4. The Michaelis-Menten combined rate constant Km, is defined for the following kinetic mechanism as k 1 k 2 E + S ES E + P k -1

Size: px
Start display at page:

Download "4. The Michaelis-Menten combined rate constant Km, is defined for the following kinetic mechanism as k 1 k 2 E + S ES E + P k -1"

Transcription

1 Fall 2000 CH 595C Exam 1 Answer Key Multiple Choice 1. One of the reasons that enzymes are such efficient catalysts is that a) the energy level of the enzyme-transition state complex is much higher than for an uncatalyzed reaction b) enzymes can lower the activation energy for the reaction c) the translational entropy of the substrate is greatly increased upon binding to the enzyme d) the enzyme typically binds the substrate much more strongly than the transition state e) enzymes can employ nucleophilic reaction mechanisms while reactions in free solution can only proceed by electrophilic mechanisms 2. For an enzyme reaction that shows typical Michaelis-Menten kinetics, doubling the concentration of enzyme will a. triple the Km b. double the Km c. halve the Km d. not alter the Km 3. If the following section of a polypeptide is folded into an α-helix, to which amino acid is the carbonyl group of alanine noncovalently bonded? ala-ser-val-asp-glu-leu-gly a. serine b. glutamic acid c. aspartic acid d. leucine 4. The Michaelis-Menten combined rate constant Km, is defined for the following kinetic mechanism as k 1 k 2 E + S ES E + P k -1 a. (k 1 + k 2 )/k -1 b. (k -1 + k 2 )/k 1 c. (k 1 + k -1 )k 2 d. k -1 /k 1 5. The highly charged 2,3-bisphosphoglycerate binds to hemoglobin a. on the exterior surface b. on the heme group c. at the Fe +2 ion d. in the interior cavity

2 6. At high altitudes, the concentration of bisphosphoglycerate (BPG) in erythrocytes is higher than at low altitudes. Which of the following statements is logically correct? a. The P 50 of Hb at high altitudes is less than the P 50 of Hb in erythrocytes at low altitudes. b. Hb adjusted to high altitudes will not show a Bohr effect. c. The P 50 of Hb increases as the concentration of BPG in erythrocytes increases. d. The P 50 of myoglobin is increased as the concentration of BPG goes up in erythrocytes adjusted to high altitudes. 7. An interesting characteristic in the allosteric enzyme, ATCase, which is not found in hemoglobin, is a. two different types of protein subunits in ATCase b. allosteric effector sites are on both subunit types c. binding of both positive and negative heterotropic effectors d. one subunit type binds only the substrate, while the other subunit type binds only heterotropic effectors. 8. Lysozyme has a ph optimum centered around ph 5.0. The active site of lysozyme contains a glutamic acid residue (pka = 5.5) and an aspartic acid residue (pka = 4.0). Which of the following statements is correct about the mechanism of lysozyme? a. The glutamic acid residue is in a more polar environment that the aspartic acid. b. During the entire catalytic mechanism, the aspartic acid residue remains unprotonated. c. During the mechanism, an oxyanion transition state forms. d. The glutamic acid residue acts as a general base catalyst. 9. The good transition state analog is one which would serve also as an effective a. competitive inhibitor b. noncompetitive inhibitor c. allosteric effector d. uncompetitive inhinbitor 10. Which of the following is correct with respect to the amino acid composition of proteins? a. Proteins with the same molecular weight have the same amino acid composition. b. Proteins contain at least one each of the twenty different standard amino acids. c. Larger proteins have a more uniform distribution of amino acids than smaller proteins. d. Proteins with different functions usually differ significantly in their amino acid composition. e. The average molecular weight of an amino acid in a protein increases with the size of the protein. 11. For amino acids with neutral R groups, at any ph below the pi of the amino acid, the population of amino acids in solution will: a. have no charged groups. b. have no net charge. c. have a net positive charge. d. have positive and negative charges in equal concentration. e. have a net negative charge.

3 12. Which of the following amino acids have two chiral centers? a. threonine b. proline c. isoleucine d. a and b e. a and c 13. Which of the following amino acids lacks an asymmetric carbon atom? a) serine b) glycine c) histidine d) glutamine e) leucine 14. Enzymes are catalysts which a) accelerate the rates of biological reactions b) inhibit the formation of unwanted metabolites c) change the equilibrium constants of reactions d) are generally non-specific in reactions they catalyze e) only work in hydrophobic surroundings 15. The partial double bond character of the peptide bond a) restricts rotation around the C-N bond b) allows free rotation around the C-N bond c) restricts rotation around the Cα-C bond d) restricts rotation around the N-Cα bond e) allows free rotation around both C-N and C-C bonds 16. The affinity of hemoglobin for oxygen is increased by a) a higher [H + ] concentration in the surroundings b) an increase in the organic phosphate level in red cells c) an increase in the CO 2 concentration in the surroundings d) an increase in the oxygen concentration in the surroundings 17. The aspartic acid residue (Asp 52 ) at the active site of lysozyme serves which of the following purposes as part of the catalytic mechanism a) general acid catalysis b) general base catalysis c) electrostatic stabilization of a carbonium ion d) covalent catalysis e) hydrophobic interaction in binding of the substrate 18. In an α helix, the R groups on the amino acid residues: a) are found on the outside of the helix spiral b) generate the hydrogen bonds that form the helix c) stack within the interior of the helix d) cause only right-handed helices to form e) alternate between the outside and the inside of the helix

4 19. The three-dimensional conformation of a protein may be strongly influenced by amino acid residues that are very far apart in sequence. This relationship is in contrast to secondary structure, where the amino residues are: a) always side by side b) generally near each other in sequence c) generally on different polypeptide strands d) generally near the polypeptide chain s amino terminus or carboxyl terminus e) restricted to only about seven of the twenty standard amino acids found in proteins 20. Experiments on denaturation and renaturation after the reduction and reoxidation of the S-Sbonds in the enzyme ribonuclease (RNase) have shown that: a) the primary sequence of RNase is sufficient to determine the formation of a specific secondary and tertiary structure b) the enzyme, dissolved in water, is thermodynamically stable relative to the mixture of amino acids whose residues are contained in RNase c) native ribonuclease does not have a unique secondary and tertiary structure d) the completely unfolded enzyme, with all S-S- bonds broken, is still enzymatically active e) the folding of denatured RNase into the native, active conformation, requires the input of energy in the form of heat 21. For an enzyme which obeys Michaelis-Menten kinetics, what is the V max value in µmol/min if v = 35 µmol/min when [S] = K m? a. 50 b. 70 c. 45 d. 95

5 Written Answers 1. In the use of NMR to determine the structure of biomolecules the structural information is obtained primarily by measuring the nuclear Overhauser effect. a) Very briefly describe what the nuclear Overhauser effect results from and to what degree the effect depends upon distance. Give the maximum practical observable distance. The nuclear Overhauser effect results from an interaction between the magnetic dipoles of the individual nuclei. The effect depends on the distance between nuclei, and is greatest for nuclei separated by less than about 3 Å, and is observable when nuclei are separated by up to about 6 Å. The nuclear Overhauser effect therefore can be used to determine the distance between protons, when the distances are less than or equal to about 6 Å. b) Solving macromolecular structures by X-ray crystallography depends upon measurement of the electron density at each point within the unit cell. In turn, those measurements depend upon the intensities of the diffracted X-rays and the phases of the diffracted X-rays. Briefly describe two common methods (MIR and MAD) that can be used to solve the phase problem. The multiple isomorphous replacement (MIR) method: a) diffraction data (intensities) are measured for a "native" crystal. b) diffraction data (intensities) are measured for a "heavy atom derivative" crystal, prepared by soaking a heavy atom such as mercury into the crystal, or by incorporating selenomethionine. c) By comparing the native and derivative diffraction intensities, it is possible to calculate the phases for the native crystal. Note: usually at least two different heavy atom derivatives are required for the MIR method to work. d) Once phases are known, the electron density within the crystal can be calculated. A model of the protein structure can then be built into a map of the electron density. The "multiwavelength anomolous dispersion" (MAD) methods: Additional information used in calculating phases can be obtained if x-ray diffraction intensities can be measured at wavelengths near the absorption edge of the heavy atom derivative. A tunable x-ray source is required (provided by a synchroton). In a synchrotron, accelerated electrons traveling near the speed of light emit intense x-rays. Using "MAD" data: a) often only a single heavy atom derivative is required to solve a structure. b) it is possible to solve structure of higher molecular weight molecules (such as the ribosome, at MW = 2,500,000). c) Contrast the use of NMR and X-ray crystallography as applied to biomacromolecules. Address in particular the issues of any limitations on the size of the macromolecules whose structure can be determined by either technique; what types of information that can be determined by one technique and not the other and whether both techniques always give the same structure for a particular macromolecule (both proteins and nucleic acids).

6 NMR: - obtain a set of 1 H- 1 H distances, used to construct a model of the structure - better at the short-range detail - can be done in solution, i.e. does not require a crystal - MW limit : ~30,000 X-RAY: - obtain electron density map, into which structure is built - better at large-scale structural features - proteins can undergo re-arrangements upon crystallizing leading to inaccurate models - MW limit : ~2.5 x 10 6

7 2. From the amino acid structures listed below, answer the following questions: a. What is the name of amino acid A? _glutamine b. Which of the above amino acids has the highest isoelectric point? _lysine (C) _ c. Which of the above amino acids is classified as a basic amino acid? lysine (C) d. Which of the above amino acids absorbs light centered at 280 nm? tyrosine (D) e. What is the name of amino acid D? tyrosine f. What is the name of amino acid B? valine g. Draw the structure of tryptophan showing the charge on the molecule as it would be at ph 7. h. Draw the structure of the dipeptide pro-his (at ph 7), indicating the peptide bond. i. Name 2 sulfur containing amino acids methionine cysteine j. What is the approximate pk of the side chain amino group of lysine? 10.5

8 3. a) What is meant by the statement stacking interactions are important in stabilizing the structures of nucleic acids? Describe the nature of these interactions and give examples for both DNA and RNA molecules. "Stacking interactions" in nucleic acids refers to the tendency of purine and pyrimidine bases to form extended stacks of planar, parallel molecules, with at least partial overlap of the bases. These stacking interactions are a form of van der Waals interactions. The stacking interactions are stabilized by hydrophobic forces. b) Which of the following stacking interactions will provide more stability : purine-purine or pyrimidine-pyrimidine? Explain why. The degree of stability in stacking is proportional to the degree of overlap of the bases. Because of the greater possibility for overlap (and thus enhanced van der Waals interactions ) with the larger purine bases, purine-purine stacking provides more stability than pyrimidine-pyrimidine stacking. c) Bound metals are often found in RNA structures. What kinds of roles can the metals play? Bound metals in RNA can play a general role of neutralizing the charge on the phosphodiester bridges. Positively-charged ions such as those of Na, K, and Mg can bind electrostatically to the RNA and allow for foldings of the RNA that would otherwise have been made difficult by a concentration of negative charges on the phosphate groups. Such binding of metals is non-specific. Metal ions can also bind in some specific metal pockets, such as those in trna. Here the metal can stabilize specific forms of folding. d) Hydrogen bonding also plays a role in nucleic acid structure stabilization. In what important ways does it differ from stacking and metal ion interactions? While stacking interactions are relatively non-specific in nature, hydrogen bonding is highly specific and highly directional. For example, the G-C and A-T hydrogen bonding pairs involves not just a general purine-pyrimidine interaction but favors specific Watson-Crick base pairing. Even where non-watson-crick pairing occurs, it is still highly specific (see V&V p.866).

9 4. a) Using the simple expression E + S ES E + P as a basis, describe the effect of competitive and uncompetitive inhibitors. Competitive: E + S ES E + P + + I I Uncompetitive: E + S ES E + P " " EI ESI b) With a brief description and diagrams show how these two types of inhibitors can be distinguished by Lineweaver-Burk plots. c) Using aspartate transcarbamoylase as an example, contrast feedback inhibition of an enzyme with simple competitive and uncompetitive inhibition. Feedback inhibition of an enzyme occurs when a product of a reaction pathway (often many steps away from the inhibited reaction) binds to the enzyme and causes inhibition, e.g., inhibition by "E": A B C D E In the case of aspartate transcarbamoylase, it is inhibited by CTP - an end product of the pathway. By contrast to simple competitive and uncompetitive inhibition where the inhibition typically binds to the active site of the enzyme, feedback inhibitors bind at sites different from the active site and sometimes even on separate regulatory subunits (e.g., ATCase). Feedback inhibitors typically show sigmoidal kinetics of inhibition and nonlinear Lineweaver-Burk plots.

10 5. Studies of oxygen transport in pregnant mammals have shown that the O 2 -saturation curves of fetal and maternal blood are markedly different when measured under the same conditions. Fetal erythrocytes contain a structural variant of hemoglobin, HbF, consisting of two α and two γ subunits (α 2 γ 2 ), whereas maternal erythrocytes contain HbA (α 2 β 2 ). (a) Which hemoglobin has a higher affinity for oxygen under physiological conditions, HbA or HbF? Explain. HbF has a higher affinity. According to the graph, the P 50 for HbF is approx. 2kPa and that of HbA about 4kPa. The P 50 represents the oxygen concentration for half-maximal saturation. Thus, in the presence of BPG, it takes approx. half the oxygen tension to saturate HbF as it does HbA. (b) What is the physiological significance of the different O 2 affinities? It makes sense that HbF has a higher oxygen affinity as oxygen has to be transferred from the blood of the mother to that of the fetus. The binding of oxygen by hemoglobins is a dynamic process with O 2 binding and releasing. When an O 2 molecule is released from HbA, it is more likely to be bound by HbF than another HbA. (c) When all the BPG is carefully removed from samples of HbA and HbF, the measured O 2 -saturation curves (and consequently the O 2 affinities) are displaced to the left. However, HbA now has a greater affinity for oxygen than does HbF. When BPG is reintroduced, the O 2 - saturation curves return to normal, as shown in the grwph. What is the effect of BPG on the O 2 affinity of hemoglobin? How can the above information be used to explain the different O 2 affinities of fetal and maternal hemoglobin? BPG when bound to hemoglobins (1 tetramer in the central cavity), it decreases the oxygen affinity of that molecule by stabilizing the deoxy form. The above information indicates that the binding of BPG to HbA has a greater effect than does BPG binding to HbF. This suggests that BPG binds more tightly to HbA than HbF. Stronger binding of BPG by HbA than HbF indicates that the residues lining the central cavity of the deoxy HbA are different than those in HbF.

11 6. You have a polypeptide that has been degraded with cyanogen bromide (cleaves on the C- terminal side of methionines) and trypsin (cleaves on the C-terminal side of lysines and arginines). The sequences of the fragments are listed below (using the one-letter codes). Is there enough information to derive the complete amino acid sequence of the polypeptide? If so list the complete sequence. If not, show how much of the sequence you can derive. In both cases show your methodology. What other treatments might be used to support such a deduced sequence, or complete the sequencing? Cyanogen bromide treatment: Trypsin treatment: (1) K (5) FMK (2) RFM (6) GMNIK (3) MLYCRGM (7) GLMR (4) NIKGLM (8) MLYCR There is sufficient information to derive a complete polypeptide sequence. In order to predict the sequence, one has to examine what overlaps there are between the peptides derived from each cleavage treatment. The overlaps are illustrated below. MLYCRGM GMNIK NIKGLM GLMR RFM FMK Thus, the peptide sequence is MLYCRGMNIKGLMRFMK. To confirm the deduced sequence, perform one round of Edman degradation to verify that the N-terminus is methionine, and perform a brief carboxypeptidase A digestion to verify that lysine is at the C-terminus.

Biochemistry 3100 Sample Problems Binding proteins, Kinetics & Catalysis

Biochemistry 3100 Sample Problems Binding proteins, Kinetics & Catalysis (1) Draw an approximate denaturation curve for a typical blood protein (eg myoglobin) as a function of ph. (2) Myoglobin is a simple, single subunit binding protein that has an oxygen storage function

More information

Membrane Proteins: 1. Integral proteins: 2. Peripheral proteins: 3. Amphitropic proteins:

Membrane Proteins: 1. Integral proteins: 2. Peripheral proteins: 3. Amphitropic proteins: Membrane Proteins: 1. Integral proteins: proteins that insert into/span the membrane bilayer; or covalently linked to membrane lipids. (Interact with the hydrophobic part of the membrane) 2. Peripheral

More information

BCH 4053 Exam I Review Spring 2017

BCH 4053 Exam I Review Spring 2017 BCH 4053 SI - Spring 2017 Reed BCH 4053 Exam I Review Spring 2017 Chapter 1 1. Calculate G for the reaction A + A P + Q. Assume the following equilibrium concentrations: [A] = 20mM, [Q] = [P] = 40fM. Assume

More information

What binds to Hb in addition to O 2?

What binds to Hb in addition to O 2? Reading: Ch5; 158-169, 162-166, 169-174 Problems: Ch5 (text); 3,7,8,10 Ch5 (study guide-facts); 1,2,3,4,5,8 Ch5 (study guide-apply); 2,3 Remember Today at 5:30 in CAS-522 is the second chance for the MB

More information

CHEM 3653 Exam # 1 (03/07/13)

CHEM 3653 Exam # 1 (03/07/13) 1. Using phylogeny all living organisms can be divided into the following domains: A. Bacteria, Eukarya, and Vertebrate B. Archaea and Eukarya C. Bacteria, Eukarya, and Archaea D. Eukarya and Bacteria

More information

C a h p a t p e t r e r 6 E z n y z m y e m s

C a h p a t p e t r e r 6 E z n y z m y e m s Chapter 6 Enzymes 4. Examples of enzymatic reactions acid-base catalysis: give and take protons covalent catalysis: a transient covalent bond is formed between the enzyme and the substrate metal ion catalysis:

More information

Problems from Previous Class

Problems from Previous Class 1 Problems from Previous lass 1. What is K m? What are the units of K m? 2. What is V max? What are the units of V max? 3. Write down the Michaelis-Menten equation. 4. What order of reaction is the reaction

More information

CHAPTER 29 HW: AMINO ACIDS + PROTEINS

CHAPTER 29 HW: AMINO ACIDS + PROTEINS CAPTER 29 W: AMI ACIDS + PRTEIS For all problems, consult the table of 20 Amino Acids provided in lecture if an amino acid structure is needed; these will be given on exams. Use natural amino acids (L)

More information

Biochemistry Quiz Review 1I. 1. Of the 20 standard amino acids, only is not optically active. The reason is that its side chain.

Biochemistry Quiz Review 1I. 1. Of the 20 standard amino acids, only is not optically active. The reason is that its side chain. Biochemistry Quiz Review 1I A general note: Short answer questions are just that, short. Writing a paragraph filled with every term you can remember from class won t improve your answer just answer clearly,

More information

A) at equilibrium B) endergonic C) endothermic D) exergonic E) exothermic.

A) at equilibrium B) endergonic C) endothermic D) exergonic E) exothermic. CHEM 2770: Elements of Biochemistry Mid Term EXAMINATION VERSION A Date: October 29, 2014 Instructor: H. Perreault Location: 172 Schultz Time: 4 or 6 pm. Duration: 1 hour Instructions Please mark the Answer

More information

Section Week 3. Junaid Malek, M.D.

Section Week 3. Junaid Malek, M.D. Section Week 3 Junaid Malek, M.D. Biological Polymers DA 4 monomers (building blocks), limited structure (double-helix) RA 4 monomers, greater flexibility, multiple structures Proteins 20 Amino Acids,

More information

Properties of amino acids in proteins

Properties of amino acids in proteins Properties of amino acids in proteins one of the primary roles of DNA (but not the only one!) is to code for proteins A typical bacterium builds thousands types of proteins, all from ~20 amino acids repeated

More information

1. Amino Acids and Peptides Structures and Properties

1. Amino Acids and Peptides Structures and Properties 1. Amino Acids and Peptides Structures and Properties Chemical nature of amino acids The!-amino acids in peptides and proteins (excluding proline) consist of a carboxylic acid ( COOH) and an amino ( NH

More information

Dental Biochemistry Exam The total number of unique tripeptides that can be produced using all of the common 20 amino acids is

Dental Biochemistry Exam The total number of unique tripeptides that can be produced using all of the common 20 amino acids is Exam Questions for Dental Biochemistry Monday August 27, 2007 E.J. Miller 1. The compound shown below is CH 3 -CH 2 OH A. acetoacetate B. acetic acid C. acetaldehyde D. produced by reduction of acetaldehyde

More information

THE UNIVERSITY OF MANITOBA. PAPER NO: _1_ LOCATION: 173 Robert Schultz Theatre PAGE NO: 1 of 5 DEPARTMENT & COURSE NO: CHEM / MBIO 2770 TIME: 1 HOUR

THE UNIVERSITY OF MANITOBA. PAPER NO: _1_ LOCATION: 173 Robert Schultz Theatre PAGE NO: 1 of 5 DEPARTMENT & COURSE NO: CHEM / MBIO 2770 TIME: 1 HOUR THE UNIVERSITY OF MANITOBA 1 November 1, 2016 Mid-Term EXAMINATION PAPER NO: _1_ LOCATION: 173 Robert Schultz Theatre PAGE NO: 1 of 5 DEPARTMENT & COURSE NO: CHEM / MBIO 2770 TIME: 1 HOUR EXAMINATION:

More information

PROTEIN STRUCTURE AMINO ACIDS H R. Zwitterion (dipolar ion) CO 2 H. PEPTIDES Formal reactions showing formation of peptide bond by dehydration:

PROTEIN STRUCTURE AMINO ACIDS H R. Zwitterion (dipolar ion) CO 2 H. PEPTIDES Formal reactions showing formation of peptide bond by dehydration: PTEI STUTUE ydrolysis of proteins with aqueous acid or base yields a mixture of free amino acids. Each type of protein yields a characteristic mixture of the ~ 20 amino acids. AMI AIDS Zwitterion (dipolar

More information

2013 W. H. Freeman and Company. 6 Enzymes

2013 W. H. Freeman and Company. 6 Enzymes 2013 W. H. Freeman and Company 6 Enzymes CHAPTER 6 Enzymes Key topics about enzyme function: Physiological significance of enzymes Origin of catalytic power of enzymes Chemical mechanisms of catalysis

More information

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2 Chapter 6: Outline- Properties of Enzymes Classification of Enzymes Enzyme inetics Michaelis-Menten inetics Lineweaver-Burke Plots Enzyme Inhibition Catalysis Catalytic Mechanisms Cofactors Chapter 6:

More information

Enzyme Catalysis & Biotechnology

Enzyme Catalysis & Biotechnology L28-1 Enzyme Catalysis & Biotechnology Bovine Pancreatic RNase A Biochemistry, Life, and all that L28-2 A brief word about biochemistry traditionally, chemical engineers used organic and inorganic chemistry

More information

Biochemistry 694:301 First Exam Dr. Deis. Please use BLOCK CAPITAL letters like this --- A, B, C, D, E. Not lowercase!

Biochemistry 694:301 First Exam Dr. Deis. Please use BLOCK CAPITAL letters like this --- A, B, C, D, E. Not lowercase! Biochemistry 694:301 First Exam Dr. Deis Mon. Oct. 1, 2001 Name I.D. Num Row Letter Seat Number This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is worth two points.

More information

BSc and MSc Degree Examinations

BSc and MSc Degree Examinations Examination Candidate Number: Desk Number: BSc and MSc Degree Examinations 2018-9 Department : BIOLOGY Title of Exam: Molecular Biology and Biochemistry Part I Time Allowed: 1 hour and 30 minutes Marking

More information

Chemistry Chapter 22

Chemistry Chapter 22 hemistry 2100 hapter 22 Proteins Proteins serve many functions, including the following. 1. Structure: ollagen and keratin are the chief constituents of skin, bone, hair, and nails. 2. atalysts: Virtually

More information

Affinity labels for studying enzyme active sites. Irreversible Enzyme Inhibition. Inhibition of serine protease with DFP

Affinity labels for studying enzyme active sites. Irreversible Enzyme Inhibition. Inhibition of serine protease with DFP Irreversible Enzyme Inhibition Irreversible inhibitors form stable covalent bonds with the enzyme (e.g. alkylation or acylation of an active site side chain) There are many naturally-occurring and synthetic

More information

Proteins: Characteristics and Properties of Amino Acids

Proteins: Characteristics and Properties of Amino Acids SBI4U:Biochemistry Macromolecules Eachaminoacidhasatleastoneamineandoneacidfunctionalgroupasthe nameimplies.thedifferentpropertiesresultfromvariationsinthestructuresof differentrgroups.thergroupisoftenreferredtoastheaminoacidsidechain.

More information

Chapter 8. Enzymes: basic concept and kinetics

Chapter 8. Enzymes: basic concept and kinetics Chapter 8 Enzymes: basic concept and kinetics Learning objectives: mechanism of enzymatic catalysis Michaelis -Menton Model Inhibition Single Molecule of Enzymatic Reaction Enzymes: catalysis chemical

More information

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems Introduction Enzymes are Biological Catalysis A catalyst is a substance

More information

EXAM 1 Fall 2009 BCHS3304, SECTION # 21734, GENERAL BIOCHEMISTRY I Dr. Glen B Legge

EXAM 1 Fall 2009 BCHS3304, SECTION # 21734, GENERAL BIOCHEMISTRY I Dr. Glen B Legge EXAM 1 Fall 2009 BCHS3304, SECTION # 21734, GENERAL BIOCHEMISTRY I 2009 Dr. Glen B Legge This is a Scantron exam. All answers should be transferred to the Scantron sheet using a #2 pencil. Write and bubble

More information

Proteins Act As Catalysts

Proteins Act As Catalysts Proteins Act As Catalysts Properties of Enzymes Catalyst - speeds up attainment of reaction equilibrium Enzymatic reactions -10 3 to 10 17 faster than the corresponding uncatalyzed reactions Substrates

More information

NH 2. Biochemistry I, Fall Term Sept 9, Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter

NH 2. Biochemistry I, Fall Term Sept 9, Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter Biochemistry I, Fall Term Sept 9, 2005 Lecture 5: Amino Acids & Peptides Assigned reading in Campbell: Chapter 3.1-3.4. Key Terms: ptical Activity, Chirality Peptide bond Condensation reaction ydrolysis

More information

Final Chem 4511/6501 Spring 2011 May 5, 2011 b Name

Final Chem 4511/6501 Spring 2011 May 5, 2011 b Name Key 1) [10 points] In RNA, G commonly forms a wobble pair with U. a) Draw a G-U wobble base pair, include riboses and 5 phosphates. b) Label the major groove and the minor groove. c) Label the atoms of

More information

Reading for today: Chapter 16 (selections from Sections A, B and C) Friday and Monday: Chapter 17 (Diffusion)

Reading for today: Chapter 16 (selections from Sections A, B and C) Friday and Monday: Chapter 17 (Diffusion) Lecture 29 Enzymes Reading for today: Chapter 6 (selections from Sections, B and C) Friday and Monday: Chapter 7 (Diffusion) 4/3/6 Today s Goals Michaelis-Menten mechanism for simple enzyme reactions:

More information

5) An amino acid that doesn't exist in proteins: - Tyrosine - Tryptophan - Cysteine - ornithine* 6) How many tripeptides can be formed from using one

5) An amino acid that doesn't exist in proteins: - Tyrosine - Tryptophan - Cysteine - ornithine* 6) How many tripeptides can be formed from using one Biochemistry First 1) An amino acid that does not have L & D: - proline - serine - Glycine* - valine 2) An amino acid that exists in beta-bends and turns: - Gly* - Pro - Arg - Asp 3) An amino acid that

More information

It s the amino acids!

It s the amino acids! Catalytic Mechanisms HOW do enzymes do their job? Reducing activation energy sure, but HOW does an enzyme catalysis reduce the energy barrier ΔG? Remember: The rate of a chemical reaction of substrate

More information

Solutions In each case, the chirality center has the R configuration

Solutions In each case, the chirality center has the R configuration CAPTER 25 669 Solutions 25.1. In each case, the chirality center has the R configuration. C C 2 2 C 3 C(C 3 ) 2 D-Alanine D-Valine 25.2. 2 2 S 2 d) 2 25.3. Pro,, Trp, Tyr, and is, Trp, Tyr, and is Arg,

More information

BBS501 Section 1 9:00 am 10:00 am Monday thru Friday LRC 105 A & B

BBS501 Section 1 9:00 am 10:00 am Monday thru Friday LRC 105 A & B BBS501 Section 1 9:00 am 10:00 am Monday thru Friday LRC 105 A & B Lecturers: Dr. Yie-Hwa Chang Room M130 Phone: #79263 E-mail:changy@slu.edu Dr. Tomasz Heyduk Room M99 Phone: #79238 E-mail: heydukt@slu.edu

More information

Exam I Answer Key: Summer 2006, Semester C

Exam I Answer Key: Summer 2006, Semester C 1. Which of the following tripeptides would migrate most rapidly towards the negative electrode if electrophoresis is carried out at ph 3.0? a. gly-gly-gly b. glu-glu-asp c. lys-glu-lys d. val-asn-lys

More information

Amino Acids and Peptides

Amino Acids and Peptides Amino Acids Amino Acids and Peptides Amino acid a compound that contains both an amino group and a carboxyl group α-amino acid an amino acid in which the amino group is on the carbon adjacent to the carboxyl

More information

Biomolecules: lecture 10

Biomolecules: lecture 10 Biomolecules: lecture 10 - understanding in detail how protein 3D structures form - realize that protein molecules are not static wire models but instead dynamic, where in principle every atom moves (yet

More information

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility (P&S Ch 5; Fer Ch 2, 9; Palm Ch 10,11; Zub Ch 9) A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility B.

More information

Chem 204. Mid-Term Exam I. July 21, There are 3 sections to this exam: Answer ALL questions

Chem 204. Mid-Term Exam I. July 21, There are 3 sections to this exam: Answer ALL questions Chem 204 Mid-Term Exam I July 21, 2009 Name: Answer Key Student ID: There are 3 sections to this exam: Answer ALL questions Section I: Multiple-Choice 20 questions, 2 pts each Section II: Fill-in-the-Blank

More information

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty.

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty. Lecture 15: Enzymes & Kinetics Mechanisms Margaret A. Daugherty Fall 2004 ROLE OF THE TRANSITION STATE Consider the reaction: H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl Reactants Transition state Products

More information

B O C 4 H 2 O O. NOTE: The reaction proceeds with a carbonium ion stabilized on the C 1 of sugar A.

B O C 4 H 2 O O. NOTE: The reaction proceeds with a carbonium ion stabilized on the C 1 of sugar A. hbcse 33 rd International Page 101 hemistry lympiad Preparatory 05/02/01 Problems d. In the hydrolysis of the glycosidic bond, the glycosidic bridge oxygen goes with 4 of the sugar B. n cleavage, 18 from

More information

Dental Biochemistry EXAM I

Dental Biochemistry EXAM I Dental Biochemistry EXAM I August 29, 2005 In the reaction below: CH 3 -CH 2 OH -~ ethanol CH 3 -CHO acetaldehyde A. acetoacetate is being produced B. ethanol is being oxidized to acetaldehyde C. acetaldehyde

More information

4 Examples of enzymes

4 Examples of enzymes Catalysis 1 4 Examples of enzymes Adding water to a substrate: Serine proteases. Carbonic anhydrase. Restrictions Endonuclease. Transfer of a Phosphoryl group from ATP to a nucleotide. Nucleoside monophosphate

More information

1. What is an ångstrom unit, and why is it used to describe molecular structures?

1. What is an ångstrom unit, and why is it used to describe molecular structures? 1. What is an ångstrom unit, and why is it used to describe molecular structures? The ångstrom unit is a unit of distance suitable for measuring atomic scale objects. 1 ångstrom (Å) = 1 10-10 m. The diameter

More information

LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor

LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor LS1a Fall 2014 Problem Set #2 Due Monday 10/6 at 6 pm in the drop boxes on the Science Center 2 nd Floor Note: Adequate space is given for each answer. Questions that require a brief explanation should

More information

BENG 183 Trey Ideker. Protein Sequencing

BENG 183 Trey Ideker. Protein Sequencing BENG 183 Trey Ideker Protein Sequencing The following slides borrowed from Hong Li s Biochemistry Course: www.sb.fsu.edu/~hongli/4053notes Introduction to Proteins Proteins are of vital importance to biological

More information

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES

Protein Structure. W. M. Grogan, Ph.D. OBJECTIVES Protein Structure W. M. Grogan, Ph.D. OBJECTIVES 1. Describe the structure and characteristic properties of typical proteins. 2. List and describe the four levels of structure found in proteins. 3. Relate

More information

Exam 3 11/10/2014 Last Name (PRINT): First Name: Pg Topic Pts Total possible 3 Multiple. 12 choice 4 Multiple. 9 choice 5 Multiple

Exam 3 11/10/2014 Last Name (PRINT): First Name: Pg Topic Pts Total possible 3 Multiple. 12 choice 4 Multiple. 9 choice 5 Multiple Last Name (PRINT): First Name: Pg Topic Pts Total possible 3 Multiple 12 choice 4 Multiple 9 choice 5 Multiple 12 choice 6 Multiple 16 choice, start T/F 7 T/F and Fill in Blank 22 8 Binding problems 12

More information

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell

Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Using Higher Calculus to Study Biologically Important Molecules Julie C. Mitchell Mathematics and Biochemistry University of Wisconsin - Madison 0 There Are Many Kinds Of Proteins The word protein comes

More information

NAME. EXAM I I. / 36 September 25, 2000 Biochemistry I II. / 26 BICH421/621 III. / 38 TOTAL /100

NAME. EXAM I I. / 36 September 25, 2000 Biochemistry I II. / 26 BICH421/621 III. / 38 TOTAL /100 EXAM I I. / 6 September 25, 2000 Biochemistry I II. / 26 BIH421/621 III. / 8 TOTAL /100 I. MULTIPLE HOIE (6 points) hoose the BEST answer to the question by circling the appropriate letter. 1. An amino

More information

Practice Midterm Exam 200 points total 75 minutes Multiple Choice (3 pts each 30 pts total) Mark your answers in the space to the left:

Practice Midterm Exam 200 points total 75 minutes Multiple Choice (3 pts each 30 pts total) Mark your answers in the space to the left: MITES ame Practice Midterm Exam 200 points total 75 minutes Multiple hoice (3 pts each 30 pts total) Mark your answers in the space to the left: 1. Amphipathic molecules have regions that are: a) polar

More information

Translation. A ribosome, mrna, and trna.

Translation. A ribosome, mrna, and trna. Translation The basic processes of translation are conserved among prokaryotes and eukaryotes. Prokaryotic Translation A ribosome, mrna, and trna. In the initiation of translation in prokaryotes, the Shine-Dalgarno

More information

Protein Structure Bioinformatics Introduction

Protein Structure Bioinformatics Introduction 1 Swiss Institute of Bioinformatics Protein Structure Bioinformatics Introduction Basel, 27. September 2004 Torsten Schwede Biozentrum - Universität Basel Swiss Institute of Bioinformatics Klingelbergstr

More information

BIOL/BIOC Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

BIOL/BIOC Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock midterm UNDER EXAM CONDITIONS. This means: Complete the midterm in 1.5 hour(s). Work on your own. Keep your notes and textbook closed. Attempt every question.

More information

BIOCHEMISTRY - CLUTCH REVIEW 2.

BIOCHEMISTRY - CLUTCH REVIEW 2. !! www.clutchprep.com CONCEPT: BINDING AFFINITY Protein-ligand binding is reversible, like a chemical equilibrium [S] substrate concentration [E] enzyme concentration Ligands bind to proteins via the same

More information

Read more about Pauling and more scientists at: Profiles in Science, The National Library of Medicine, profiles.nlm.nih.gov

Read more about Pauling and more scientists at: Profiles in Science, The National Library of Medicine, profiles.nlm.nih.gov 2018 Biochemistry 110 California Institute of Technology Lecture 2: Principles of Protein Structure Linus Pauling (1901-1994) began his studies at Caltech in 1922 and was directed by Arthur Amos oyes to

More information

BA, BSc, and MSc Degree Examinations

BA, BSc, and MSc Degree Examinations Examination Candidate Number: Desk Number: BA, BSc, and MSc Degree Examinations 2017-8 Department : BIOLOGY Title of Exam: Molecular Biology and Biochemistry Part I Time Allowed: 1 hour and 30 minutes

More information

Biochemistry. Lecture 8 Enzyme Kinetics

Biochemistry. Lecture 8 Enzyme Kinetics Biochemistry Lecture 8 Enzyme Kinetics Why Enzymes? igher reaction rates Greater reaction specificity Milder reaction conditions Capacity for regulation C - - C N 2 - C N 2 - C - C Chorismate mutase -

More information

Protein Structure Marianne Øksnes Dalheim, PhD candidate Biopolymers, TBT4135, Autumn 2013

Protein Structure Marianne Øksnes Dalheim, PhD candidate Biopolymers, TBT4135, Autumn 2013 Protein Structure Marianne Øksnes Dalheim, PhD candidate Biopolymers, TBT4135, Autumn 2013 The presentation is based on the presentation by Professor Alexander Dikiy, which is given in the course compedium:

More information

Discussion Section (Day, Time): TF:

Discussion Section (Day, Time): TF: ame: Chemistry 27 Professor Gavin MacBeath arvard University Spring 2004 Final Exam Thursday, May 28, 2004 2:15 PM - 5:15 PM Discussion Section (Day, Time): Directions: TF: 1. Do not write in red ink.

More information

Overview of Kinetics

Overview of Kinetics Overview of Kinetics [P] t = ν = k[s] Velocity of reaction Conc. of reactant(s) Rate of reaction M/sec Rate constant sec -1, M -1 sec -1 1 st order reaction-rate depends on concentration of one reactant

More information

C a h p a t p e t r e r 6 E z n y z m y e m s

C a h p a t p e t r e r 6 E z n y z m y e m s Chapter 6 Enzymes 1. An Introduction to Enzymes Enzymes are catalytically active biological macromolecules Enzymes are catalysts of biological systems Almost every biochemical reaction is catalyzed by

More information

Problem Set 1

Problem Set 1 2006 7.012 Problem Set 1 Due before 5 PM on FRIDAY, September 15, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. For each of the following parts, pick

More information

Proton Acidity. (b) For the following reaction, draw the arrowhead properly to indicate the position of the equilibrium: HA + K + B -

Proton Acidity. (b) For the following reaction, draw the arrowhead properly to indicate the position of the equilibrium: HA + K + B - Proton Acidity A01 Given that acid A has a pk a of 15 and acid B has a pk a of 10, then: (a) Which of the two acids is stronger? (b) For the following reaction, draw the arrowhead properly to indicate

More information

Dana Alsulaibi. Jaleel G.Sweis. Mamoon Ahram

Dana Alsulaibi. Jaleel G.Sweis. Mamoon Ahram 15 Dana Alsulaibi Jaleel G.Sweis Mamoon Ahram Revision of last lectures: Proteins have four levels of structures. Primary,secondary, tertiary and quaternary. Primary structure is the order of amino acids

More information

Enzyme function: the transition state. Enzymes & Kinetics V: Mechanisms. Catalytic Reactions. Margaret A. Daugherty A B. Lecture 16: Fall 2003

Enzyme function: the transition state. Enzymes & Kinetics V: Mechanisms. Catalytic Reactions. Margaret A. Daugherty A B. Lecture 16: Fall 2003 Lecture 16: Enzymes & Kinetics V: Mechanisms Margaret A. Daugherty Fall 2003 Enzyme function: the transition state Catalytic Reactions A B Catalysts (e.g. enzymes) act by lowering the transition state

More information

Catalytic Reactions. Intermediate State in Catalysis. Lecture 16: Catalyzed reaction. Uncatalyzed reaction. Enzymes & Kinetics V: Mechanisms

Catalytic Reactions. Intermediate State in Catalysis. Lecture 16: Catalyzed reaction. Uncatalyzed reaction. Enzymes & Kinetics V: Mechanisms Enzyme function: the transition state Catalytic Reactions Lecture 16: Enzymes & Kinetics V: Mechanisms Margaret A. Daugherty Fall 2003 A B Catalysts (e.g. enzymes) act by lowering the transition state

More information

Enzyme Kinetics: The study of reaction rates. For each very short segment dt of the reaction: V k 1 [S]

Enzyme Kinetics: The study of reaction rates. For each very short segment dt of the reaction: V k 1 [S] Enzyme Kinetics: The study of reaction rates. For the one-way st -order reaction: S the rate of reaction (V) is: V P [ P] moles / L t sec For each very short segment dt of the reaction: d[ P] d[ S] V dt

More information

From Amino Acids to Proteins - in 4 Easy Steps

From Amino Acids to Proteins - in 4 Easy Steps From Amino Acids to Proteins - in 4 Easy Steps Although protein structure appears to be overwhelmingly complex, you can provide your students with a basic understanding of how proteins fold by focusing

More information

Energy, Enzymes, and Metabolism. Energy, Enzymes, and Metabolism. A. Energy and Energy Conversions. A. Energy and Energy Conversions

Energy, Enzymes, and Metabolism. Energy, Enzymes, and Metabolism. A. Energy and Energy Conversions. A. Energy and Energy Conversions Energy, Enzymes, and Metabolism Lecture Series 6 Energy, Enzymes, and Metabolism B. ATP: Transferring Energy in Cells D. Molecular Structure Determines Enzyme Fxn Energy is the capacity to do work (cause

More information

Discussion Section (Day, Time):

Discussion Section (Day, Time): Chemistry 27 Spring 2005 Exam 1 Chemistry 27 Professor Gavin MacBeath arvard University Spring 2005 our Exam 1 Friday, February 25, 2005 11:07 AM 12:00 PM Discussion Section (Day, Time): TF: Directions:

More information

Exam III. Please read through each question carefully, and make sure you provide all of the requested information.

Exam III. Please read through each question carefully, and make sure you provide all of the requested information. 09-107 onors Chemistry ame Exam III Please read through each question carefully, and make sure you provide all of the requested information. 1. A series of octahedral metal compounds are made from 1 mol

More information

Computational Biology 1

Computational Biology 1 Computational Biology 1 Protein Function & nzyme inetics Guna Rajagopal, Bioinformatics Institute, guna@bii.a-star.edu.sg References : Molecular Biology of the Cell, 4 th d. Alberts et. al. Pg. 129 190

More information

Effect of Temperature Increasing the temperature increases the energy in the system. Two effects kinetic. denaturing

Effect of Temperature Increasing the temperature increases the energy in the system. Two effects kinetic. denaturing Effect of Temperature Increasing the temperature increases the energy in the system Two effects kinetic denaturing Kinetic effect Increased motion of molecules Increased collisions between enzyme/substrate

More information

4) Chapter 1 includes heredity (i.e. DNA and genes) as well as evolution. Discuss the connection between heredity and evolution?

4) Chapter 1 includes heredity (i.e. DNA and genes) as well as evolution. Discuss the connection between heredity and evolution? Name- Chapters 1-5 Questions 1) Life is easy to recognize but difficult to define. The dictionary defines life as the state or quality that distinguishes living beings or organisms from dead ones and from

More information

Review of General & Organic Chemistry

Review of General & Organic Chemistry Review of General & Organic Chemistry Diameter of a nucleus is only about 10-15 m. Diameter of an atom is only about 10-10 m. Fig 3.1 The structure of an atom Periodic Table, shown below, is a representation

More information

Chapter 6 Overview. Enzymes. Catalysis most important function of proteins. Globular protein Increase rate of metabolic processes

Chapter 6 Overview. Enzymes. Catalysis most important function of proteins. Globular protein Increase rate of metabolic processes Chapter 6 Overview Enzymes Catalysis most important function of proteins n Enzymes protein catalysts Globular protein Increase rate of metabolic processes Enzymes kinetics info on reaction rates & measure

More information

Lecture 19 (10/30/17) Enzyme Regulation

Lecture 19 (10/30/17) Enzyme Regulation Reading: Ch5; 164, 166-169 Problems: none Remember Today at 6:30 in PHO-206 is the first MB lecture & quiz NEXT Reading: Ch5; 158-169, 162-166, 169-174 Lecture 19 (10/30/17) Problems: Ch5 (text); 3,7,8,10

More information

Lecture 15: Realities of Genome Assembly Protein Sequencing

Lecture 15: Realities of Genome Assembly Protein Sequencing Lecture 15: Realities of Genome Assembly Protein Sequencing Study Chapter 8.10-8.15 1 Euler s Theorems A graph is balanced if for every vertex the number of incoming edges equals to the number of outgoing

More information

Chemical Properties of Amino Acids

Chemical Properties of Amino Acids hemical Properties of Amino Acids Protein Function Make up about 15% of the cell and have many functions in the cell 1. atalysis: enzymes 2. Structure: muscle proteins 3. Movement: myosin, actin 4. Defense:

More information

Viewing and Analyzing Proteins, Ligands and their Complexes 2

Viewing and Analyzing Proteins, Ligands and their Complexes 2 2 Viewing and Analyzing Proteins, Ligands and their Complexes 2 Overview Viewing the accessible surface Analyzing the properties of proteins containing thousands of atoms is best accomplished by representing

More information

EVPP 110 Lecture Exam #1 Study Questions Fall 2003 Dr. Largen

EVPP 110 Lecture Exam #1 Study Questions Fall 2003 Dr. Largen EVPP 110 Lecture Exam #1 Study Questions Fall 2003 Dr. Largen These study questions are meant to focus your study of the material for the first exam. The absence here of a topic or point covered in lecture

More information

Chapter 15: Enyzmatic Catalysis

Chapter 15: Enyzmatic Catalysis Chapter 15: Enyzmatic Catalysis Voet & Voet: Pages 496-508 Slide 1 Catalytic Mechanisms Catalysis is a process that increases the rate at which a reaction approaches equilibrium Rate enhancement depends

More information

5. Kinetics of Allosteric Enzymes. Sigmoidal Kinetics. Cooperativity Binding Constant

5. Kinetics of Allosteric Enzymes. Sigmoidal Kinetics. Cooperativity Binding Constant 5. Kinetics of Allosteric Enzymes Sigmoidal Kinetics Cooperativity Binding Constant Kinetics of Allosteric Enzymes Contents Definitions Allosteric enzymes Cooperativity Homoallostery Heteroallostery Biphasic

More information

Chapter 10: Hemoglobin

Chapter 10: Hemoglobin Chapter 10: Hemoglobin Voet & Voet: Pages 320-353 Slide 1 Hemoglobin Function Larger aerobic (oxygen utilizing) organism require an O 2 transport system to deliver sufficient O 2 to tissues Dissolved O

More information

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a

Protein Folding & Stability. Lecture 11: Margaret A. Daugherty. Fall How do we go from an unfolded polypeptide chain to a Lecture 11: Protein Folding & Stability Margaret A. Daugherty Fall 2004 How do we go from an unfolded polypeptide chain to a compact folded protein? (Folding of thioredoxin, F. Richards) Structure - Function

More information

A. Two of the common amino acids are analyzed. Amino acid X and amino acid Y both have an isoionic point in the range of

A. Two of the common amino acids are analyzed. Amino acid X and amino acid Y both have an isoionic point in the range of Questions with Answers- Amino Acids & Peptides A. Two of the common amino acids are analyzed. Amino acid X and amino acid Y both have an isoionic point in the range of 5.0-6.5 (Questions 1-4) 1. Which

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

[Urea] (M) k (s -1 )

[Urea] (M) k (s -1 ) BMB178 Fall 2018 Problem Set 1 Due: 10/26/2018, noon Office hour: 10/25/2018, SFL GSR218 7 9 pm Problem 1. Transition state theory (20 points): Consider a unimolecular reaction where a substrate S is converted

More information

Protein Structure. Role of (bio)informatics in drug discovery. Bioinformatics

Protein Structure. Role of (bio)informatics in drug discovery. Bioinformatics Bioinformatics Protein Structure Principles & Architecture Marjolein Thunnissen Dep. of Biochemistry & Structural Biology Lund University September 2011 Homology, pattern and 3D structure searches need

More information

BI/CH421 Biochemistry I Exam 1 09/29/2014

BI/CH421 Biochemistry I Exam 1 09/29/2014 Part I: Multiple choice for each question, circle the choice that best answers the question. Do not write the letter in the margin to indicate your answer, circle it. 3 points each. 1. For a reaction with

More information

Lecture 16 (10/23/17) Lecture 16 (10/23/17)

Lecture 16 (10/23/17) Lecture 16 (10/23/17) Lecture 16 (10/23/17) Reading: Ch6; 207-210 Ch6; 192-193, 195-196, 205-206 Problems: Ch6 (text); 18, 19, 20, 21, 22 Ch6 (study guide-facts); 9, 11 Ch6 (study guide-applying); 2 NEXT Reading: Ch6; 213-218

More information

NAME IV. /22. I. MULTIPLE CHOICE. (48 points; 2 pts each) Choose the BEST answer to the question by circling the appropriate letter.

NAME IV. /22. I. MULTIPLE CHOICE. (48 points; 2 pts each) Choose the BEST answer to the question by circling the appropriate letter. NAME Exam I I. /48 September 25, 2017 Biochemistry I II. / 4 BI/CH 421/621 III. /26 IV. /22 TOTAL /100 I. MULTIPLE CHOICE. (48 points; 2 pts each) Choose the BEST answer to the question by circling the

More information

Biomolecules: lecture 9

Biomolecules: lecture 9 Biomolecules: lecture 9 - understanding further why amino acids are the building block for proteins - understanding the chemical properties amino acids bring to proteins - realizing that many proteins

More information

Biochemistry Enzyme kinetics

Biochemistry Enzyme kinetics 1 Description of Module Subject Name Paper Name Module Name/Title Enzyme Kinetics Dr. Vijaya Khader Dr. MC Varadaraj 2 1. Objectives 2. Enzymes as biological catalyst 3. Enzyme Catalysis 4. Understanding

More information

1014NSC Fundamentals of Biochemistry Semester Summary

1014NSC Fundamentals of Biochemistry Semester Summary 1014NSC Fundamentals of Biochemistry Semester Summary Griffith University, Nathan Campus Semester 1, 2014 Topics include: - Water & ph - Protein Diversity - Nucleic Acids - DNA Replication - Transcription

More information

Two requirements for life: Self-replication and appropriate catalysis. A. Most enzymes (def.: biological catalysts) are proteins

Two requirements for life: Self-replication and appropriate catalysis. A. Most enzymes (def.: biological catalysts) are proteins Enzymes We must be able to enhance the rates of many physical and chemical processes to remain alive and healthy. Support for that assertion: Maladies of genetic origin. Examples: Sickle-cell anemia (physical)

More information

2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry

2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry Name: Class: _ Date: _ 2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry Multiple Choice Identify the choice that best completes the statement or answers the question. 1) In what

More information

BIOCHEMISTRY/MOLECULAR BIOLOGY

BIOCHEMISTRY/MOLECULAR BIOLOGY Enzymes Activation Energy Chemical reactions require an initial input of energy activation energy large biomolecules are stable must absorb energy to break bonds cellulose energy CO 2 + H 2 O + heat Activation

More information