Biochemistry. Lecture 8

Size: px
Start display at page:

Download "Biochemistry. Lecture 8"

Transcription

1 Biochemistry Lecture 8

2 Why Enzymes? igher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - - C N 2 - C N 2 - C - C Chorismate mutase - C - C - C Metabolites have many potential pathways of decomposition Enzymes make the desired one most favorable

3 Enzymatic Substrate Selectivity - C + N 3 - C + N C N 3 No binding N C 3 Binding but no reaction Example: Phenylalanine hydroxylase

4

5

6

7

8 2 + C 2 C C Potential Energy E a 2 + C E ' a C œ + + Reaction

9 ow to Lower ΔG? Enzymes bind transition states best

10 ow is TS Stabilization Achieved? acid-base catalysis: give and take protons covalent catalysis: change reaction paths metal ion catalysis: use redox cofactors, pk a shifters electrostatic catalysis: preferential interactions with TS End result? Rate enhancements of 10 5 to 10 17!

11 ow is TS Stabilization Achieved? covalent catalysis: change reaction paths C 3 C 3 N.. C 3 C 3 2 slow C C + 2 fast N C 3 + C

12 ow to Lower ΔG? Enzymes organizes reactive groups into proximity

13

14 (C 3 ) 3 N C 2 C 2 C ac et ylc holine (ACh) C AChE (C 3 ) 3 N C 2 C 2 + C C 3 choline (Ch) ac et ic ac id

15

16

17 (C 3 ) 3 N C 2 C 2 C ac et ylc holine (ACh) C AChE (C 3 ) 3 N C 2 C 2 + C C 3 choline (Ch) ac et ic ac id

18 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

19 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

20 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

21 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

22 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

23 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

24 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

25 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

26 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

27 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

28 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

29 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

30 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

31 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

32 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

33 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

34 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

35 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

36 Ser Glu C 2 C Asp C N is N (C 3 ) 3 N C 2 C 2 C C 3

37 (C 3 ) 3 N C 2 C 2 C ac et ylc holine (ACh) C AChE (C 3 ) 3 N C 2 C 2 + C C 3 choline (Ch) ac et ic ac id

38 Enzyme Kinetics Kinetics is the study of the rate at which compounds react Rate of enzymatic reaction is affected by Enzyme Substrate Effectors Temperature

39 ow to Do Kinetic Measurements

40

41

42

43

44 What equation models this behavior? Michaelis-Menten Equation

45 Meaning of Vmax and Km

46 Simple Enzyme Kinetics The final form in case of a single substrate is v = k cat K [ E m ][ S] k cat (turnover number): how many substrate molecules can one enzyme molecule convert per second K m (Michaelis constant): an approximate measure of substrate s affinity for enzyme Microscopic meaning of K m and k cat depends on the details of the mechanism tot + [ S]

47 Two-substrate Reactions Kinetic mechanism: the order of binding of substrates and release of products When two or more reactants are involved, enzyme kinetics allows to distinguish between different kinetic mechanisms Sequential mechanism Ping-Pong (Double Displacement) mechanism

48

49 Distinguishing Mechanism Ternary Complex Ping-Pong

50 Enzyme Inhibition Inhibitors are compounds that decrease enzyme s activity Irreversible inhibitors (inactivators) react with the enzyme - one inhibitor molecule can permanently shut off one enzyme molecule - they are often powerful toxins but also may be used as drugs Reversible inhibitors bind to, and can dissociate from the enzyme - they are often structural analogs of substrates or products - they are often used as drugs to slow down a specific enzyme Reversible inhibitor can bind: To the free enzyme and prevent the binding of the substrate To the enzyme-substrate complex and prevent the reaction

51

52

53

54

55

56

57 Acetylcholinesterase Ser Glu C 2 C Asp C N is N

58 Ser Glu C 2 C Asp C F N is N C 3 C P C 3 C 3

59 Ser Glu C 2 C Asp C F N is N C 3 C P C 3 C 3

60 Ser Glu C 2 C Asp C F N is N C 3 C P C 3 C 3

61 Ser Glu C 2 C Asp C F N is N C 3 C P C 3 C 3

62 Ser Glu C 2 C Asp C F N is N C 3 C P C 3 C 3

63 I N C N C 3 Pyridine aldoxime me thiodide (PAM) Br Br (C 3 ) 3 NœC 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 œn(c 3 ) 3 decamethonium bromide (C 3 ) 3 N C 2 C 2 CC 2 C 2 CC 2 C 2 N(C 3 ) 3 succ inylcholine

64

65

66

Biochemistry. Lecture 8 Enzyme Kinetics

Biochemistry. Lecture 8 Enzyme Kinetics Biochemistry Lecture 8 Enzyme Kinetics Why Enzymes? igher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - - C N 2 - C N 2 - C - C Chorismate mutase -

More information

Chemistry Chapter 23

Chemistry Chapter 23 Chemistry 2100 Chapter 23 Protein Functions Binding P + L PL Catalysis Structure Why Enzymes? Higher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - -

More information

2013 W. H. Freeman and Company. 6 Enzymes

2013 W. H. Freeman and Company. 6 Enzymes 2013 W. H. Freeman and Company 6 Enzymes CHAPTER 6 Enzymes Key topics about enzyme function: Physiological significance of enzymes Origin of catalytic power of enzymes Chemical mechanisms of catalysis

More information

Lecture 14 (10/18/17) Lecture 14 (10/18/17)

Lecture 14 (10/18/17) Lecture 14 (10/18/17) Lecture 14 (10/18/17) Reading: Ch6; 190-191, 194-195, 197-198 Problems: Ch6 (text); 7, 24 Ch6 (study guide-facts); 4, 13 NEXT Reading: Ch6; 198-203 Ch6; Box 6-1 Problems: Ch6 (text); 8, 9, 10, 11, 12,

More information

C a h p a t p e t r e r 6 E z n y z m y e m s

C a h p a t p e t r e r 6 E z n y z m y e m s Chapter 6 Enzymes 1. An Introduction to Enzymes Enzymes are catalytically active biological macromolecules Enzymes are catalysts of biological systems Almost every biochemical reaction is catalyzed by

More information

ENZYME KINETICS. Medical Biochemistry, Lecture 24

ENZYME KINETICS. Medical Biochemistry, Lecture 24 ENZYME KINETICS Medical Biochemistry, Lecture 24 Lecture 24, Outline Michaelis-Menten kinetics Interpretations and uses of the Michaelis- Menten equation Enzyme inhibitors: types and kinetics Enzyme Kinetics

More information

Overview of Kinetics

Overview of Kinetics Overview of Kinetics [P] t = ν = k[s] Velocity of reaction Conc. of reactant(s) Rate of reaction M/sec Rate constant sec -1, M -1 sec -1 1 st order reaction-rate depends on concentration of one reactant

More information

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To Revised 3/21/2017 After lectures by Dr. Loren Williams (GeorgiaTech) Protein Folding: 1 st order reaction DNA annealing: 2 nd order reaction Reaction Rates (reaction velocities): To measure a reaction

More information

Enzyme Nomenclature Provides a Systematic Way of Naming Metabolic Reactions

Enzyme Nomenclature Provides a Systematic Way of Naming Metabolic Reactions Enzyme Kinetics Virtually All Reactions in Cells Are Mediated by Enzymes Enzymes catalyze thermodynamically favorable reactions, causing them to proceed at extraordinarily rapid rates Enzymes provide cells

More information

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems Introduction Enzymes are Biological Catalysis A catalyst is a substance

More information

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9 A First Course on Kinetics and Reaction Engineering Class 9 on Unit 9 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going A. Rate Expressions - 4. Reaction Rates and Temperature

More information

BMB Lecture 9

BMB Lecture 9 BMB 178 2018 Lecture 9 Class 11, November 7, 2018 Steady-state kinetics (I) Case 3. Viscosity Variation If k cat /K m decreases with increasing viscosity, then the reaction is diffusion-limited (S binding

More information

Chapter 8. Enzymes: basic concept and kinetics

Chapter 8. Enzymes: basic concept and kinetics Chapter 8 Enzymes: basic concept and kinetics Learning objectives: mechanism of enzymatic catalysis Michaelis -Menton Model Inhibition Single Molecule of Enzymatic Reaction Enzymes: catalysis chemical

More information

Previous Class. Today. Cosubstrates (cofactors)

Previous Class. Today. Cosubstrates (cofactors) Previous Class Cosubstrates (cofactors) Today Proximity effect Basic equations of Kinetics Steady state kinetics Michaelis Menten equations and parameters Enzyme Kinetics Enzyme kinetics implies characterizing

More information

BMB Lectures 9-10 October 25 and 27, Steady-state kinetics

BMB Lectures 9-10 October 25 and 27, Steady-state kinetics BMB 178 2017 Lectures 9-10 October 25 and 27, 2017 Steady-state kinetics Steady State Kinetics 1. Rate equations 2. Kinetic shortcuts 3. Positional isotope exchange 4. Inhibition Definition of steady state:

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Enzymes are biological macromolecules that increase the rate of the reaction. Six major groups of enzymes (pgs. 94-95/98-99) Oxidoreductases:

More information

Affinity labels for studying enzyme active sites. Irreversible Enzyme Inhibition. Inhibition of serine protease with DFP

Affinity labels for studying enzyme active sites. Irreversible Enzyme Inhibition. Inhibition of serine protease with DFP Irreversible Enzyme Inhibition Irreversible inhibitors form stable covalent bonds with the enzyme (e.g. alkylation or acylation of an active site side chain) There are many naturally-occurring and synthetic

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot Enzymes are biological macromolecules that increase the rate of the

More information

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot BCMB 3100 Chapters 6,7,8 Enzyme Basics Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot Enzymes are biological macromolecules that increase the rate of the

More information

Enzymes and kinetics. Eva Samcová and Petr Tůma

Enzymes and kinetics. Eva Samcová and Petr Tůma Enzymes and kinetics Eva Samcová and Petr Tůma Termodynamics and kinetics Equilibrium state ΔG 0 = -RT lnk eq ΔG < 0 products predominate ΔG > 0 reactants predominate Rate of a chemical reaction Potential

More information

C a h p a t p e t r e r 6 E z n y z m y e m s

C a h p a t p e t r e r 6 E z n y z m y e m s Chapter 6 Enzymes 4. Examples of enzymatic reactions acid-base catalysis: give and take protons covalent catalysis: a transient covalent bond is formed between the enzyme and the substrate metal ion catalysis:

More information

Lecture 16 (10/23/17) Lecture 16 (10/23/17)

Lecture 16 (10/23/17) Lecture 16 (10/23/17) Lecture 16 (10/23/17) Reading: Ch6; 207-210 Ch6; 192-193, 195-196, 205-206 Problems: Ch6 (text); 18, 19, 20, 21, 22 Ch6 (study guide-facts); 9, 11 Ch6 (study guide-applying); 2 NEXT Reading: Ch6; 213-218

More information

Lecture 15 (10/20/17) Lecture 15 (10/20/17)

Lecture 15 (10/20/17) Lecture 15 (10/20/17) Reading: Ch6; 98-203 Ch6; Box 6- Lecture 5 (0/20/7) Problems: Ch6 (text); 8, 9, 0,, 2, 3, 4, 5, 6 Ch6 (study guide-facts); 6, 7, 8, 9, 20, 2 8, 0, 2 Ch6 (study guide-applying); NEXT Reading: Ch6; 207-20

More information

CHEM April 10, Exam 3

CHEM April 10, Exam 3 Name CHEM 3511 April 10, 2009 Exam 3 Name Page 1 1. (12 points) Give the name of your favorite Tech professor and in one sentence describe why you like him/her. 2. (10 points) An enzyme cleaves a chemical

More information

BMB Lecture Covalent Catalysis 2. General Acid-base catalysis

BMB Lecture Covalent Catalysis 2. General Acid-base catalysis BMB 178 2017 Lecture 3 1. Covalent Catalysis 2. General Acid-base catalysis Evidences for A Covalent Intermediate Direct Evidences: Direct observation of formation and disappearance of an intermediate

More information

4. What is the general expression Keq (the equilibrium constant) in terms of product and reactant concentration? tell us about the enzyme.

4. What is the general expression Keq (the equilibrium constant) in terms of product and reactant concentration? tell us about the enzyme. Section 8 Enzyme Kinetics Pre-Activity Assignment 1. Produce a reading log for the sections in your text that discuss the Michaelis-Menten equation and including kcat. 2. Focus on the derivation of the

More information

Reading for today: Chapter 16 (selections from Sections A, B and C) Friday and Monday: Chapter 17 (Diffusion)

Reading for today: Chapter 16 (selections from Sections A, B and C) Friday and Monday: Chapter 17 (Diffusion) Lecture 29 Enzymes Reading for today: Chapter 6 (selections from Sections, B and C) Friday and Monday: Chapter 7 (Diffusion) 4/3/6 Today s Goals Michaelis-Menten mechanism for simple enzyme reactions:

More information

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester,

Enzymes Part III: Enzyme kinetics. Dr. Mamoun Ahram Summer semester, Enzymes Part III: Enzyme kinetics Dr. Mamoun Ahram Summer semester, 2015-2016 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions.

More information

Chapter 6 Overview. Enzymes. Catalysis most important function of proteins. Globular protein Increase rate of metabolic processes

Chapter 6 Overview. Enzymes. Catalysis most important function of proteins. Globular protein Increase rate of metabolic processes Chapter 6 Overview Enzymes Catalysis most important function of proteins n Enzymes protein catalysts Globular protein Increase rate of metabolic processes Enzymes kinetics info on reaction rates & measure

More information

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2 Chapter 6: Outline- Properties of Enzymes Classification of Enzymes Enzyme inetics Michaelis-Menten inetics Lineweaver-Burke Plots Enzyme Inhibition Catalysis Catalytic Mechanisms Cofactors Chapter 6:

More information

Enzymes! Accelerate reactions by x 10 6 (and up to x ) Specific with respect to reaction catalized.

Enzymes! Accelerate reactions by x 10 6 (and up to x ) Specific with respect to reaction catalized. Enzymes! Accelerate reactions by x 10 6 (and up to x 10 19 ) Specific with respect to reaction catalized. Selective with respect to reagent recognized. Cartoon Guide to Genetics Gonick & Wheelis 1 Microreview

More information

Chapter 15: Enyzmatic Catalysis

Chapter 15: Enyzmatic Catalysis Chapter 15: Enyzmatic Catalysis Voet & Voet: Pages 496-508 Slide 1 Catalytic Mechanisms Catalysis is a process that increases the rate at which a reaction approaches equilibrium Rate enhancement depends

More information

Proteins Act As Catalysts

Proteins Act As Catalysts Proteins Act As Catalysts Properties of Enzymes Catalyst - speeds up attainment of reaction equilibrium Enzymatic reactions -10 3 to 10 17 faster than the corresponding uncatalyzed reactions Substrates

More information

Exam 4 April 15, 2005 CHEM 3511 Print Name: KEY Signature

Exam 4 April 15, 2005 CHEM 3511 Print Name: KEY Signature 1) (8 pts) General Properties of Enzymes. Give four properties of enzymaticallycatalyzed reactions. The answers should indicate how enzymatic reactions differ from non-enzymatic reactions. Write four only

More information

Learning Outcomes. k 1

Learning Outcomes. k 1 Module 1DHS - Data Handling Skills Unit: Applied Maths Lecturer: Dr. Simon Hubbard (H13), Email: Simon.Hubbard@umist.ac.uk Title: Equilibria & Michaelis-Menten This lecture and problem class will introduce

More information

Enzymes II. Dr. Mamoun Ahram Summer, 2017

Enzymes II. Dr. Mamoun Ahram Summer, 2017 Enzymes II Dr. Mamoun Ahram Summer, 2017 Kinetics Kinetics is deals with the rates of chemical reactions. Chemical kinetics is the study of the rates of chemical reactions. For the reaction (A P), The

More information

Membrane Proteins: 1. Integral proteins: 2. Peripheral proteins: 3. Amphitropic proteins:

Membrane Proteins: 1. Integral proteins: 2. Peripheral proteins: 3. Amphitropic proteins: Membrane Proteins: 1. Integral proteins: proteins that insert into/span the membrane bilayer; or covalently linked to membrane lipids. (Interact with the hydrophobic part of the membrane) 2. Peripheral

More information

Biochemistry 3100 Sample Problems Binding proteins, Kinetics & Catalysis

Biochemistry 3100 Sample Problems Binding proteins, Kinetics & Catalysis (1) Draw an approximate denaturation curve for a typical blood protein (eg myoglobin) as a function of ph. (2) Myoglobin is a simple, single subunit binding protein that has an oxygen storage function

More information

Chemical Kinetics. Topic 7

Chemical Kinetics. Topic 7 Chemical Kinetics Topic 7 Corrosion of Titanic wrec Casón shipwrec 2Fe(s) + 3/2O 2 (g) + H 2 O --> Fe 2 O 3.H 2 O(s) 2Na(s) + 2H 2 O --> 2NaOH(aq) + H 2 (g) Two examples of the time needed for a chemical

More information

It s the amino acids!

It s the amino acids! Catalytic Mechanisms HOW do enzymes do their job? Reducing activation energy sure, but HOW does an enzyme catalysis reduce the energy barrier ΔG? Remember: The rate of a chemical reaction of substrate

More information

It is generally believed that the catalytic reactions occur in at least two steps.

It is generally believed that the catalytic reactions occur in at least two steps. Lecture 16 MECHANISM OF ENZYME ACTION A chemical reaction such as A ----> P takes place because a certain fraction of the substrate possesses enough energy to attain an activated condition called the transition

More information

ENZYME KINETICS. What happens to S, P, E, ES?

ENZYME KINETICS. What happens to S, P, E, ES? ENZYME KINETICS Go to lecture notes and/or supplementary handouts for the following: 1 Basic observations in enzyme inetics 2 Michaelis-Menten treatment of enzyme inetics 3 Briggs-Haldane treatment of

More information

Enzymes and Enzyme Kinetics I. Dr.Nabil Bashir

Enzymes and Enzyme Kinetics I. Dr.Nabil Bashir Enzymes and Enzyme Kinetics I Dr.Nabil Bashir Enzymes and Enzyme Kinetics I: Outlines Enzymes - Basic Concepts and Kinetics Enzymes as Catalysts Enzyme rate enhancement / Enzyme specificity Enzyme cofactors

More information

Introduction and. Properties of Enzymes

Introduction and. Properties of Enzymes Unit-III Enzymes Contents 1. Introduction and Properties of enzymes 2. Nomenclature and Classification 3. Mechanism of enzyme-catalyzed reactions 4. Kinetics of enzyme-catalyzed reactions 5. Inhibition

More information

Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters

Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2019 Lecture 13: Data Analysis and Interpretation of the Michaelis-Menten Parameters 19 February 2019 c David P. Goldenberg University

More information

Program for the rest of the course

Program for the rest of the course Program for the rest of the course 16.4 Enzyme kinetics 17.4 Metabolic Control Analysis 19.4. Exercise session 5 23.4. Metabolic Control Analysis, cont. 24.4 Recap 27.4 Exercise session 6 etabolic Modelling

More information

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6

Flow of Energy. Flow of Energy. Energy and Metabolism. Chapter 6 Energy and Metabolism Chapter 6 Flow of Energy Energy: the capacity to do work -kinetic energy: the energy of motion -potential energy: stored energy Energy can take many forms: mechanical electric current

More information

2054, Chap. 8, page 1

2054, Chap. 8, page 1 2054, Chap. 8, page 1 I. Metabolism: Energetics, Enzymes, and Regulation (Chapter 8) A. Energetics and work 1. overview a. energy = ability to do work (1) chemical, transport, mechanical (2) ultimate source

More information

Two requirements for life: Self-replication and appropriate catalysis. A. Most enzymes (def.: biological catalysts) are proteins

Two requirements for life: Self-replication and appropriate catalysis. A. Most enzymes (def.: biological catalysts) are proteins Enzymes We must be able to enhance the rates of many physical and chemical processes to remain alive and healthy. Support for that assertion: Maladies of genetic origin. Examples: Sickle-cell anemia (physical)

More information

Catalysis is Necessary for Life. Chapter 6 Enzymes. Why Study Enzymes? Enzymes are Biological Catalysts

Catalysis is Necessary for Life. Chapter 6 Enzymes. Why Study Enzymes? Enzymes are Biological Catalysts Chapter 6 Enzymes Catalysis is Necessary for Life Definition: a catalyst is a substance that speeds up a chemical reaction, while emerging unchanged at the end Corollary A: a catalyst is never used up,

More information

Lecture 27. Transition States and Enzyme Catalysis

Lecture 27. Transition States and Enzyme Catalysis Lecture 27 Transition States and Enzyme Catalysis Reading for Today: Chapter 15 sections B and C Chapter 16 next two lectures 4/8/16 1 Pop Question 9 Binding data for your thesis protein (YTP), binding

More information

TOPIC 6: Chemical kinetics

TOPIC 6: Chemical kinetics TOPIC 6: Chemical kinetics Reaction rates Reaction rate laws Integrated reaction rate laws Reaction mechanism Kinetic theories Arrhenius law Catalysis Enzimatic catalysis Fuente: Cedre http://loincognito.-iles.wordpress.com/202/04/titanic-

More information

Computational Biology 1

Computational Biology 1 Computational Biology 1 Protein Function & nzyme inetics Guna Rajagopal, Bioinformatics Institute, guna@bii.a-star.edu.sg References : Molecular Biology of the Cell, 4 th d. Alberts et. al. Pg. 129 190

More information

ENZYMES. by: Dr. Hadi Mozafari

ENZYMES. by: Dr. Hadi Mozafari ENZYMES by: Dr. Hadi Mozafari 1 Specifications Often are Polymers Have a protein structures Enzymes are the biochemical reactions Katalyzers Enzymes are Simple & Complex compounds 2 Enzymatic Reactions

More information

Energy, Enzymes, and Metabolism. Energy, Enzymes, and Metabolism. A. Energy and Energy Conversions. A. Energy and Energy Conversions

Energy, Enzymes, and Metabolism. Energy, Enzymes, and Metabolism. A. Energy and Energy Conversions. A. Energy and Energy Conversions Energy, Enzymes, and Metabolism Lecture Series 6 Energy, Enzymes, and Metabolism B. ATP: Transferring Energy in Cells D. Molecular Structure Determines Enzyme Fxn Energy is the capacity to do work (cause

More information

Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures (Exam 3 topics: Chapters 8, 12, 14 & 15)

Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures (Exam 3 topics: Chapters 8, 12, 14 & 15) Exam 3 Review (4/12/2011) Lecture note excerpt covering lectures 17-23 (Exam 3 topics: Chapters 8, 12, 14 & 15) Enzyme Kinetics, Inhibition, and Regulation Chapter 12 Enzyme Kinetics When the concentration

More information

Lecture 12: Burst Substrates and the V vs [S] Experiment

Lecture 12: Burst Substrates and the V vs [S] Experiment Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2019 Lecture 12: Burst Substrates and the V vs [S] Experiment 14 February 2019 c David P. Goldenberg University of Utah goldenberg@biology.utah.edu

More information

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University

Enzyme Kinetics. Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme. NC State University Enzyme Kinetics Michaelis-Menten Theory Dehaloperoxidase: Multi-functional Enzyme NC State University Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted

More information

G. GENERAL ACID-BASE CATALYSIS

G. GENERAL ACID-BASE CATALYSIS G. GENERAL ACID-BASE CATALYSIS Towards a Better Chemical Mechanism via Catalysis There are two types of mechanisms we ll be discussing this semester. Kinetic mechanisms are concerned with rate constants

More information

Supramolecular catalysis

Supramolecular catalysis Supramolecular catalysis Catalyst: a chemical species that accelerates a chemical reactions without being consumed rganometallic catalyst: soluble metal complex with organic ligands that accelerates the

More information

13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment

13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment 13 Determining the Efficiency of the Enzyme Acetylcholine Esterase Using Steady-State Kinetic Experiment 131 Learning Objective This laboratory introduces you to steady-state kinetic analysis, a fundamental

More information

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty.

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty. Lecture 15: Enzymes & Kinetics Mechanisms Margaret A. Daugherty Fall 2004 ROLE OF THE TRANSITION STATE Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products

More information

From Friday s material

From Friday s material 5.111 Lecture 35 35.1 Kinetics Topic: Catalysis Chapter 13 (Section 13.14-13.15) From Friday s material Le Chatelier's Principle - when a stress is applied to a system in equilibrium, the equilibrium tends

More information

Enzymes are macromolecules (proteins) that act as a catalyst

Enzymes are macromolecules (proteins) that act as a catalyst Chapter 8.4 Enzymes Enzymes speed up metabolic reactions by lowering energy barriers Even though a reaction is spontaneous (exergonic) it may be incredibly slow Enzymes cause hydrolysis to occur at a faster

More information

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility (P&S Ch 5; Fer Ch 2, 9; Palm Ch 10,11; Zub Ch 9) A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility B.

More information

Unit 3. Enzymes. Catalysis and enzyme kinetics.

Unit 3. Enzymes. Catalysis and enzyme kinetics. Unit 3 Enzymes. Catalysis and enzyme kinetics. OUTLINE 3.1. Characteristics of biological catalysts. Coenzymes, cofactors, vitamins Enzyme nomenclature and classification 3.2. Enzyme catalysis. Transition

More information

Chemical Kinetics AP Chemistry Lecture Outline

Chemical Kinetics AP Chemistry Lecture Outline Chemical Kinetics AP Chemistry Lecture Outline Name: Factors that govern rates of reactions. Generally... (1)...as the concentration of reactants increases, rate (2)...as temperature increases, rate (3)...with

More information

A) at equilibrium B) endergonic C) endothermic D) exergonic E) exothermic.

A) at equilibrium B) endergonic C) endothermic D) exergonic E) exothermic. CHEM 2770: Elements of Biochemistry Mid Term EXAMINATION VERSION A Date: October 29, 2014 Instructor: H. Perreault Location: 172 Schultz Time: 4 or 6 pm. Duration: 1 hour Instructions Please mark the Answer

More information

!n[a] =!n[a] o. " kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time!

!n[a] =!n[a] o.  kt. Half lives. Half Life of a First Order Reaction! Pressure of methyl isonitrile as a function of time! Half lives Half life: t 1/2 t 1/2 is the time it takes for the concentration of a reactant to drop to half of its initial value. For the reaction A! products Half Life of a First Order Reaction! Pressure

More information

Simple kinetics of enzyme action

Simple kinetics of enzyme action Simple kinetics of enzyme action It is established that enzymes form a bound complex to their reactants (i.e. substrates) during the course of their catalysis and prior to the release of products. This

More information

Regulation of metabolism

Regulation of metabolism Regulation of metabolism So far in this course we have assumed that the metabolic system is in steady state For the rest of the course, we will abandon this assumption, and look at techniques for analyzing

More information

Biochemistry Enzyme kinetics

Biochemistry Enzyme kinetics 1 Description of Module Subject Name Paper Name Module Name/Title Enzyme Kinetics Dr. Vijaya Khader Dr. MC Varadaraj 2 1. Objectives 2. Enzymes as biological catalyst 3. Enzyme Catalysis 4. Understanding

More information

Michaelis-Menton kinetics

Michaelis-Menton kinetics Michaelis-Menton kinetics The rate of an enzyme catalyzed reaction in which substrate S is converted into products P depends on the concentration of the enzyme E even though the enzyme does not undergo

More information

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order

Rate laws, Reaction Orders. Reaction Order Molecularity. Determining Reaction Order Rate laws, Reaction Orders The rate or velocity of a chemical reaction is loss of reactant or appearance of product in concentration units, per unit time d[p] = d[s] The rate law for a reaction is of the

More information

ENZYME KINETICS AND INHIBITION

ENZYME KINETICS AND INHIBITION ENZYME KINETICS AND INHIBITION The kinetics of reactions involving enzymes are a little bit different from other reactions. First of all, there are sometimes lots of steps involved. Also, the reaction

More information

Acid/Base catalysis Covalent catalysis Metal ion catalysis Electrostatic catalysis Proximity and orientation Preferential binding of the transition

Acid/Base catalysis Covalent catalysis Metal ion catalysis Electrostatic catalysis Proximity and orientation Preferential binding of the transition Enzyme catalysis Factors that contribute to catalytic power of enzymes Acid/Base catalysis Covalent catalysis Metal ion catalysis Electrostatic catalysis Proximity and orientation Preferential binding

More information

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters

Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters Biological Chemistry Laboratory Biology 3515/Chemistry 3515 Spring 2018 Lecture 13: Data Analysis for the V versus [S] Experiment and Interpretation of the Michaelis-Menten Parameters 20 February 2018

More information

Chem Lecture 4 Enzymes Part 1

Chem Lecture 4 Enzymes Part 1 Chem 452 - Lecture 4 Enzymes Part 1 Question of the Day: Enzymes are biological catalysts. Based on your general understanding of catalysts, what does this statement imply about enzymes? Introduction Enzymes

More information

Lecture 7: Enzymes and Energetics

Lecture 7: Enzymes and Energetics Lecture 7: Enzymes and Energetics I. Biological Background A. Biological work requires energy 1. Energy is the capacity to do work a. Energy is expressed in units of work (kilojoules) or heat energy (kilocalories)

More information

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation Objectives INTRODUCTION TO METABOLISM. Chapter 8 Metabolism, Energy, and Life Explain the role of catabolic and anabolic pathways in cell metabolism Distinguish between kinetic and potential energy Distinguish

More information

Basic Synthetic Biology circuits

Basic Synthetic Biology circuits Basic Synthetic Biology circuits Note: these practices were obtained from the Computer Modelling Practicals lecture by Vincent Rouilly and Geoff Baldwin at Imperial College s course of Introduction to

More information

Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp

Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp Lecture 11: Enzymes: Kinetics [PDF] Reading: Berg, Tymoczko & Stryer, Chapter 8, pp. 216-225 Updated on: 2/4/07 at 9:00 pm Key Concepts Kinetics is the study of reaction rates. Study of enzyme kinetics

More information

Chapter 8 Notes. An Introduction to Metabolism

Chapter 8 Notes. An Introduction to Metabolism Chapter 8 Notes An Introduction to Metabolism Describe how allosteric regulators may inhibit or stimulate the activity of an enzyme. Objectives Distinguish between the following pairs of terms: catabolic

More information

Lecture 19 (10/30/17) Enzyme Regulation

Lecture 19 (10/30/17) Enzyme Regulation Reading: Ch5; 164, 166-169 Problems: none Remember Today at 6:30 in PHO-206 is the first MB lecture & quiz NEXT Reading: Ch5; 158-169, 162-166, 169-174 Lecture 19 (10/30/17) Problems: Ch5 (text); 3,7,8,10

More information

Enzymes and Protein Structure

Enzymes and Protein Structure Enzymes and Protein Structure Last Week PTM s We (Re)Learned About Primary Structure And Tertiary Structure S-Q-D-A-G-M-Q-Q-G-A-D-M-D-Q-V-S-A Secondary Structure Enzymes What are these crazy things called

More information

BIOCHEMISTRY. František Vácha. JKU, Linz.

BIOCHEMISTRY. František Vácha. JKU, Linz. BIOCHEMISTRY František Vácha http://www.prf.jcu.cz/~vacha/ JKU, Linz Recommended reading: D.L. Nelson, M.M. Cox Lehninger Principles of Biochemistry D.J. Voet, J.G. Voet, C.W. Pratt Principles of Biochemistry

More information

Chemical kinetics and catalysis

Chemical kinetics and catalysis Chemical kinetics and catalysis Outline Classification of chemical reactions Definition of chemical kinetics Rate of chemical reaction The law of chemical raction rate Collision theory of reactions, transition

More information

Pyruvate is reduced to lactate in anaerobic metabolism in muscle cells

Pyruvate is reduced to lactate in anaerobic metabolism in muscle cells Pyruvate is reduced to lactate in anaerobic metabolism in muscle cells Transferases and hydrolases catalyze group transfer reactions Acyl transfer: Hexokinase catalyzes a phosphoryl transfer from ATP to

More information

Principles of Enzyme Catalysis Arthur L. Haas, Ph.D. Department of Biochemistry and Molecular Biology

Principles of Enzyme Catalysis Arthur L. Haas, Ph.D. Department of Biochemistry and Molecular Biology Principles of Enzyme Catalysis Arthur L. Haas, Ph.D. Department of Biochemistry and Molecular Biology Review: Garrett and Grisham, Enzyme Specificity and Regulation (Chapt. 13) and Mechanisms of Enzyme

More information

Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the

Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the Biochemical Kinetics: the science that studies rates of chemical reactions An example is the reaction (A P), The velocity, v, or rate, of the reaction A P is the amount of P formed or the amount of A consumed

More information

Enzyme Kinetics 2014

Enzyme Kinetics 2014 V 41 Enzyme Kinetics 2014 Atkins Ch.23, Tinoco 4 th -Ch.8 Enzyme rxn example Catalysis/Mechanism: E + S k -1 ES k 1 ES E is at beginning and k 2 k -2 E + P at end of reaction Catalyst: No consumption of

More information

CHEM 251 (4 credits): Description

CHEM 251 (4 credits): Description CHEM 251 (4 credits): Intermediate Reactions of Nucleophiles and Electrophiles (Reactivity 2) Description: An understanding of chemical reactivity, initiated in Reactivity 1, is further developed based

More information

Exam 3 11/10/2014 Last Name (PRINT): First Name: Pg Topic Pts Total possible 3 Multiple. 12 choice 4 Multiple. 9 choice 5 Multiple

Exam 3 11/10/2014 Last Name (PRINT): First Name: Pg Topic Pts Total possible 3 Multiple. 12 choice 4 Multiple. 9 choice 5 Multiple Last Name (PRINT): First Name: Pg Topic Pts Total possible 3 Multiple 12 choice 4 Multiple 9 choice 5 Multiple 12 choice 6 Multiple 16 choice, start T/F 7 T/F and Fill in Blank 22 8 Binding problems 12

More information

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects

Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters), Review of Enzyme Kinetics, Selectivity, ph and Temperature Effects 1.492 - Integrated Chemical Engineering (ICE Topics: Biocatalysis MIT Chemical Engineering Department Instructor: Professor Kristala Prather Fall 24 Lecture # 3, 4 Selecting a Catalyst (Non-Kinetic Parameters,

More information

BIOCHEMISTRY - CLUTCH REVIEW 2.

BIOCHEMISTRY - CLUTCH REVIEW 2. !! www.clutchprep.com CONCEPT: BINDING AFFINITY Protein-ligand binding is reversible, like a chemical equilibrium [S] substrate concentration [E] enzyme concentration Ligands bind to proteins via the same

More information

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER PETER PAZMANY SEMMELWEIS CATHOLIC UNIVERSITY UNIVERSITY Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework** Consortium leader PETER PAZMANY

More information

Catalysis. Instructor: Dr. Tsung-Lin Li Genomics Research Center Academia Sinica

Catalysis. Instructor: Dr. Tsung-Lin Li Genomics Research Center Academia Sinica Catalysis Instructor: Dr. Tsung-Lin Li Genomics Research Center Academia Sinica References: Biochemistry" by Donald Voet and Judith G. Voet Biochemistry" by Christopher K. Mathews, K. E. Van Hold and Kevin

More information

Enzyme Kinetics: The study of reaction rates. For each very short segment dt of the reaction: V k 1 [S]

Enzyme Kinetics: The study of reaction rates. For each very short segment dt of the reaction: V k 1 [S] Enzyme Kinetics: The study of reaction rates. For the one-way st -order reaction: S the rate of reaction (V) is: V P [ P] moles / L t sec For each very short segment dt of the reaction: d[ P] d[ S] V dt

More information