rank vs. Block

More information

POSITIVE DEFINITE MATRICES AND THE S-DIVERGENCE

POSITIVE DEFINITE MATRICES AND THE S-DIVERGENCE PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 000-9939(XX)0000-0 POSITIVE DEFINITE MATRICES AND THE S-DIVERGENCE SUVRIT SRA (Communicated by ) Abstract. Hermitian

More information