Supplementary Information. A study on the chiral inversion of mandelic acid in humans

Size: px
Start display at page:

Download "Supplementary Information. A study on the chiral inversion of mandelic acid in humans"

Transcription

1 Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supplementary Information A study on the chiral inversion of mandelic acid in humans Maksims Yevglevskis, Catherine R. Bowskill, Chloe C. Y. Chan, Justin.-J. eng, Michael D. Threadgill, Timothy J. Woodman, and Matthew D. Lloyd* Medicinal Chemistry, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U. K. M.D.Lloyd@bath.ac.uk

2 Table of Contents Characterisation of synthetic compounds pages 3-8 Incubations of acyl-coa esters with recombinant human AMACR 1A pages 9-16 Kinetic plots for ACT1 pages Kinetic plots for ACT2 pages Supplementary Figure S1: Sequence alignment of AMACR and MCR page 37

3 S-2-ydroxyphenylacetyl-CoA 2S ( 1 NMR, Mz) S CoA

4 R-2-ydroxy-2-phenylacetyl-CoA 2R ( 1 NMR, Mz) S CoA

5 S-2-Methyl-2-phenylacetyl-CoA 8S ( 1 NMR, Mz) Me SCoA

6 R-2-Methyl-2-phenylacetyl-CoA 8R ( 1 NMR, Mz) Me SCoA

7 S-2-ydroxy-2-phenylacetyl-CoA 2S (as Na adduct) SCoA

8 S-2-Phenylpropanoyl-CoA 8S Me SCoA

9 Incubation of ±-Fenoprofenoyl-CoA with human recombinant AMACR 1A S CoA eat-inactivated enzyme Live enzyme

10 Incubation of S-2-hydroxy-2-phenylacetyl-CoA 2S with human recombinant AMACR 1A SCoA eat-inactivated enzyme Live enzyme

11 S-2-ydroxy-2-phenylacetyl-CoA 2S incubated with heat inactivated AMACR (full spectrum) S CoA S-2-ydroxy-2-phenylacetyl-CoA 2S incubated with active AMACR (full spectrum) S CoA

12 Incubation of R-2-hydroxy-2-phenylacetyl-CoA 2R with human recombinant AMACR 1A SCoA eat-inactivated enzyme Live enzyme

13 R-2-ydroxy-2-phenylacetyl-CoA 2R incubated with heat inactivated AMACR (full spectrum) S CoA R-2-ydroxy-2-phenylacetyl-CoA 2R incubated with active AMACR (full spectrum) S CoA

14 Stack plot showing incubation of 2R and 2S with live and heat-inactivated AMACR 2R, Live enzyme 2R, heat-inactivated enzyme 2S, Live enzyme 2S, heat-inactivated enzyme

15 Incubation of S-2-phenylpropanoyl-CoA 8S with human recombinant AMACR 1A Me SCoA eat-inactivated enzyme Live enzyme

16 Incubation of R-2-phenylpropanoyl-CoA 8R with human recombinant AMACR 1A Me SCoA eat-inactivate enzyme Live enzyme

17 ACT1, Myristoyl-CoA 11 S CoA Parameters Value ±Std. Error 95% Conf. Interval Vmax to Km to Ki to Goodness of Fit Degrees of Freedom 21 AICc R² Sum of Squares Sy.x Runs Test p Value Data Number of x values 8 Number of replicates 3 Total number of values 24 Number of missing values 0 Michaelis-Menten Rate (nmol/min/mg)

18 Lineweaver-Burk /Rate (nmol/min/mg) / Residuals 6 4 Residuals (nmol/min/mg)

19 ACT-1, S-2-hydroxy-2-phenylacetyl-CoA 2S S CoA Parameters Value ±Std. Error 95% Conf. Interval Vmax to Km to Ki to Goodness of Fit Degrees of Freedom 21 AICc R² Sum of Squares Sy.x Runs Test p Value Data Number of x values 8 Number of replicates 3 Total number of values 24 Number of missing values 0 Michaelis-Menten Rate (nmol/min/mg)

20 Lineweaver-Burk /Rate (nmol/min/mg) / Residuals 4 2 Residuals (nmol/min/mg)

21 ACT-1, R-2-hydroxy-2-phenylacetyl-CoA 2R S CoA Parameters Value ±Std. Error 95% Conf. Interval Vmax to Km to Goodness of Fit Degrees of Freedom 21 AICc R² Sum of Squares Sy.x Runs Test p Value Data Number of x values 8 Number of replicates 3 Total number of values 23 Number of missing values 1 Michaelis-Menten Rate (nmol/min/mg)

22 Lineweaver-Burk /Rate (nmol/min/mg) / Residuals 4 3 Residuals (nmol/min/mg)

23 ACT-1, S-2-Phenylpropanoyl-CoA 8S Me S CoA Parameters Value ±Std. Error 95% Conf. Interval Vmax 26, e e+7 to 1.385e+7 Km 35, e e+7 to 1.859e+7 Ki to Goodness of Fit Degrees of Freedom 21 AICc R² Sum of Squares Sy.x Runs Test p Value Data Number of x values 8 Number of replicates 3 Total number of values 24 Number of missing values 0 Michaelis-Menten Rate (nmol/min/mg)

24 Lineweaver-Burk /Rate (nmol/min/mg) / Residuals 6 4 Residuals (nmol/min/mg)

25 ACT-1, R-2-phenylpropanoyl-CoA 8R Me S CoA Parameters Value ±Std. Error 95% Conf. Interval Vmax to Km to Goodness of Fit Degrees of Freedom 22 AICc R² Sum of Squares Sy.x Runs Test p Value Data Number of x values 8 Number of replicates 3 Total number of values 24 Number of missing values 0 Michaelis-Menten 6 5 Rate (nmol/min/mg)

26 Lineweaver-Burk /Rate (nmol/min/mg) / Residuals Residuals (nmol/min/mg)

27 ACT-2, Myristoyl-CoA 11 S CoA Parameters Value ±Std. Error 95% Conf. Interval Vmax to Km to Ki to Goodness of Fit Degrees of Freedom 20 AICc R² Sum of Squares Sy.x Runs Test p Value Data Number of x values 8 Number of replicates 3 Total number of values 23 Number of missing values 1 Michaelis-Menten Rate (nmol/min/mg)

28 Lineweaver-Burk /Rate (nmol/min/mg) / Residuals 6 4 Residuals (nmol/min/mg)

29 ACT-2, S-2-hydroxy-2-phenylacetyl-CoA 2S S CoA Parameters Value ±Std. Error 95% Conf. Interval Vmax to Km to Ki to Goodness of Fit Degrees of Freedom 21 AICc R² Sum of Squares Sy.x Runs Test p Value Data Number of x values 8 Number of replicates 3 Total number of values 24 Number of missing values 0 Michaelis-Menten Rate (nmol/min/mg)

30 Lineweaver-Burk /Rate (nmol/min/mg) / Residuals 4 2 Residuals (nmol/min/mg)

31 ACT-2, R-2-hydroxy-2-phenylacetyl-CoA 2R S CoA Parameters Value ±Std. Error 95% Conf. Interval Vmax to Km to Goodness of Fit Degrees of Freedom 18 AICc R² Sum of Squares Sy.x Runs Test p Value Data Number of x values 7 Number of replicates 3 Total number of values 20 Number of missing values 1 Michaelis-Menten Rate (nmol/min/mg)

32 Lineweaver-Burk /Rate (nmol/min/mg) / Residuals 3 2 Residuals (nmol/min/mg)

33 ACT-2, S-2-Phenylpropanoyl-CoA 8S Me S CoA Parameters Value ±Std. Error 95% Conf. Interval Vmax 33, e e+7 to 1.650e+7 Km 46, e e+7 to 2.323e+7 Ki to Goodness of Fit Degrees of Freedom 21 AICc R² Sum of Squares Sy.x Runs Test p Value Data Number of x values 8 Number of replicates 3 Total number of values 24 Number of missing values 0 Michaelis-Menten Rate (nmol/min/mg)

34 Lineweaver-Burk /Rate (nmol/min/mg) / Residuals 4 2 Residuals (nmol/min/mg)

35 ACT-2, R-2-Phenylpropanoyl-CoA 8R Me S CoA Parameters Value ±Std. Error 95% Conf. Interval Vmax to Km to Goodness of Fit Degrees of Freedom 22 AICc R² Sum of Squares Sy.x Runs Test p Value Data Number of x values 8 Number of replicates 3 Total number of values 24 Number of missing values 0 Michaelis-Menten 6 5 Rate (nmol/min/mg)

36 Lineweaver-Burk /Rate (nmol/min/mg) / Residuals Residuals (nmol/min/mg)

37 MCR AMACR MCR AMACR MCR AMACR MCR AMACR MCR AMACR MCR AMACR MCR AMACR MAGPLSGLRVVELAGIGPGPAAMILGDLGADVVRIDRPSSVDGISRDAMLRNRRIVTAD --MALQGISVVELSGLAPGPFCAMVLADFGARVVRVDRPGSRYDVSR--LGRGKRSLVLD LKSDQGLELALKLIAKADVLIEGYRPGVTERLGLGPEECAKVNDRLIYARMTGWGQTGPR LKQPRGAAVLRRLCKRSDVLLEPFRRGVMEKLQLGPEILQRENPRLIYARLSGFGQSGSF SQQAGDINYISLNGILAIGRGDERPVPPLNLVGDFGGGSMFLLVGILAALWERQSSGK CRLAGDINYLALSGVLSKIGRSGENPYAPLNLLADFAGGGLMCALGIIMALFDRTRTGK GQVVDAAMVDGSSVLIQMMWAMRATGMWTDTRGANMLDGGAPYYDTYECADGRYVAVGAI GQVIDANMVEGTAYLSSFLWKTQKSSLWEAPRGQNMLDGGAPFYTTYRTADGEFMAVGAI EPQFYAAMLAGLGLDAAELPPQNDRARWPELRALLTEAFASDRDWGAVFANSDACVTP EPQFYELLIKGLGLKSDELPNQMSMDDWPEMKKKFADVFAKKTKAEWCQIFDGTDACVTP VLAFGEVNEPIIERNTFYEANG---GWQPMPAPRFSRTASSQPRPPAATIDIEAVLTD VLTFEEVVDNKERGSFITSEEQDVSPRPAPLLLNTPAIPSFKRDPFIGETEEILEE WDG FGFSREEIYQLNSDKIIESNKVKASL Figure S1: Sequence alignment of MCR from M. tuberculosis (06543) and human AMACR 1A (Q9UK6), showing residues involved in methyl group binding pocket (Bold).

Supplementary information

Supplementary information Supplementary information Chiral inversion of 2-arylpropionoyl-CoA esters by human α-methylacyl-coa racemase 1A (P504S) a potential mechanism for the anti-cancer effects of ibuprofen Timothy J. Woodman,

More information

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2010 Synthesis of substrates 2,2-[ 2 H 2 ]-Decanoyl-CoA (3) was synthesised using an extension of the method previously described by us. 1 Thus, diethyl malonate 7 (Scheme 1) was deprotonated and the resulting

More information

ENZYME KINETICS. What happens to S, P, E, ES?

ENZYME KINETICS. What happens to S, P, E, ES? ENZYME KINETICS Go to lecture notes and/or supplementary handouts for the following: 1 Basic observations in enzyme inetics 2 Michaelis-Menten treatment of enzyme inetics 3 Briggs-Haldane treatment of

More information

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9 A First Course on Kinetics and Reaction Engineering Class 9 on Unit 9 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going A. Rate Expressions - 4. Reaction Rates and Temperature

More information

Chemical kinetics and catalysis

Chemical kinetics and catalysis Chemical kinetics and catalysis Outline Classification of chemical reactions Definition of chemical kinetics Rate of chemical reaction The law of chemical raction rate Collision theory of reactions, transition

More information

It is generally believed that the catalytic reactions occur in at least two steps.

It is generally believed that the catalytic reactions occur in at least two steps. Lecture 16 MECHANISM OF ENZYME ACTION A chemical reaction such as A ----> P takes place because a certain fraction of the substrate possesses enough energy to attain an activated condition called the transition

More information

Enzymes II. Dr. Mamoun Ahram Summer, 2017

Enzymes II. Dr. Mamoun Ahram Summer, 2017 Enzymes II Dr. Mamoun Ahram Summer, 2017 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions. For the reaction (A P), The

More information

Time depending inhibition with atypical kinetics, what is one to do? Ken Korzekwa Temple University School of Pharmacy

Time depending inhibition with atypical kinetics, what is one to do? Ken Korzekwa Temple University School of Pharmacy Time depending inhibition with atypical kinetics, what is one to do? Ken Korzekwa Temple University School of harmacy Acknowledgements TUS Swati Nagar Jaydeep Yadav harma - Donald Tweedie - Andrea Whitcher-Johnstone

More information

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state Previous Class Michaelis Menten equation Steady state vs pre-steady state Today Review derivation and interpretation Graphical representation Michaelis Menten equations and parameters The Michaelis Menten

More information

Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase)

Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase) Measurement of Enzyme Activity - ALP Activity (ALP: Alkaline phosphatase) Measurement and analysis of enzyme activity is often used in the field of life science such as medicines and foods to investigate

More information

It can be derived from the Michaelis Menten equation as follows: invert and multiply with V max : Rearrange: Isolate v:

It can be derived from the Michaelis Menten equation as follows: invert and multiply with V max : Rearrange: Isolate v: Eadie Hofstee diagram In Enzymology, an Eadie Hofstee diagram (also Woolf Eadie Augustinsson Hofstee or Eadie Augustinsson plot) is a graphical representation of enzyme kinetics in which reaction velocity

More information

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

CHAPTER 6 ENZYME KINETICS AND THERMAL INACTIVATION OF POLYPHENOL OXIDASE

CHAPTER 6 ENZYME KINETICS AND THERMAL INACTIVATION OF POLYPHENOL OXIDASE CHAPTER 6 ENZYME KINETICS AND THERMAL INACTIVATION OF POLYPHENOL OXIDASE OVERVIEW OF CHAPTER Here we report the substrate specificity and enzyme kinetics of Polyphenol oxidase enzyme of A. paeoniifolius.

More information

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Chemistry Chemical Kinetics Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Introduction: In the following, we will develop the equations describing the kinetics of a single

More information

Lecture 15 (10/20/17) Lecture 15 (10/20/17)

Lecture 15 (10/20/17) Lecture 15 (10/20/17) Reading: Ch6; 98-203 Ch6; Box 6- Lecture 5 (0/20/7) Problems: Ch6 (text); 8, 9, 0,, 2, 3, 4, 5, 6 Ch6 (study guide-facts); 6, 7, 8, 9, 20, 2 8, 0, 2 Ch6 (study guide-applying); NEXT Reading: Ch6; 207-20

More information

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2018 Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters 20 February 2018

More information

Molecular motion of Donor-Acceptor catenanes in water

Molecular motion of Donor-Acceptor catenanes in water Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information for: Molecular motion of Donor-Acceptor catenanes

More information

CYP Time Dependent Inhibition Atypical Kinetics. Ken Korzekwa Temple University School of Pharmacy and Kinetics & Simulation, LLC

CYP Time Dependent Inhibition Atypical Kinetics. Ken Korzekwa Temple University School of Pharmacy and Kinetics & Simulation, LLC CYP Time Dependent Inhibition Atypical Kinetics Ken Korzekwa Temple University School of Pharmacy and Kinetics & Simulation, LLC Acknowledgements TUSP Swati Nagar Jaydeep Yadav Pharma - Donald Tweedie

More information

Michaelis-Menten Kinetics

Michaelis-Menten Kinetics Michaelis-Menten Kinetics Two early 20th century scientists, Leonor Michaelis and Maud Leonora Menten, proposed the model known as Michaelis-Menten Kinetics to account for enzymatic dynamics. The model

More information

Chem Lecture 4 Enzymes Part 2

Chem Lecture 4 Enzymes Part 2 Chem 452 - Lecture 4 Enzymes Part 2 Question of the Day: Is there some easy way to clock how many reactions one enzyme molecule is able to catalyze in an hour? Thermodynamics I think that enzymes are molecules

More information

CHEM April 10, Exam 3

CHEM April 10, Exam 3 Name CHEM 3511 April 10, 2009 Exam 3 Name Page 1 1. (12 points) Give the name of your favorite Tech professor and in one sentence describe why you like him/her. 2. (10 points) An enzyme cleaves a chemical

More information

Biochemistry. Lecture 8 Enzyme Kinetics

Biochemistry. Lecture 8 Enzyme Kinetics Biochemistry Lecture 8 Enzyme Kinetics Why Enzymes? igher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - - C N 2 - C N 2 - C - C Chorismate mutase -

More information

A First Course on Kinetics and Reaction Engineering Example 9.4

A First Course on Kinetics and Reaction Engineering Example 9.4 Example 9.4 Problem Purpose This problem illustrates the use of a Lineweaver-Burk plot to determine the values of the constants in a Michaelis-Menten rate expression. Problem Statement Suppose the enzyme-catalyzed

More information

Bioreactor Engineering Laboratory

Bioreactor Engineering Laboratory Bioreactor Engineering Laboratory Determination of kinetics parameters of enzymatic hydrolysis of lactose catalyzed by β-galactosidase. Supervisor: Karolina Labus, PhD 1. THEROETICAL PART Enzymes are macromolecular,

More information

BIOCHEMISTRY - CLUTCH REVIEW 2.

BIOCHEMISTRY - CLUTCH REVIEW 2. !! www.clutchprep.com CONCEPT: BINDING AFFINITY Protein-ligand binding is reversible, like a chemical equilibrium [S] substrate concentration [E] enzyme concentration Ligands bind to proteins via the same

More information

CHM333 LECTURES 14 & 15: 2/15 17/12 SPRING 2012 Professor Christine Hrycyna

CHM333 LECTURES 14 & 15: 2/15 17/12 SPRING 2012 Professor Christine Hrycyna ENZYME KINETICS: The rate of the reaction catalyzed by enzyme E A + B P is defined as -Δ[A] or -Δ[B] or Δ[P] Δt Δt Δt A and B changes are negative because the substrates are disappearing P change is positive

More information

Enzymes II: kinetics الفريق الطبي األكاديمي. Done By: - AHMAD ALSAHELE. Corrected By:-Bushra saleem

Enzymes II: kinetics الفريق الطبي األكاديمي. Done By: - AHMAD ALSAHELE. Corrected By:-Bushra saleem Enzymes II: kinetics الفريق الطبي األكاديمي Done By: - AHMAD ALSAHELE Corrected By:-Bushra saleem لكية الطب البرشي البلقاء التطبيقية / املركز و من أحياها 6166 6102/ و من أحياها Specific aims: 1. Know what

More information

Previous Class. Today. Cosubstrates (cofactors)

Previous Class. Today. Cosubstrates (cofactors) Previous Class Cosubstrates (cofactors) Today Proximity effect Basic equations of Kinetics Steady state kinetics Michaelis Menten equations and parameters Enzyme Kinetics Enzyme kinetics implies characterizing

More information

Biochemistry Enzyme kinetics

Biochemistry Enzyme kinetics 1 Description of Module Subject Name Paper Name Module Name/Title Enzyme Kinetics Dr. Vijaya Khader Dr. MC Varadaraj 2 1. Objectives 2. Enzymes as biological catalyst 3. Enzyme Catalysis 4. Understanding

More information

Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the

Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the reaction A P is the amount of P formed or the amount of A consumed

More information

Class Business. I will have Project I graded by the end of the week. The discussion groups for Project 2 are cancelled

Class Business. I will have Project I graded by the end of the week. The discussion groups for Project 2 are cancelled Quiz 1 Class Business I will have Project I graded by the end of the week. Project 2 is due on 11/15 The discussion groups for Project 2 are cancelled There is additional reading for classes held on 10/30

More information

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects 1.492 - Integrated Chemical Engineering (ICE Topics: Biocatalysis MIT Chemical Engineering Department Instructor: Professor Kristala Prather Fall 24 Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters,

More information

Structural basis for catalytically restrictive dynamics of a high-energy enzyme state

Structural basis for catalytically restrictive dynamics of a high-energy enzyme state Supplementary Material Structural basis for catalytically restrictive dynamics of a high-energy enzyme state Michael Kovermann, Jörgen Ådén, Christin Grundström, A. Elisabeth Sauer-Eriksson, Uwe H. Sauer

More information

Supporting material for Chiral Sensing using a Blue Fluorescent Antibody

Supporting material for Chiral Sensing using a Blue Fluorescent Antibody Supporting material for Chiral Sensing using a Blue Fluorescent Antibody ana Matsushita, oboru Yamamoto, Michael M. ijler, Peter Wirsching, Richard A. Lerner, Masayuki Matsushita and Kim D. Janda Synthesis

More information

Catalysis. v 0 no catalyst v c -- catalyst present. v c. dt with no catalyst) (v c = -d[a]/dt dt with a catalyst)

Catalysis. v 0 no catalyst v c -- catalyst present. v c. dt with no catalyst) (v c = -d[a]/dt dt with a catalyst) Catalysis Catalysis provides an additional mechanism by which reactants can be converted to products. The alternative mechanism has a lower activation energy than the reaction in the absence of a catalyst.

More information

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University Enzyme Kinetics Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme NC State University Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted

More information

Michaelis-Menton kinetics

Michaelis-Menton kinetics Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted into products P depends on the concentration of the enzyme E even though the enzyme does not undergo

More information

Lab training Enzyme Kinetics & Photometry

Lab training Enzyme Kinetics & Photometry Lab training Enzyme Kinetics & Photometry Qing Cheng Qing.Cheng@ki.se Biochemistry Division, MBB, KI Lab lecture Introduction on enzyme and kinetics Order of a reaction, first order kinetics Michaelis-Menten

More information

Supporting Information. A fluorogenic assay for screening Sirt6 modulators

Supporting Information. A fluorogenic assay for screening Sirt6 modulators This journal is The Royal Society of Chemistry 213 Supporting Information A fluorogenic assay for screening Sirt6 modulators Jing Hu, Bin He, Shiva Bhargava, Hening Lin* Department of Chemistry and Chemical

More information

Effect of Temperature Increasing the temperature increases the energy in the system. Two effects kinetic. denaturing

Effect of Temperature Increasing the temperature increases the energy in the system. Two effects kinetic. denaturing Effect of Temperature Increasing the temperature increases the energy in the system Two effects kinetic denaturing Kinetic effect Increased motion of molecules Increased collisions between enzyme/substrate

More information

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester,

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester, Enzymes Part III: Enzyme kinetics Dr. Mamoun Ahram Summer semester, 2015-2016 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions.

More information

Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters

Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2019 Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters 19 February 2019 c David P. Goldenberg University

More information

Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures (Exam 3 topics: Chapters 8, 12, 14 & 15)

Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures (Exam 3 topics: Chapters 8, 12, 14 & 15) Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures 17-23 (Exam 3 topics: Chapters 8, 12, 14 & 15) Enzyme Kinetics, Inhibition, and Regulation Chapter 12 Enzyme Kinetics When the concentration

More information

Ali Yaghi. Gumana Ghashan. Mamoun Ahram

Ali Yaghi. Gumana Ghashan. Mamoun Ahram 21 Ali Yaghi Gumana Ghashan Mamoun Ahram Kinetics The study of Kinetics deals with the rates of chemical reactions. Chemical kinetics is the study of the rate of chemical reactions. For the reaction (A

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot Enzymes are biological macromolecules that increase the rate of the

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot Enzymes are biological macromolecules that increase the rate of the

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Enzymes are biological macromolecules that increase the rate of the reaction. Six major groups of enzymes (pgs. 94-95/98-99) Oxidoreductases:

More information

Lecture 16 (10/23/17) Lecture 16 (10/23/17)

Lecture 16 (10/23/17) Lecture 16 (10/23/17) Lecture 16 (10/23/17) Reading: Ch6; 207-210 Ch6; 192-193, 195-196, 205-206 Problems: Ch6 (text); 18, 19, 20, 21, 22 Ch6 (study guide-facts); 9, 11 Ch6 (study guide-applying); 2 NEXT Reading: Ch6; 213-218

More information

2. Under what conditions can an enzyme assay be used to determine the relative amounts of an enzyme present?

2. Under what conditions can an enzyme assay be used to determine the relative amounts of an enzyme present? Chem 315 In class/homework problems 1. a) For a Michaelis-Menten reaction, k 1 = 7 x 10 7 M -1 sec -1, k -1 = 1 x 10 3 sec -1, k 2 = 2 x 10 4 sec -1. What are the values of K s and K M? K s = k -1 / k

More information

4. What is the general expression Keq (the equilibrium constant) in terms of product and reactant concentration? tell us about the enzyme.

4. What is the general expression Keq (the equilibrium constant) in terms of product and reactant concentration? tell us about the enzyme. Section 8 Enzyme Kinetics Pre-Activity Assignment 1. Produce a reading log for the sections in your text that discuss the Michaelis-Menten equation and including kcat. 2. Focus on the derivation of the

More information

Topic 4 Correlation and Regression. Transformed Variables

Topic 4 Correlation and Regression. Transformed Variables Topic 4 Correlation and Regression Transformed Variables 1 / 13 Outline Worldwide Oil Production Lineweaver-Burke double reciprocal plot 2 / 13 Worldwide Oil Production Example. The modern history of petroleum

More information

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order Rate laws, Reaction Orders The rate or velocity of a chemical reaction is loss of reactant or appearance of product in concentration units, per unit time d[p] = d[s] The rate law for a reaction is of the

More information

Supporting Information

Supporting Information Supporting Information In Situ Ratiometric Quantitative Tracing Intracellular Leucine Aminopeptidase Activity via an Activatable Near- Infrared Fluorescent Probe Kaizhi Gu, Yajing Liu, Zhiqian Guo,*,,#

More information

New sesquiterpenoids from the rhizomes of Acorus tatarinowii

New sesquiterpenoids from the rhizomes of Acorus tatarinowii Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 214 New sesquiterpenoids from the rhizomes of Acorus tatarinowii Xiao-Lin Feng, a Yang Yu, *a Hao

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

Kinetics of RapA inhibition by PhrA pentapeptide curve fits -

Kinetics of RapA inhibition by PhrA pentapeptide curve fits - Kinetics of RapA inhibition by PhrA pentapeptide curve fits - Competitive Full Competitive full Uncompetitive Full Uncompetitive Full 0. 0. 0. 0 1 1 1 1 - -1 0 1 3 0. 0. 0. 0 1 1 1 1 Vmax = Km = 9 Ki =.

More information

13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment

13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment 13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment 131 Learning Objective This laboratory introduces you to steady-state kinetic analysis, a fundamental

More information

Learning Outcomes. k 1

Learning Outcomes. k 1 Module 1DHS - Data Handling Skills Unit: Applied Maths Lecturer: Dr. Simon Hubbard (H13), Email: Simon.Hubbard@umist.ac.uk Title: Equilibria & Michaelis-Menten This lecture and problem class will introduce

More information

Homework 5 Organic Chemistry MCAT Review Summer 2012 Brent Iverson

Homework 5 Organic Chemistry MCAT Review Summer 2012 Brent Iverson omework 5 rganic Chemistry MCAT Review Summer 2012 ent Iverson 1 1. For the following reactions, draw the predominant product or products. When a new chiral center is created, mark it with an asterisk

More information

Bioengineering Laboratory I. Enzyme Assays. Part II: Determination of Kinetic Parameters Fall Semester

Bioengineering Laboratory I. Enzyme Assays. Part II: Determination of Kinetic Parameters Fall Semester Bioengineering Laboratory I Enzyme Assays Part II: Determination of Kinetic Parameters 2016-2017 Fall Semester 1. Theoretical background There are several mathematical models to determine the kinetic constants

More information

Two requirements for life: Self-replication and appropriate catalysis. A. Most enzymes (def.: biological catalysts) are proteins

Two requirements for life: Self-replication and appropriate catalysis. A. Most enzymes (def.: biological catalysts) are proteins Enzymes We must be able to enhance the rates of many physical and chemical processes to remain alive and healthy. Support for that assertion: Maladies of genetic origin. Examples: Sickle-cell anemia (physical)

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Supplementary Information Dynamics of the thumb-finger regions in GH11 xylanase Bacillus circulans:

More information

ENZYME KINETICS. Medical Biochemistry, Lecture 24

ENZYME KINETICS. Medical Biochemistry, Lecture 24 ENZYME KINETICS Medical Biochemistry, Lecture 24 Lecture 24, Outline Michaelis-Menten kinetics Interpretations and uses of the Michaelis- Menten equation Enzyme inhibitors: types and kinetics Enzyme Kinetics

More information

Chem 204. Mid-Term Exam I. July 21, There are 3 sections to this exam: Answer ALL questions

Chem 204. Mid-Term Exam I. July 21, There are 3 sections to this exam: Answer ALL questions Chem 204 Mid-Term Exam I July 21, 2009 Name: Answer Key Student ID: There are 3 sections to this exam: Answer ALL questions Section I: Multiple-Choice 20 questions, 2 pts each Section II: Fill-in-the-Blank

More information

Affinity labels for studying enzyme active sites. Irreversible Enzyme Inhibition. Inhibition of serine protease with DFP

Affinity labels for studying enzyme active sites. Irreversible Enzyme Inhibition. Inhibition of serine protease with DFP Irreversible Enzyme Inhibition Irreversible inhibitors form stable covalent bonds with the enzyme (e.g. alkylation or acylation of an active site side chain) There are many naturally-occurring and synthetic

More information

Biochemistry. Lecture 8

Biochemistry. Lecture 8 Biochemistry Lecture 8 Why Enzymes? igher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - - C N 2 - C N 2 - C - C Chorismate mutase - C - C - C Metabolites

More information

Supporting Information. Chemo-enzymatic Synthesis of Isotopically Labeled Nicotinamide Ribose

Supporting Information. Chemo-enzymatic Synthesis of Isotopically Labeled Nicotinamide Ribose Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2018 Supporting Information Chemo-enzymatic Synthesis of Isotopically Labeled

More information

Enzyme Kinetics: How they do it

Enzyme Kinetics: How they do it Enzyme Kinetics: How they do it (R1) Formation of Enzyme-Substrate complex: (R2) Formation of Product (i.e. reaction): E + S ES ES -> E + P (R3) Desorption (decoupling/unbinding) of product is usually

More information

STUDY GUIDE #2 Winter 2000 Chem 4540 ANSWERS

STUDY GUIDE #2 Winter 2000 Chem 4540 ANSWERS STUDY GUIDE #2 Winter 2000 Chem 4540 ANSWERS R. Merrill 1. Sketch the appropriate plots on the following axes. Assume that simple Michaelis- Menten kinetics apply. 2. The enzyme-catalyzed hydrolysis of

More information

/ / MET Day 000 NC1^ INRTL MNVR I E E PRE SLEEP K PRE SLEEP R E

/ / MET Day 000 NC1^ INRTL MNVR I E E PRE SLEEP K PRE SLEEP R E 05//0 5:26:04 09/6/0 (259) 6 7 8 9 20 2 22 2 09/7 0 02 0 000/00 0 02 0 04 05 06 07 08 09 0 2 ay 000 ^ 0 X Y / / / / ( %/ ) 2 /0 2 ( ) ^ 4 / Y/ 2 4 5 6 7 8 9 2 X ^ X % 2 // 09/7/0 (260) ay 000 02 05//0

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Rh 2 (Ac) 4 -Catalyzed 2,3-Migration of -rrocenecarboxyl -Diazocarbonyl

More information

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To Revised 3/21/2017 After lectures by Dr. Loren Williams (GeorgiaTech) Protein Folding: 1 st order reaction DNA annealing: 2 nd order reaction Reaction Rates (reaction velocities): To measure a reaction

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 201 Supporting Information Phenalenones: Insight into the biosynthesis of polyketies

More information

Elementary reactions. stoichiometry = mechanism (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioactive decay;

Elementary reactions. stoichiometry = mechanism (Cl. + H 2 HCl + H. ) 2 NO 2 ; radioactive decay; Elementary reactions 1/21 stoichiometry = mechanism (Cl. + H 2 HCl + H. ) monomolecular reactions (decay: N 2 O 4 some isomerisations) 2 NO 2 ; radioactive decay; bimolecular reactions (collision; most

More information

Highly Specific near-infrared Fluorescent probe for the Real-Time Detection of β-glucuronidase in Various Living Cells and Animals

Highly Specific near-infrared Fluorescent probe for the Real-Time Detection of β-glucuronidase in Various Living Cells and Animals Supplementary information Highly Specific near-infrared Fluorescent probe for the Real-Time Detection of β-glucuronidase in Various Living Cells and Animals Yinzhu Jin,, Xiangge Tian,, Lingling Jin, Yonglei

More information

2013 W. H. Freeman and Company. 6 Enzymes

2013 W. H. Freeman and Company. 6 Enzymes 2013 W. H. Freeman and Company 6 Enzymes CHAPTER 6 Enzymes Key topics about enzyme function: Physiological significance of enzymes Origin of catalytic power of enzymes Chemical mechanisms of catalysis

More information

MITOCW enzyme_kinetics

MITOCW enzyme_kinetics MITOCW enzyme_kinetics In beer and wine production, enzymes in yeast aid the conversion of sugar into ethanol. Enzymes are used in cheese-making to degrade proteins in milk, changing their solubility,

More information

ENZYMES 2: KINETICS AND INHIBITION. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University

ENZYMES 2: KINETICS AND INHIBITION. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University ENZYMES 2: KINETICS AND INHIBITION HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University 1 REVIEW OF KINETICS (GEN CHEM II) 2 Chemical KineCcs How fast

More information

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate V 41 Enzyme Kinetics Enzyme reaction example of Catalysis, simplest form: k 1 E + S k -1 ES E at beginning and ES k 2 k -2 E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

More information

Metal-Free Oxidative Cleavage of C-C bond in α-hydroxy-βoxophosphonates

Metal-Free Oxidative Cleavage of C-C bond in α-hydroxy-βoxophosphonates Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 25 Supporting Information Metal-Free xidative Cleavage of C-C bond in α-hydroxy-βoxophosphonates

More information

Supporting Information

Supporting Information Supporting Information Tandem Mass Spectrometry for the Direct Assay of Lysosomal Enzymes in Dried Blood Spots: Application to Screening Newborns for Mucopolysaccharidosis VI (Maroteaux- Lamy Syndrome)

More information

Membrane Proteins: 1. Integral proteins: 2. Peripheral proteins: 3. Amphitropic proteins:

Membrane Proteins: 1. Integral proteins: 2. Peripheral proteins: 3. Amphitropic proteins: Membrane Proteins: 1. Integral proteins: proteins that insert into/span the membrane bilayer; or covalently linked to membrane lipids. (Interact with the hydrophobic part of the membrane) 2. Peripheral

More information

Lecture 12: Burst Substrates and the V vs [S] Experiment

Lecture 12: Burst Substrates and the V vs [S] Experiment Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2019 Lecture 12: Burst Substrates and the V vs [S] Experiment 14 February 2019 c David P. Goldenberg University of Utah goldenberg@biology.utah.edu

More information

C a h p a t p e t r e r 6 E z n y z m y e m s

C a h p a t p e t r e r 6 E z n y z m y e m s Chapter 6 Enzymes 4. Examples of enzymatic reactions acid-base catalysis: give and take protons covalent catalysis: a transient covalent bond is formed between the enzyme and the substrate metal ion catalysis:

More information

Reversible reactions

Reversible reactions Reversible reactions A reversible enzymic reaction (e.g. the conversion of glucose to fructose, catalysed by glucose isomerase) may be represented by the following scheme where the reaction goes through

More information

Reading for today: Chapter 16 (selections from Sections A, B and C) Friday and Monday: Chapter 17 (Diffusion)

Reading for today: Chapter 16 (selections from Sections A, B and C) Friday and Monday: Chapter 17 (Diffusion) Lecture 29 Enzymes Reading for today: Chapter 6 (selections from Sections, B and C) Friday and Monday: Chapter 7 (Diffusion) 4/3/6 Today s Goals Michaelis-Menten mechanism for simple enzyme reactions:

More information

Enzyme Kinetics. Jonathan Gent and Douglas Saucedo May 24, 2002

Enzyme Kinetics. Jonathan Gent and Douglas Saucedo May 24, 2002 Enzyme Kinetics Jonathan Gent and Douglas Saucedo May 24, 2002 Abstract This paper consists of a mathematical derivation of the Michaelis-Menten equation, which models the rate of reaction of certain enzymatic

More information

BMB Lecture 9

BMB Lecture 9 BMB 178 2018 Lecture 9 Class 11, November 7, 2018 Steady-state kinetics (I) Case 3. Viscosity Variation If k cat /K m decreases with increasing viscosity, then the reaction is diffusion-limited (S binding

More information

Tetrahydroquinolines by multicomponent Povarov reaction in water: Calix[n]arene-catalysed and mechanistic insights

Tetrahydroquinolines by multicomponent Povarov reaction in water: Calix[n]arene-catalysed and mechanistic insights Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 219 Tetrahydroquinolines by multicomponent Povarov reaction in water: Calix[n]arene-catalysed

More information

EDC/NHS activation mechanism of polymethacrylic acid: anhydride

EDC/NHS activation mechanism of polymethacrylic acid: anhydride Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information (ESI) EDC/NHS activation mechanism of polymethacrylic

More information

Organic Chemistry, Third Edition. Chapter 24 Carbonyl condensations

Organic Chemistry, Third Edition. Chapter 24 Carbonyl condensations rganic Chemistry, Third Edition Chapter 24 Carbonyl condensations 1 Review: enolates LDA, -78 C TF kinetic RX R = Me, 1 alkyl R Na TF, RT RX R = Me, 1 alkyl thermodynamic R enolates = nucleophiles React

More information

Proteins Act As Catalysts

Proteins Act As Catalysts Proteins Act As Catalysts Properties of Enzymes Catalyst - speeds up attainment of reaction equilibrium Enzymatic reactions -10 3 to 10 17 faster than the corresponding uncatalyzed reactions Substrates

More information

Enzymes and Enzyme Kinetics I. Dr.Nabil Bashir

Enzymes and Enzyme Kinetics I. Dr.Nabil Bashir Enzymes and Enzyme Kinetics I Dr.Nabil Bashir Enzymes and Enzyme Kinetics I: Outlines Enzymes - Basic Concepts and Kinetics Enzymes as Catalysts Enzyme rate enhancement / Enzyme specificity Enzyme cofactors

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Structural basis for the inhibition of Mycobacterium tuberculosis L,D-transpeptidase by meropenem, a drug effective against extensively drug-resistant strains Hyoun Sook Kim

More information

(Supplementary Information)

(Supplementary Information) (Supplementary Information) Peptidomimetic-based Multi-Domain Targeting Offers Critical Evaluation of Aβ Structure and Toxic Function Sunil Kumar 1*, Anja Henning-Knechtel 2, Mazin Magzoub 2, and Andrew

More information

4. The Michaelis-Menten combined rate constant Km, is defined for the following kinetic mechanism as k 1 k 2 E + S ES E + P k -1

4. The Michaelis-Menten combined rate constant Km, is defined for the following kinetic mechanism as k 1 k 2 E + S ES E + P k -1 Fall 2000 CH 595C Exam 1 Answer Key Multiple Choice 1. One of the reasons that enzymes are such efficient catalysts is that a) the energy level of the enzyme-transition state complex is much higher than

More information

Aminoacid Based Chiral N-Amidothioureas. Acetate Anion. Binding Induced Chirality Transfer

Aminoacid Based Chiral N-Amidothioureas. Acetate Anion. Binding Induced Chirality Transfer Aminoacid Based Chiral -Amidothioureas. Acetate Anion Binding Induced Chirality Transfer Fang Wang, a Wen-Bin He, a Jin-He Wang, a Xiao-Sheng Yan, a Ying Zhan, a Ying-Ying Ma, b Li-Cai Ye, a Rui Yang,

More information

Synthesis of Biginelli dihydropyrimidinone derivatives with various substituents on aluminum-planted mesoporous silica catalyst

Synthesis of Biginelli dihydropyrimidinone derivatives with various substituents on aluminum-planted mesoporous silica catalyst Supplementary Material (ESI) for rganic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2010 Supplementary Information for Synthesis of Biginelli dihydropyrimidinone derivatives

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 Electronic Supplementary Information

More information