Functional Data Analysis

Size: px
Start display at page:

Download "Functional Data Analysis"

Transcription

1 FDA 1-1 Functional Data Analysis Michal Benko Institut für Statistik und Ökonometrie Humboldt-Universität zu Berlin

2 FDA 1-2 Outline of this talk: Introduction Turning discrete values into a functional datum Basic functional statistics Functional PCA CPCA/pCPCA Application: Volasurfaces

3 FDA 1-3 Introduction Analyzing FUNCTIONAL DATA data vectors functions functional data: x(t), t J {x(t j ), j = 1, 2,... n} x(t), t J

4 FDA 1-4 Basic Functional Statistics N Mean Function: x = 1 N x i (t) i=1 N Variance Function: var(x(t)) = 1 N (x i (t) x(t)) 2 i=1 i=1 Covariance Function: N cov(x(t), y(t)) = 1 N (x i (t) x(t)) (y i (t) y(t)) Inner Product: < x, y >= x(t)y(t)dt

5 FDA 1-5 Turning Discrete Values into a Functional Datum Measuring discrete values without errors interpolation basis (Fourier) expansions Measuring discrete values with error smoothing methods Storage of functional data set?

6 FDA 1-6 Storage of the Functional Data Storing original raw data -e.g. by interpolation Storing functional data in terms of a suitable basis

7 FDA 1-7 Basis Expansions 1. Choice of a GOOD base Fourier series {1, sin(rwt), cos(rwt), r = 1, 2,...} Polynomial base φ k (t) = (t ω) k, k = 0,... K other: Splines, Wavelets 2. Choice of dimension

8 FDA 1-8 Suppose the base functions: φ(t) = (φ 1 (t),..., φ K (t)) Observed functions can be expanded: x i (t) = K C ij φ k (t) = Ci φ(t) k=1

9 FDA 1-9 Basic statistics can be expressed: N x(t) = N 1 Ci φ(t) = C φ(t) i=1 N var(t) = N 1 φ(t) (C i C)(C i C) φ(t) i=1 N cov(s, t) = N 1 φ(s) (C i C)(C i C) φ(t) i=1 ( ) < x i (t), x j (t) > = Ci φ(s)φ(s) ds C j

10 FDA 1-10 XploRe: Solution coef=fouriertrans(tmat,n) Calculates the coefficient in applying a basis expansion by using Fourier series. In this case, it is assumed that the data unit can be expressed by a linear combination of finite terms of sine and cosine functions. Fourier1.xpl

11 FDA 1-11 Simple Functional Data Analysis x i (t), t J z i = ξ(t)x i (t) max ξ (var(z i )) in functional sence: max cov(s, t)ξ(s)ξ(t)dsdt Under constrain ξ l (t) 2 dt, ξ l (t)ξ m (t) = 0(l < m)

12 FDA 1-12 SFDA - Computational Method Discretizing the functions Discretize the observed functions to a fine grid (e.g.equally spaced) use standard multivariate PCA Earliest approach to FPCA Basis expansion W = φ φ ξ(t) = φ(t) b - basis expansion N 1 C CW b = ρb, with b W b = 1,b 1W b 2 = 0

13 FDA 1-13 Penalized Principal Component Analyses Genaralization of the (Simple) PCA Giving Smooth Conditions on PC, using Roughness Penalty Roughness Penalty e.g. {ξ }dt Condition in PCA: {ξ(t)} 2 dt = 1 {ξ(t)} 2 dt + α {ξ (t)} 2 dt = 1 ξ i (t)ξ j (t)dt = 0 ξ i (t)ξ j (t)dt + α ξ i (t)ξ j (t)dt = 0

14 FDA 1-14 XploRe Solution values,varprop,scores,harmcoef=fdapca(coef,period,lambda,npc) Carries out a penalized functional principal component analysis (PCA) based on the coefficient matrix for functional data. It is possible to choose a smoothing parameter objectively. fda1.xpl

15 FDA 1-15 Common Principal Components CPC model:ψ i = βλ i β, i = 1,..., k Ψ i = λ i1 β 1 β 1 + λ i2 β 2 β λ ip β p 1β p, i = 1,..., k Corresponds to the simultaneous decomposition Level of the similarities amoung several covariance Matrices/Functions

16 FDA 1-16 Partial Common Principal Components For fixed positive integer q < p 1: Ψ i = λ i1 β 1 β λ iq β q β q + λ i,q+1 β (i) q+1 β (i) q λ ipβ p (i) β p (i), i = 1,..., k

17 FDA 1-17 First q components are common, p q differ Corresponds to the PCA (only first q components relevant ) Vector notation: β (i) = (β 1,..., β q, β (i) q+1,..., β(i) p ) Ψ i = β (i) Λ i β (i) Estimation: Maximum Likelihood Estimation GOAL:Implement the CPC into functional data world

18 FDA 1-18 Application: Implied Volatility Modeling Financial Dynamics Black Scholes Modell Volatility Surface {ˆσ t (k, τ} T t=1 Where: k = K S t -moneyness, τ-maturity -use appropriate transformation

19 FDA 1-19 Functional Data Approach 1. Set appropriate (finite) grid for maturity τ {τ 1,..., τ N } 2. Obtain functional data σ τ (k), τ J 3. Apply PPCA, CPCA to this functional Dataset

20 FDA 1-20 Problems: Volas are Surfaces, not functions!!! 2-dimensional Smoothing / 1-dimensional Smoothing? How to choose the Grid for maturity? Smoothing Parameter Selection (Sensitivity)? Technical Questions?

21 FDA 1-21 Conclusions - Goals 1. Literature seeking 2. XploRe Implementation Basic FDA Statistics Visualisation of FPCA CPCA/FCPCA? 3. Inference for FPCA/CFPCA 4. Application: Volas/Term structure?

22 FDA 1-22 References [1] Ramsay, J.O., Silvermann, B.W Functional Data Analysis, Springer, New York. [2] Ramsay, J.O., Silvermann, B.W Applied Functional Data Analysis, Springer, New York. [3] Flury B Common Principal Components and Related Multivariate Models, Wiley, New York [4] Fengler M.R., Härdle W., Schmidt P The Analysis of Implied Volatilities,HU Berlin. [5] Fengler M.R., Härdle W., Villa C The Dynamics of Implied Volatilities,HU Berlin. [6] Yamanishi Y Studies on Principal and Regression Analyses for Functional Data, Okoyama University

Smooth Common Principal Component Analysis

Smooth Common Principal Component Analysis 1 Smooth Common Principal Component Analysis Michal Benko Wolfgang Härdle Center for Applied Statistics and Economics benko@wiwi.hu-berlin.de Humboldt-Universität zu Berlin Motivation 1-1 Volatility Surface

More information

An Introduction to Functional Data Analysis

An Introduction to Functional Data Analysis An Introduction to Functional Data Analysis Chongzhi Di Fred Hutchinson Cancer Research Center cdi@fredhutch.org Biotat 578A: Special Topics in (Genetic) Epidemiology November 10, 2015 Textbook Ramsay

More information

Robust Methods for Multivariate Functional Data Analysis. Pallavi Sawant

Robust Methods for Multivariate Functional Data Analysis. Pallavi Sawant Robust Methods for Multivariate Functional Data Analysis by Pallavi Sawant A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree

More information

ANALYSIS OF THE MIB30 BASKET IN THE PERIOD BY FUNCTIONAL PC S

ANALYSIS OF THE MIB30 BASKET IN THE PERIOD BY FUNCTIONAL PC S COMPSTAT 2004 Symposium c Physica-Verlag/Springer 2004 ANALYSIS OF THE MIB30 BASKET IN THE PERIOD 2000-2002 BY FUNCTIONAL PC S Damiana G. Costanzo and Salvatore Ingrassia Key words: Functional data, principal

More information

Alternatives to Basis Expansions. Kernels in Density Estimation. Kernels and Bandwidth. Idea Behind Kernel Methods

Alternatives to Basis Expansions. Kernels in Density Estimation. Kernels and Bandwidth. Idea Behind Kernel Methods Alternatives to Basis Expansions Basis expansions require either choice of a discrete set of basis or choice of smoothing penalty and smoothing parameter Both of which impose prior beliefs on data. Alternatives

More information

Introduction to Functional Data Analysis A CSCU Workshop. Giles Hooker Biological Statistics and Computational Biology

Introduction to Functional Data Analysis A CSCU Workshop. Giles Hooker Biological Statistics and Computational Biology Introduction to Functional Data Analysis A CSCU Workshop Giles Hooker Biological Statistics and Computational Biology gjh27@cornell.edu www.bscb.cornell.edu/ hooker/fdaworkshop 1 / 26 Agenda What is Functional

More information

Functional Data Analysis

Functional Data Analysis FDA p. 1/42 Functional Data Analysis An introduction David Wooff d.a.wooff@durham.ac.uk University of Durham FDA p. 2/42 Main steps in FDA Collect, clean, and organize the raw data. Convert the data to

More information

Nonparametric Inference In Functional Data

Nonparametric Inference In Functional Data Nonparametric Inference In Functional Data Zuofeng Shang Purdue University Joint work with Guang Cheng from Purdue Univ. An Example Consider the functional linear model: Y = α + where 1 0 X(t)β(t)dt +

More information

Canonical correlation analysis

Canonical correlation analysis Canonical correlation analysis Exploring correlations between two sets of functions. Page 1 of 17 1. Let the two sets of functions be x i (t) and y i (t), i = 1,..., N. The correlation surface r(s, t)

More information

From Data To Functions Howdowegofrom. Basis Expansions From multiple linear regression: The Monomial Basis. The Monomial Basis

From Data To Functions Howdowegofrom. Basis Expansions From multiple linear regression: The Monomial Basis. The Monomial Basis From Data To Functions Howdowegofrom Basis Expansions From multiple linear regression: data to functions? Or if there is curvature: y i = β 0 + x 1i β 1 + x 2i β 2 + + ɛ i y i = β 0 + x i β 1 + xi 2 β

More information

Principal components in an asymmetric norm

Principal components in an asymmetric norm Ngoc Mai Tran Maria Osipenko Wolfgang Karl Härdle Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Centre for Applied Statistics and Economics School of Business and Economics Humboldt-Universität

More information

FUNCTIONAL DATA ANALYSIS. Contribution to the. International Handbook (Encyclopedia) of Statistical Sciences. July 28, Hans-Georg Müller 1

FUNCTIONAL DATA ANALYSIS. Contribution to the. International Handbook (Encyclopedia) of Statistical Sciences. July 28, Hans-Georg Müller 1 FUNCTIONAL DATA ANALYSIS Contribution to the International Handbook (Encyclopedia) of Statistical Sciences July 28, 2009 Hans-Georg Müller 1 Department of Statistics University of California, Davis One

More information

Functional Latent Feature Models. With Single-Index Interaction

Functional Latent Feature Models. With Single-Index Interaction Generalized With Single-Index Interaction Department of Statistics Center for Statistical Bioinformatics Institute for Applied Mathematics and Computational Science Texas A&M University Naisyin Wang and

More information

On the Identifiability of the Functional Convolution. Model

On the Identifiability of the Functional Convolution. Model On the Identifiability of the Functional Convolution Model Giles Hooker Abstract This report details conditions under which the Functional Convolution Model described in Asencio et al. (2013) can be identified

More information

Functional principal component analysis of vocal tract area functions

Functional principal component analysis of vocal tract area functions INTERSPEECH 17 August, 17, Stockholm, Sweden Functional principal component analysis of vocal tract area functions Jorge C. Lucero Dept. Computer Science, University of Brasília, Brasília DF 791-9, Brazil

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

Functional Data Analysis & Variable Selection

Functional Data Analysis & Variable Selection Auburn University Department of Mathematics and Statistics Universidad Nacional de Colombia Medellin, Colombia March 14, 2016 Functional Data Analysis Data Types Univariate - Contains numbers as its observations

More information

FUNCTIONAL DATA ANALYSIS FOR VOLATILITY PROCESS

FUNCTIONAL DATA ANALYSIS FOR VOLATILITY PROCESS FUNCTIONAL DATA ANALYSIS FOR VOLATILITY PROCESS Rituparna Sen Monday, July 31 10:45am-12:30pm Classroom 228 St-C5 Financial Models Joint work with Hans-Georg Müller and Ulrich Stadtmüller 1. INTRODUCTION

More information

FuncICA for time series pattern discovery

FuncICA for time series pattern discovery FuncICA for time series pattern discovery Nishant Mehta and Alexander Gray Georgia Institute of Technology The problem Given a set of inherently continuous time series (e.g. EEG) Find a set of patterns

More information

Second-Order Inference for Gaussian Random Curves

Second-Order Inference for Gaussian Random Curves Second-Order Inference for Gaussian Random Curves With Application to DNA Minicircles Victor Panaretos David Kraus John Maddocks Ecole Polytechnique Fédérale de Lausanne Panaretos, Kraus, Maddocks (EPFL)

More information

Direct Learning: Linear Classification. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Classification. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Classification Logistic regression models for classification problem We consider two class problem: Y {0, 1}. The Bayes rule for the classification is I(P(Y = 1 X = x) > 1/2) so

More information

PCA and admixture models

PCA and admixture models PCA and admixture models CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar, Alkes Price PCA and admixture models 1 / 57 Announcements HW1

More information

Course topics (tentative) The role of random effects

Course topics (tentative) The role of random effects Course topics (tentative) random effects linear mixed models analysis of variance frequentist likelihood-based inference (MLE and REML) prediction Bayesian inference The role of random effects Rasmus Waagepetersen

More information

Polynomial Chaos and Karhunen-Loeve Expansion

Polynomial Chaos and Karhunen-Loeve Expansion Polynomial Chaos and Karhunen-Loeve Expansion 1) Random Variables Consider a system that is modeled by R = M(x, t, X) where X is a random variable. We are interested in determining the probability of the

More information

Fractal functional regression for classification of gene expression data by wavelets

Fractal functional regression for classification of gene expression data by wavelets Fractal functional regression for classification of gene expression data by wavelets Margarita María Rincón 1 and María Dolores Ruiz-Medina 2 1 University of Granada Campus Fuente Nueva 18071 Granada,

More information

Lecture 4: Numerical solution of ordinary differential equations

Lecture 4: Numerical solution of ordinary differential equations Lecture 4: Numerical solution of ordinary differential equations Department of Mathematics, ETH Zürich General explicit one-step method: Consistency; Stability; Convergence. High-order methods: Taylor

More information

Functional time series

Functional time series Rob J Hyndman Functional time series with applications in demography 4. Connections, extensions and applications Outline 1 Yield curves 2 Electricity prices 3 Dynamic updating with partially observed functions

More information

Tests for separability in nonparametric covariance operators of random surfaces

Tests for separability in nonparametric covariance operators of random surfaces Tests for separability in nonparametric covariance operators of random surfaces Shahin Tavakoli (joint with John Aston and Davide Pigoli) April 19, 2016 Analysis of Multidimensional Functional Data Shahin

More information

Functional responses, functional covariates and the concurrent model

Functional responses, functional covariates and the concurrent model Functional responses, functional covariates and the concurrent model Page 1 of 14 1. Predicting precipitation profiles from temperature curves Precipitation is much harder to predict than temperature.

More information

Regularized principal components analysis

Regularized principal components analysis 9 Regularized principal components analysis 9.1 Introduction In this chapter, we discuss the application of smoothing to functional principal components analysis. In Chapter 5 we have already seen that

More information

Lecture Note 13:Continuous Time Switched Optimal Control: Embedding Principle and Numerical Algorithms

Lecture Note 13:Continuous Time Switched Optimal Control: Embedding Principle and Numerical Algorithms ECE785: Hybrid Systems:Theory and Applications Lecture Note 13:Continuous Time Switched Optimal Control: Embedding Principle and Numerical Algorithms Wei Zhang Assistant Professor Department of Electrical

More information

Functional principal component analysis of aircraft trajectories

Functional principal component analysis of aircraft trajectories Functional principal component analysis of aircraft trajectories Florence Nicol To cite this version: Florence Nicol. Functional principal component analysis of aircraft trajectories. ISIATM 0, nd International

More information

Functional data analysis methods for predicting disease status.

Functional data analysis methods for predicting disease status. University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 12-2017 Functional data analysis methods for predicting disease status. Sarah

More information

Geostatistical Modeling for Large Data Sets: Low-rank methods

Geostatistical Modeling for Large Data Sets: Low-rank methods Geostatistical Modeling for Large Data Sets: Low-rank methods Whitney Huang, Kelly-Ann Dixon Hamil, and Zizhuang Wu Department of Statistics Purdue University February 22, 2016 Outline Motivation Low-rank

More information

Chebychev Propagator for Inhomogeneous Schrödinger Equations

Chebychev Propagator for Inhomogeneous Schrödinger Equations Chebychev Propagator for Inhomogeneous Schrödinger Equations Michael Goerz May 16, 2011 Solving the Schrödinger Equation Schrödinger Equation Ψ(t) = Ĥ Ψ(t) ; e.g. Ĥ = t ( V1 (R) ) µɛ(t) µɛ(t) V 2 (R) Solving

More information

A Semi-Parametric Measure for Systemic Risk

A Semi-Parametric Measure for Systemic Risk Natalia Sirotko-Sibirskaya Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. - Center for Applied Statistics and Economics Humboldt Universität zu Berlin http://lvb.wiwi.hu-berlin.de http://www.case.hu-berlin.de

More information

Wavelets and Multiresolution Processing

Wavelets and Multiresolution Processing Wavelets and Multiresolution Processing Wavelets Fourier transform has it basis functions in sinusoids Wavelets based on small waves of varying frequency and limited duration In addition to frequency,

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 9: Basis Expansions Department of Statistics & Biostatistics Rutgers University Nov 01, 2011 Regression and Classification Linear Regression. E(Y X) = f(x) We want to learn

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

Spatial Process Estimates as Smoothers: A Review

Spatial Process Estimates as Smoothers: A Review Spatial Process Estimates as Smoothers: A Review Soutir Bandyopadhyay 1 Basic Model The observational model considered here has the form Y i = f(x i ) + ɛ i, for 1 i n. (1.1) where Y i is the observed

More information

Multivariate Lineare Modelle

Multivariate Lineare Modelle 0-1 TALEB AHMAD CASE - Center for Applied Statistics and Economics Humboldt-Universität zu Berlin Motivation 1-1 Motivation Multivariate regression models can accommodate many explanatory which simultaneously

More information

Introduction to Signal Spaces

Introduction to Signal Spaces Introduction to Signal Spaces Selin Aviyente Department of Electrical and Computer Engineering Michigan State University January 12, 2010 Motivation Outline 1 Motivation 2 Vector Space 3 Inner Product

More information

Mixture of Gaussian Processes and its Applications

Mixture of Gaussian Processes and its Applications Mixture of Gaussian Processes and its Applications Mian Huang, Runze Li, Hansheng Wang, and Weixin Yao The Pennsylvania State University Technical Report Series #10-102 College of Health and Human Development

More information

Assignment #09 - Solution Manual

Assignment #09 - Solution Manual Assignment #09 - Solution Manual 1. Choose the correct statements about representation of a continuous signal using Haar wavelets. 1.5 points The signal is approximated using sin and cos functions. The

More information

Functional Linear Models for Scalar Responses

Functional Linear Models for Scalar Responses Chapter 9 Functional Linear Models for Scalar Responses This is the first of two chapters on the functional linear model. Here we have a dependent or response variable whose value is to be predicted or

More information

Sensitivity Analysis When Model Outputs Are Functions

Sensitivity Analysis When Model Outputs Are Functions LAUR-04-1991 Sensitivity Analysis When Model Outputs Are Functions Michael D. McKay and Katherine Campbell formerly of the Statistical Sciences Group Los Alamos National Laboratory Presented at the Fourth

More information

Estimation of cumulative distribution function with spline functions

Estimation of cumulative distribution function with spline functions INTERNATIONAL JOURNAL OF ECONOMICS AND STATISTICS Volume 5, 017 Estimation of cumulative distribution function with functions Akhlitdin Nizamitdinov, Aladdin Shamilov Abstract The estimation of the cumulative

More information

Functional Principal Components Analysis, Implementation and Applications

Functional Principal Components Analysis, Implementation and Applications Functional Principal Components Analysis, Implementation and Applications ABSCHLUSSARBEIT zur Erlangung des akademischen Grades Master of Science (M.Sc.) im Masterstudiengang Statistik an der Wirtschaftwissenschaftlichen

More information

Principal Components Analysis (PCA)

Principal Components Analysis (PCA) Principal Components Analysis (PCA) Principal Components Analysis (PCA) a technique for finding patterns in data of high dimension Outline:. Eigenvectors and eigenvalues. PCA: a) Getting the data b) Centering

More information

Data Preprocessing Tasks

Data Preprocessing Tasks Data Tasks 1 2 3 Data Reduction 4 We re here. 1 Dimensionality Reduction Dimensionality reduction is a commonly used approach for generating fewer features. Typically used because too many features can

More information

Functional SVD for Big Data

Functional SVD for Big Data Functional SVD for Big Data Pan Chao April 23, 2014 Pan Chao Functional SVD for Big Data April 23, 2014 1 / 24 Outline 1 One-Way Functional SVD a) Interpretation b) Robustness c) CV/GCV 2 Two-Way Problem

More information

Diagnostics for Linear Models With Functional Responses

Diagnostics for Linear Models With Functional Responses Diagnostics for Linear Models With Functional Responses Qing Shen Edmunds.com Inc. 2401 Colorado Ave., Suite 250 Santa Monica, CA 90404 (shenqing26@hotmail.com) Hongquan Xu Department of Statistics University

More information

Compressive Inference

Compressive Inference Compressive Inference Weihong Guo and Dan Yang Case Western Reserve University and SAMSI SAMSI transition workshop Project of Compressive Inference subgroup of Imaging WG Active members: Garvesh Raskutti,

More information

Option 1: Landmark Registration We can try to align specific points. The Registration Problem. Landmark registration. Time-Warping Functions

Option 1: Landmark Registration We can try to align specific points. The Registration Problem. Landmark registration. Time-Warping Functions The Registration Problem Most analyzes only account for variation in amplitude. Frequently, observed data exhibit features that vary in time. Option 1: Landmark Registration We can try to align specific

More information

Time Series. Anthony Davison. c

Time Series. Anthony Davison. c Series Anthony Davison c 2008 http://stat.epfl.ch Periodogram 76 Motivation............................................................ 77 Lutenizing hormone data..................................................

More information

2.3. Clustering or vector quantization 57

2.3. Clustering or vector quantization 57 Multivariate Statistics non-negative matrix factorisation and sparse dictionary learning The PCA decomposition is by construction optimal solution to argmin A R n q,h R q p X AH 2 2 under constraint :

More information

Flexible Spatio-temporal smoothing with array methods

Flexible Spatio-temporal smoothing with array methods Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session IPS046) p.849 Flexible Spatio-temporal smoothing with array methods Dae-Jin Lee CSIRO, Mathematics, Informatics and

More information

UNIVERSITÄT POTSDAM Institut für Mathematik

UNIVERSITÄT POTSDAM Institut für Mathematik UNIVERSITÄT POTSDAM Institut für Mathematik Testing the Acceleration Function in Life Time Models Hannelore Liero Matthias Liero Mathematische Statistik und Wahrscheinlichkeitstheorie Universität Potsdam

More information

Affine Processes. Econometric specifications. Eduardo Rossi. University of Pavia. March 17, 2009

Affine Processes. Econometric specifications. Eduardo Rossi. University of Pavia. March 17, 2009 Affine Processes Econometric specifications Eduardo Rossi University of Pavia March 17, 2009 Eduardo Rossi (University of Pavia) Affine Processes March 17, 2009 1 / 40 Outline 1 Affine Processes 2 Affine

More information

Interpretable Functional Principal Component Analysis

Interpretable Functional Principal Component Analysis Biometrics 000, 000 000 DOI: 000 000 0000 Interpretable Functional Principal Component Analysis Zhenhua Lin 1,, Liangliang Wang 2,, and Jiguo Cao 2, 1 Department of Statistical Sciences, University of

More information

NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS VIA HAAR WAVELETS

NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS VIA HAAR WAVELETS TWMS J Pure Appl Math V5, N2, 24, pp22-228 NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS VIA HAAR WAVELETS S ASADI, AH BORZABADI Abstract In this paper, Haar wavelet benefits are applied to the delay

More information

An Introduction to Wavelets and some Applications

An Introduction to Wavelets and some Applications An Introduction to Wavelets and some Applications Milan, May 2003 Anestis Antoniadis Laboratoire IMAG-LMC University Joseph Fourier Grenoble, France An Introduction to Wavelets and some Applications p.1/54

More information

Principal components in an asymmetric norm

Principal components in an asymmetric norm Ngoc Mai Tran Petra Burdejova Maria Osipenko Wolfgang Karl Härdle Ladislaus von Bortkiewicz Chair of Statistics School of Business and Economics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

More information

Sparse Covariance Selection using Semidefinite Programming

Sparse Covariance Selection using Semidefinite Programming Sparse Covariance Selection using Semidefinite Programming A. d Aspremont ORFE, Princeton University Joint work with O. Banerjee, L. El Ghaoui & G. Natsoulis, U.C. Berkeley & Iconix Pharmaceuticals Support

More information

Modeling Nonlinearities in Interest Rate Setting

Modeling Nonlinearities in Interest Rate Setting The United Kingdom 1970:2006 riedel@wiwi.hu-berlin.de Institut für Statistik and Ökonometrie, C2 Humboldt-Universität zu Berlin June 27, 2007 Aim Estimation of an augmented Taylor Rule for interest rates

More information

Linear SPDEs driven by stationary random distributions

Linear SPDEs driven by stationary random distributions Linear SPDEs driven by stationary random distributions aluca Balan University of Ottawa Workshop on Stochastic Analysis and Applications June 4-8, 2012 aluca Balan (University of Ottawa) Linear SPDEs with

More information

Functional principal component analysis of financial time series

Functional principal component analysis of financial time series Vichi M., Monari P., Mignani S., Montanari A. (Eds.) New Developments in Classification and Data Analysis Springer-Verlag, Berlin, 2005, 351-358 Functional principal component analysis of financial time

More information

Ridge Regression. Mohammad Emtiyaz Khan EPFL Oct 1, 2015

Ridge Regression. Mohammad Emtiyaz Khan EPFL Oct 1, 2015 Ridge Regression Mohammad Emtiyaz Khan EPFL Oct, 205 Mohammad Emtiyaz Khan 205 Motivation Linear models can be too limited and usually underfit. One way is to use nonlinear basis functions instead. Nonlinear

More information

High Dimensional Discriminant Analysis

High Dimensional Discriminant Analysis High Dimensional Discriminant Analysis Charles Bouveyron 1,2, Stéphane Girard 1, and Cordelia Schmid 2 1 LMC IMAG, BP 53, Université Grenoble 1, 38041 Grenoble cedex 9 France (e-mail: charles.bouveyron@imag.fr,

More information

Module 9: Stationary Processes

Module 9: Stationary Processes Module 9: Stationary Processes Lecture 1 Stationary Processes 1 Introduction A stationary process is a stochastic process whose joint probability distribution does not change when shifted in time or space.

More information

Optimal design of experiments

Optimal design of experiments Optimal design of experiments Session 4: Some theory Peter Goos / 40 Optimal design theory continuous or approximate optimal designs implicitly assume an infinitely large number of observations are available

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Consistency and Convergence

Consistency and Convergence Jim Lambers MAT 77 Fall Semester 010-11 Lecture 0 Notes These notes correspond to Sections 1.3, 1.4 and 1.5 in the text. Consistency and Convergence We have learned that the numerical solution obtained

More information

Nonparametric Regression. Badr Missaoui

Nonparametric Regression. Badr Missaoui Badr Missaoui Outline Kernel and local polynomial regression. Penalized regression. We are given n pairs of observations (X 1, Y 1 ),...,(X n, Y n ) where Y i = r(x i ) + ε i, i = 1,..., n and r(x) = E(Y

More information

Supervised Functional Principal Component Analysis

Supervised Functional Principal Component Analysis Noname manuscript No. will be inserted by the editor Supervised Functional Principal Component Analysis Yunlong Nie Liangliang Wang Baisen Liu Jiguo Cao Received: date / Accepted: date Abstract In functional

More information

Piotr Majer Risk Patterns and Correlated Brain Activities

Piotr Majer Risk Patterns and Correlated Brain Activities Alena My²i ková Piotr Majer Song Song Alena Myšičková Peter N. C. Mohr Peter N. C. Mohr Wolfgang K. Härdle Song Song Hauke R. Heekeren Wolfgang K. Härdle Hauke R. Heekeren C.A.S.E. Centre C.A.S.E. for

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition INTRODUCTION TO Lecture Slides for Machine Learning 2nd Edition ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://www.cs.tau.ac.il/~apartzin/machinelearning/ The MIT Press, 2010

More information

Estimating Mixture of Gaussian Processes by Kernel Smoothing

Estimating Mixture of Gaussian Processes by Kernel Smoothing This is the author s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher s web site or your institution s library. Estimating

More information

Bayesian Dynamic Linear Modelling for. Complex Computer Models

Bayesian Dynamic Linear Modelling for. Complex Computer Models Bayesian Dynamic Linear Modelling for Complex Computer Models Fei Liu, Liang Zhang, Mike West Abstract Computer models may have functional outputs. With no loss of generality, we assume that a single computer

More information

Independent Component Analysis

Independent Component Analysis 1 Independent Component Analysis Background paper: http://www-stat.stanford.edu/ hastie/papers/ica.pdf 2 ICA Problem X = AS where X is a random p-vector representing multivariate input measurements. S

More information

Recovering Copulae from Conditional Quantiles

Recovering Copulae from Conditional Quantiles Wolfgang K. Härdle Chen Huang Alexander Ristig Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Center for Applied Statistics and Economics HumboldtUniversität zu Berlin http://lvb.wiwi.hu-berlin.de

More information

Modeling Repeated Functional Observations

Modeling Repeated Functional Observations Modeling Repeated Functional Observations Kehui Chen Department of Statistics, University of Pittsburgh, Hans-Georg Müller Department of Statistics, University of California, Davis Supplemental Material

More information

The Matrix Reloaded: Computations for large spatial data sets

The Matrix Reloaded: Computations for large spatial data sets The Matrix Reloaded: Computations for large spatial data sets Doug Nychka National Center for Atmospheric Research The spatial model Solving linear systems Matrix multiplication Creating sparsity Sparsity,

More information

Dimension Reduction. David M. Blei. April 23, 2012

Dimension Reduction. David M. Blei. April 23, 2012 Dimension Reduction David M. Blei April 23, 2012 1 Basic idea Goal: Compute a reduced representation of data from p -dimensional to q-dimensional, where q < p. x 1,...,x p z 1,...,z q (1) We want to do

More information

Wavelet-vaguelette decomposition and its application to rheometry

Wavelet-vaguelette decomposition and its application to rheometry Wavelet-vaguelette decomposition and its application to rheometry Christophe Ancey École Polytechnique Fédérale de Lausanne WavE 2006 conference, July 12 2006 christophe.ancey@epfl.ch Wavelet-vaguelette

More information

Putzer s Algorithm. Norman Lebovitz. September 8, 2016

Putzer s Algorithm. Norman Lebovitz. September 8, 2016 Putzer s Algorithm Norman Lebovitz September 8, 2016 1 Putzer s algorithm The differential equation dx = Ax, (1) dt where A is an n n matrix of constants, possesses the fundamental matrix solution exp(at),

More information

Curves clustering with approximation of the density of functional random variables

Curves clustering with approximation of the density of functional random variables Curves clustering with approximation of the density of functional random variables Julien Jacques and Cristian Preda Laboratoire Paul Painlevé, UMR CNRS 8524, University Lille I, Lille, France INRIA Lille-Nord

More information

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA

PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA PENALIZED LIKELIHOOD PARAMETER ESTIMATION FOR ADDITIVE HAZARD MODELS WITH INTERVAL CENSORED DATA Kasun Rathnayake ; A/Prof Jun Ma Department of Statistics Faculty of Science and Engineering Macquarie University

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Multiscale Frame-based Kernels for Image Registration

Multiscale Frame-based Kernels for Image Registration Multiscale Frame-based Kernels for Image Registration Ming Zhen, Tan National University of Singapore 22 July, 16 Ming Zhen, Tan (National University of Singapore) Multiscale Frame-based Kernels for Image

More information

Chapter 4: Factor Analysis

Chapter 4: Factor Analysis Chapter 4: Factor Analysis In many studies, we may not be able to measure directly the variables of interest. We can merely collect data on other variables which may be related to the variables of interest.

More information

Stability of optimization problems with stochastic dominance constraints

Stability of optimization problems with stochastic dominance constraints Stability of optimization problems with stochastic dominance constraints D. Dentcheva and W. Römisch Stevens Institute of Technology, Hoboken Humboldt-University Berlin www.math.hu-berlin.de/~romisch SIAM

More information

Testing Monotonicity of Pricing Kernels

Testing Monotonicity of Pricing Kernels Yuri Golubev Wolfgang Härdle Roman Timofeev C.A.S.E. Center for Applied Statistics and Economics Humboldt-Universität zu Berlin 12 1 8 6 4 2 2 4 25 2 15 1 5 5 1 15 2 25 Motivation 2-2 Motivation An investor

More information

Uncertainty quantification and visualization for functional random variables

Uncertainty quantification and visualization for functional random variables Uncertainty quantification and visualization for functional random variables MascotNum Workshop 2014 S. Nanty 1,3 C. Helbert 2 A. Marrel 1 N. Pérot 1 C. Prieur 3 1 CEA, DEN/DER/SESI/LSMR, F-13108, Saint-Paul-lez-Durance,

More information

Statistical Models. Functional Linear Regression. A First Idea. Models for Scalar Responses

Statistical Models. Functional Linear Regression. A First Idea. Models for Scalar Responses Statistical Models Functional Linear Regression So far we have focussed on exploratory data analysis Smoothing Functional covariance Functional PCA/CCA Now we wish to examine predictive relationships generalization

More information

Lectures notes. Rheology and Fluid Dynamics

Lectures notes. Rheology and Fluid Dynamics ÉC O L E P O L Y T E C H N IQ U E FÉ DÉR A L E D E L A U S A N N E Christophe Ancey Laboratoire hydraulique environnementale (LHE) École Polytechnique Fédérale de Lausanne Écublens CH-05 Lausanne Lectures

More information

Spatially Adaptive Smoothing Splines

Spatially Adaptive Smoothing Splines Spatially Adaptive Smoothing Splines Paul Speckman University of Missouri-Columbia speckman@statmissouriedu September 11, 23 Banff 9/7/3 Ordinary Simple Spline Smoothing Observe y i = f(t i ) + ε i, =

More information

Analysing geoadditive regression data: a mixed model approach

Analysing geoadditive regression data: a mixed model approach Analysing geoadditive regression data: a mixed model approach Institut für Statistik, Ludwig-Maximilians-Universität München Joint work with Ludwig Fahrmeir & Stefan Lang 25.11.2005 Spatio-temporal regression

More information

A Modern Look at Classical Multivariate Techniques

A Modern Look at Classical Multivariate Techniques A Modern Look at Classical Multivariate Techniques Yoonkyung Lee Department of Statistics The Ohio State University March 16-20, 2015 The 13th School of Probability and Statistics CIMAT, Guanajuato, Mexico

More information