FUNCTIONAL DATA ANALYSIS FOR VOLATILITY PROCESS

Size: px
Start display at page:

Download "FUNCTIONAL DATA ANALYSIS FOR VOLATILITY PROCESS"

Transcription

1 FUNCTIONAL DATA ANALYSIS FOR VOLATILITY PROCESS Rituparna Sen Monday, July 31 10:45am-12:30pm Classroom 228 St-C5 Financial Models Joint work with Hans-Georg Müller and Ulrich Stadtmüller

2 1. INTRODUCTION What are functional data? Univariate Data Multivariate Data (MDA) Infinite-dimensional Data (FDA) Per subject or experimental unit, one samples one or several functions X(t), t T (interval) Order, neighborhood and smoothness are important concepts in FDA in contrast to Multivariate Data Analysis Modeling data as independent realizations of a stochastic process with smooth trajectories

3 2. DECOMPOSING NOISY FUNCTIONAL DATA into a smooth random process S and additive noise: X ij = S i (t ij ) + R ij, i = 1,... n, j = 1,... m. i denotes the subject or experimental unit and j denotes the time. The R ij are additive noise: R ij, R i k are independent for all i i, E(R ij ) = 0, var(r ij ) = σ 2 R < 1. Note that the noise R ij within the same subject or item i may be correlated.

4 3. MODELING NOISE COMPONENTS log(rij) 2 = V (t ij ) + W ij where V is the functional variance process which is smooth, i.e., it has a smooth mean function µ V, and a smooth covariance structure G V (s, t) = cov(v (s), V (t)), s, t T. The W ij are white noise : E(W ij ) = 0, var(w ij ) = σw 2, W ij W ik for j k, W V, W S.

5 4. MODELING FINANCIAL RETURNS Black-Scholes model for stock price d log X(t, ω) = µdt + σdw (t, ω), t 0 Here W is a standard Wiener process, σ > 0 is called the volatility, µ is the drift. Generalizations (Barndorff-Nielsen & Shephard 2002) d log X(t, ω) = µ(t, ω)dt + σ(t, ω)dw (t, ω) where µ(t, ω), σ(t, ω), W (t, ω) are independent stochastic processes, µ( ), σ( ) with smooth paths. Lemma 1 Assume that (µ(t)) t [0,T ] and (σ(t)) t [0,T ] denote stochastic processes with paths being Lipschitz continuous of order 1. Then we have that i) 1 t+ t t+ t ii) 1 µ(v)dv = µ(t) + O a.s. ( 3/2 ) uniformly in t W (t+ ) W (t) σ(v)dw (v) = σ(t) + O p ( 1/2 ) uniformly in t

6 5. VOLATILITY PROCESS For and X (t) = (log X(t + ) log(x(t)))/ obtain in the limit as 0 Let η = E log(n(0, 1) 2 ). With R(t) = X (t), obtain W (t) = (W (t + ) (W (t)))/, X (t) = σ(t)w (t) log(r 2 (t)) = log σ 2 (t) + log W 2 (t) = (log σ 2 (t) + η) + (log W 2 (t) η) = Ṽ (t) + W (t) Let V (t) = Ṽ (t) η providing justification for defining V as the volatility process.

7 6. FUNCTIONAL REPRESENTATION OF NOISE PROCESS The decomposition Z ij = log(r 2 ij) = V (t ij ) + W ij implies E(Z ij ) = E(V (t ij )) = µ V (t ij ) cov(z ij, Z ik )) = cov(v i (t ij ), V i (t ik )) = G V (t ij, t ik ), for the functional variance process V. j k

8 Auto-covariance operator associated with the symmetric kernel G V : G V (f)(s) = GV (s, t)f(t)dt, has smooth eigenfunctions ψ k with nonnegative eigenvalues ρ k Representations T G V (s, t) = k ρ k ψ k (s)ψ k (t), s, t T V (t) = µ V (t) + k ζ k ψ k (t), with functional principal component scores ζ k, k 1 with Eζ k = 0, var(ζ k ) = ρ k, ζ k = T (V (t) µ V (t))ψ k (t)dt, ζ k uncorrelated, ρk <

9 7. FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS (FPCA) Estimation of mean function µ X by cross-sectional averaging, of eigenfunctions and eigenvalues from carefully smoothed covariance surface Γ(s, t) = cov(v (s), V (t)) (Rice & Silverman 1991 JRSS-B, Yao et al JASA) How many components M to include? Cross-validation ok, pseudo-aic, BIC work better. Asymptotically, M = M(n)

10 8. ESTIMATION OF MODEL COMPONENTS First step: Smoothing of observed trajectories in the model X ij = S i (t ij ) + R ij Obtain smoothed trajectories Ŝi(t ij ) and estimated errors and transformed residuals ˆR ij = X ij Ŝi(t ij ) Ẑ ij = log( ˆR 2 ij) = log(x ij Ŝi(t ij )) 2 This is finite sample correction and needs to be done because is finite.

11 Second step: Apply functional principal component analysis (Principal Analysis of Random Trajectories - PART algorithm) to the sample of transformed residuals Ẑij : Estimate mean function µ V (smoothing of cross-sectional averages) Estimate smooth covariance surface by smoothing of empirical covariances (omitting the diagonal) Obtain eigenvalues/eigenfunctions; choosing number of components M by cross-validation (or AIC, BIC) From diagonal of covariance surface, obtain var(w i j) = σ 2 W Obtain individual FPC scores ζ ij by integration.

12 9. ASYMPTOTIC RESULTS Basic Lemma: Under regularity conditions, with smoothing bandwidths b S, m no. of measurements per trajectory, ( ) E sup Ŝi(t) S i (t) = O(b 2 S + 1 ). t T mbs Results for mean and covariance structure: sup s,t T sup t T for sequences α n, β n, γ n 0. ˆµ V (t) µ V (t) = O p (α n ) ĜV (s, t) G V (s, t) = O p (β n ) ˆσ 2 W σ 2 W = O p (γ n )

13 Results for eigenvalues/eigenfunctions of functional variance process: sup t T ˆψ k (t) ψ k (t) p 0 ˆρ k p ρk. Results for individual trajectories of functional variance process: As M = M(n), sup 1 k M ˆζ ik ζik p 0 sup t T ˆV i (t) V i (t) p 0.

14 10. REAL DATA APPLICATIONS INTRA-DAY TRADING PATTERNS: Five-minute closing prices of Affymetrix stock and SOXX (PHLX Semiconductor Sector Index) observed for 40 days. Data are log-returns, log(x(t)/x(t - 1)) Patterns of volatility? Apply two-step procedure to obtain trajectories of volatility process.

15 Figure 1: Raw curves for 20 days of Affymetrix data

16 Figure 2: SOXX log returns with smooth trends

17 Figure 3: Estimated mean(left) and covariance surface(right) for the variance process of Affymetrix data

18 Figure 4: Estimated mean(left) and covariance surface(right) for the variance process of SOXX data

19 Figure 5: Estimated eigenfunctions of the variance process of Affymetrix data

20 Figure 6: Estimated eigenfunctions of the variance process of SOXX data

21 Figure 7: Estimated transformed residuals for the days with volatility time courses most aligned with the 3 eigenfunctions for SOXX data

22 11. Regression of second half day on first half day for SOXX data

23 Figure 8: Left top: Estimated and actual transformed residuals for a typical second half day: The blue line is prediction using only the mean, green line is prediction using the first half day and red line is the estimate using the second half day. Right Top: Beta function. Bottom: Scatter plot of estimated principal component scores of second half day vs first half day for first(left) and second(right) principal

24 12. Jump detection

25 Figure 9: Density estimate of z T P (red curve) superimposed with standard normal density (blue curve)for Japanese Yen and US Dollar exchange rate: The left panel uses Huang-Tauchen method. The right panel uses FDA. The figures on top are for 5 min data and those on bottom are for 1 min data.

26 Figure 10: Density estimate of z T P (red curve) superimposed with standard normal density (blue curve)for Euro and US Dollar exchange rate: The left panel uses Huang-Tauchen method. The right panel uses FDA. The figures on top are for 5 min data and those on bottom are for 1 min data.

Modeling Repeated Functional Observations

Modeling Repeated Functional Observations Modeling Repeated Functional Observations Kehui Chen Department of Statistics, University of Pittsburgh, Hans-Georg Müller Department of Statistics, University of California, Davis Supplemental Material

More information

Modeling Multi-Way Functional Data With Weak Separability

Modeling Multi-Way Functional Data With Weak Separability Modeling Multi-Way Functional Data With Weak Separability Kehui Chen Department of Statistics University of Pittsburgh, USA @CMStatistics, Seville, Spain December 09, 2016 Outline Introduction. Multi-way

More information

On Realized Volatility, Covariance and Hedging Coefficient of the Nikkei-225 Futures with Micro-Market Noise

On Realized Volatility, Covariance and Hedging Coefficient of the Nikkei-225 Futures with Micro-Market Noise On Realized Volatility, Covariance and Hedging Coefficient of the Nikkei-225 Futures with Micro-Market Noise Naoto Kunitomo and Seisho Sato October 22, 2008 Abstract For the estimation problem of the realized

More information

Singular Additive Models for Function to. Function Regression

Singular Additive Models for Function to. Function Regression Statistica Sinica Singular Additive Models for Function to Function Regression Byeong U. Park, Chun-Jui Chen, Wenwen Tao and Hans-Georg Müller Seoul National University and University of California at

More information

Weakly dependent functional data. Piotr Kokoszka. Utah State University. Siegfried Hörmann. University of Utah

Weakly dependent functional data. Piotr Kokoszka. Utah State University. Siegfried Hörmann. University of Utah Weakly dependent functional data Piotr Kokoszka Utah State University Joint work with Siegfried Hörmann University of Utah Outline Examples of functional time series L 4 m approximability Convergence of

More information

Realized Volatility, Covariance and Hedging Coefficient of the Nikkei-225 Futures with Micro-Market Noise

Realized Volatility, Covariance and Hedging Coefficient of the Nikkei-225 Futures with Micro-Market Noise CIRJE-F-601 Realized Volatility, Covariance and Hedging Coefficient of the Nikkei-225 Futures with Micro-Market Noise Naoto Kunitomo University of Tokyo Seisho Sato Institute of Statistical Mathematic

More information

Fractal functional regression for classification of gene expression data by wavelets

Fractal functional regression for classification of gene expression data by wavelets Fractal functional regression for classification of gene expression data by wavelets Margarita María Rincón 1 and María Dolores Ruiz-Medina 2 1 University of Granada Campus Fuente Nueva 18071 Granada,

More information

REGRESSING LONGITUDINAL RESPONSE TRAJECTORIES ON A COVARIATE

REGRESSING LONGITUDINAL RESPONSE TRAJECTORIES ON A COVARIATE REGRESSING LONGITUDINAL RESPONSE TRAJECTORIES ON A COVARIATE Hans-Georg Müller 1 and Fang Yao 2 1 Department of Statistics, UC Davis, One Shields Ave., Davis, CA 95616 E-mail: mueller@wald.ucdavis.edu

More information

Functional modeling of longitudinal data

Functional modeling of longitudinal data CHAPTER 1 Functional modeling of longitudinal data 1.1 Introduction Hans-Georg Müller Longitudinal studies are characterized by data records containing repeated measurements per subject, measured at various

More information

Derivative Principal Component Analysis for Representing the Time Dynamics of Longitudinal and Functional Data 1

Derivative Principal Component Analysis for Representing the Time Dynamics of Longitudinal and Functional Data 1 Derivative Principal Component Analysis for Representing the Time Dynamics of Longitudinal and Functional Data 1 Short title: Derivative Principal Component Analysis Xiongtao Dai, Hans-Georg Müller Department

More information

FUNCTIONAL DATA ANALYSIS. Contribution to the. International Handbook (Encyclopedia) of Statistical Sciences. July 28, Hans-Georg Müller 1

FUNCTIONAL DATA ANALYSIS. Contribution to the. International Handbook (Encyclopedia) of Statistical Sciences. July 28, Hans-Georg Müller 1 FUNCTIONAL DATA ANALYSIS Contribution to the International Handbook (Encyclopedia) of Statistical Sciences July 28, 2009 Hans-Georg Müller 1 Department of Statistics University of California, Davis One

More information

Stochastic Processes

Stochastic Processes Stochastic Processes Stochastic Process Non Formal Definition: Non formal: A stochastic process (random process) is the opposite of a deterministic process such as one defined by a differential equation.

More information

Functional Latent Feature Models. With Single-Index Interaction

Functional Latent Feature Models. With Single-Index Interaction Generalized With Single-Index Interaction Department of Statistics Center for Statistical Bioinformatics Institute for Applied Mathematics and Computational Science Texas A&M University Naisyin Wang and

More information

Shrinkage Estimation for Functional Principal Component Scores, with Application to the Population Kinetics of Plasma Folate

Shrinkage Estimation for Functional Principal Component Scores, with Application to the Population Kinetics of Plasma Folate Shrinkage Estimation for Functional Principal Component Scores, with Application to the Population Kinetics of Plasma Folate Fang Yao, Hans-Georg Müller,, Andrew J. Clifford, Steven R. Dueker, Jennifer

More information

Functional Data Analysis for Big Data: A case study on California temperature trends

Functional Data Analysis for Big Data: A case study on California temperature trends Functional Data Analysis for Big Data: A case study on California temperature trends Pantelis Zenon Hadjipantelis and Hans-Georg Müller Abstract In recent years, detailed historical records, remote sensing,

More information

Mixture of Gaussian Processes and its Applications

Mixture of Gaussian Processes and its Applications Mixture of Gaussian Processes and its Applications Mian Huang, Runze Li, Hansheng Wang, and Weixin Yao The Pennsylvania State University Technical Report Series #10-102 College of Health and Human Development

More information

Tutorial on Functional Data Analysis

Tutorial on Functional Data Analysis Tutorial on Functional Data Analysis Ana-Maria Staicu Department of Statistics, North Carolina State University astaicu@ncsu.edu SAMSI April 5, 2017 A-M Staicu Tutorial on Functional Data Analysis April

More information

Modeling Repeated Functional Observations

Modeling Repeated Functional Observations Modeling Repeated Functional Observations Kehui Chen Department of Statistics, University of Pittsburgh, Hans-Georg Müller Department of Statistics, University of California, Davis ABSTRACT We introduce

More information

Generalized Functional Linear Models With Semiparametric Single-Index Interactions

Generalized Functional Linear Models With Semiparametric Single-Index Interactions Supplementary materials for this article are available online. Please click the JASA link at http://pubs.amstat.org. Generalized Functional Linear Models With Semiparametric Single-Index Interactions Yehua

More information

Dynamic Relations for Sparsely Sampled Gaussian Processes

Dynamic Relations for Sparsely Sampled Gaussian Processes TEST manuscript No. (will be inserted by the editor) Dynamic Relations for Sparsely Sampled Gaussian Processes Hans-Georg Müller Wenjing Yang Received: date / Accepted: date Abstract In longitudinal studies,

More information

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao

Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics. Jiti Gao Model Specification Testing in Nonparametric and Semiparametric Time Series Econometrics Jiti Gao Department of Statistics School of Mathematics and Statistics The University of Western Australia Crawley

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

Empirical Dynamics for Longitudinal Data

Empirical Dynamics for Longitudinal Data Empirical Dynamics for Longitudinal Data December 2009 Short title: Empirical Dynamics Hans-Georg Müller 1 Department of Statistics University of California, Davis Davis, CA 95616 U.S.A. Email: mueller@wald.ucdavis.edu

More information

Vast Volatility Matrix Estimation for High Frequency Data

Vast Volatility Matrix Estimation for High Frequency Data Vast Volatility Matrix Estimation for High Frequency Data Yazhen Wang National Science Foundation Yale Workshop, May 14-17, 2009 Disclaimer: My opinion, not the views of NSF Y. Wang (at NSF) 1 / 36 Outline

More information

Portfolio Allocation using High Frequency Data. Jianqing Fan

Portfolio Allocation using High Frequency Data. Jianqing Fan Portfolio Allocation using High Frequency Data Princeton University With Yingying Li and Ke Yu http://www.princeton.edu/ jqfan September 10, 2010 About this talk How to select sparsely optimal portfolio?

More information

arxiv:math/ v1 [math.st] 6 Mar 2006

arxiv:math/ v1 [math.st] 6 Mar 2006 The Annals of Statistics 2005, Vol. 33, No. 6, 2873 2903 DOI: 10.1214/009053605000000660 c Institute of Mathematical Statistics, 2005 arxiv:math/0603132v1 [math.st] 6 Mar 2006 FUNCTIONAL LINEAR REGRESSION

More information

Subsampling Cumulative Covariance Estimator

Subsampling Cumulative Covariance Estimator Subsampling Cumulative Covariance Estimator Taro Kanatani Faculty of Economics, Shiga University 1-1-1 Bamba, Hikone, Shiga 5228522, Japan February 2009 Abstract In this paper subsampling Cumulative Covariance

More information

Understanding Regressions with Observations Collected at High Frequency over Long Span

Understanding Regressions with Observations Collected at High Frequency over Long Span Understanding Regressions with Observations Collected at High Frequency over Long Span Yoosoon Chang Department of Economics, Indiana University Joon Y. Park Department of Economics, Indiana University

More information

Minjing Tao and Yazhen Wang. University of Wisconsin-Madison. Qiwei Yao. London School of Economics. Jian Zou

Minjing Tao and Yazhen Wang. University of Wisconsin-Madison. Qiwei Yao. London School of Economics. Jian Zou Large Volatility Matrix Inference via Combining Low-Frequency and High-Frequency Approaches Minjing Tao and Yazhen Wang University of Wisconsin-Madison Qiwei Yao London School of Economics Jian Zou National

More information

Spatial Process Estimates as Smoothers: A Review

Spatial Process Estimates as Smoothers: A Review Spatial Process Estimates as Smoothers: A Review Soutir Bandyopadhyay 1 Basic Model The observational model considered here has the form Y i = f(x i ) + ɛ i, for 1 i n. (1.1) where Y i is the observed

More information

OPTIMAL DESIGNS FOR LONGITUDINAL AND FUNCTIONAL DATA 1

OPTIMAL DESIGNS FOR LONGITUDINAL AND FUNCTIONAL DATA 1 OPTIMAL DESIGNS FOR LONGITUDINAL AND FUNCTIONAL DATA 1 April 2016 Second Revision Hao Ji 2 Department of Statistics University of California, Davis One Shields Avenue Davis, CA 95616 U.S.A. Phone: 1 (530)

More information

Dimension Reduction. David M. Blei. April 23, 2012

Dimension Reduction. David M. Blei. April 23, 2012 Dimension Reduction David M. Blei April 23, 2012 1 Basic idea Goal: Compute a reduced representation of data from p -dimensional to q-dimensional, where q < p. x 1,...,x p z 1,...,z q (1) We want to do

More information

Time Series Modeling of Financial Data. Prof. Daniel P. Palomar

Time Series Modeling of Financial Data. Prof. Daniel P. Palomar Time Series Modeling of Financial Data Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19,

More information

The Realized RSDC model

The Realized RSDC model The Realized RSDC model Denis Pelletier North Carolina State University and Aymard Kassi North Carolina State University Current version: March 25, 24 Incomplete and early draft. Abstract We introduce

More information

Generalized Functional Linear Models with Semiparametric Single-Index Interactions

Generalized Functional Linear Models with Semiparametric Single-Index Interactions Generalized Functional Linear Models with Semiparametric Single-Index Interactions Yehua Li Department of Statistics, University of Georgia, Athens, GA 30602, yehuali@uga.edu Naisyin Wang Department of

More information

Independent component analysis for functional data

Independent component analysis for functional data Independent component analysis for functional data Hannu Oja Department of Mathematics and Statistics University of Turku Version 12.8.216 August 216 Oja (UTU) FICA Date bottom 1 / 38 Outline 1 Probability

More information

Ross (1976) introduced the Arbitrage Pricing Theory (APT) as an alternative to the CAPM.

Ross (1976) introduced the Arbitrage Pricing Theory (APT) as an alternative to the CAPM. 4.2 Arbitrage Pricing Model, APM Empirical evidence indicates that the CAPM beta does not completely explain the cross section of expected asset returns. This suggests that additional factors may be required.

More information

R = µ + Bf Arbitrage Pricing Model, APM

R = µ + Bf Arbitrage Pricing Model, APM 4.2 Arbitrage Pricing Model, APM Empirical evidence indicates that the CAPM beta does not completely explain the cross section of expected asset returns. This suggests that additional factors may be required.

More information

Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2)

Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2) Some Terminology and Concepts that We will Use, But Not Emphasize (Section 6.2) Statistical analysis is based on probability theory. The fundamental object in probability theory is a probability space,

More information

Functional principal component analysis of spatially correlated data

Functional principal component analysis of spatially correlated data Stat Comput (2017) 27:1639 1654 DOI 10.1007/s11222-016-9708-4 Functional principal component analysis of spatially correlated data Chong Liu 1 Surajit Ray 2 Giles Hooker 3 Received: 16 March 2016 / Accepted:

More information

Missing Data Issues in the Studies of Neurodegenerative Disorders: the Methodology

Missing Data Issues in the Studies of Neurodegenerative Disorders: the Methodology Missing Data Issues in the Studies of Neurodegenerative Disorders: the Methodology Sheng Luo, PhD Associate Professor Department of Biostatistics & Bioinformatics Duke University Medical Center sheng.luo@duke.edu

More information

Finite Sample Analysis of Weighted Realized Covariance with Noisy Asynchronous Observations

Finite Sample Analysis of Weighted Realized Covariance with Noisy Asynchronous Observations Finite Sample Analysis of Weighted Realized Covariance with Noisy Asynchronous Observations Taro Kanatani JSPS Fellow, Institute of Economic Research, Kyoto University October 18, 2007, Stanford 1 Introduction

More information

Unified Discrete-Time and Continuous-Time Models. and High-Frequency Financial Data

Unified Discrete-Time and Continuous-Time Models. and High-Frequency Financial Data Unified Discrete-Time and Continuous-Time Models and Statistical Inferences for Merged Low-Frequency and High-Frequency Financial Data Donggyu Kim and Yazhen Wang University of Wisconsin-Madison December

More information

Chapter 4: Factor Analysis

Chapter 4: Factor Analysis Chapter 4: Factor Analysis In many studies, we may not be able to measure directly the variables of interest. We can merely collect data on other variables which may be related to the variables of interest.

More information

Lecture 4: Introduction to stochastic processes and stochastic calculus

Lecture 4: Introduction to stochastic processes and stochastic calculus Lecture 4: Introduction to stochastic processes and stochastic calculus Cédric Archambeau Centre for Computational Statistics and Machine Learning Department of Computer Science University College London

More information

Diagnostics for functional regression via residual processes

Diagnostics for functional regression via residual processes Diagnostics for functional regression via residual processes Jeng-Min Chiou Academia Sinica, Taiwan E-mail: jmchiou@stat.sinica.edu.tw Hans-Georg Müller University of California, Davis, USA E-mail: mueller@wald.ucdavis.edu

More information

Functional Data Analysis

Functional Data Analysis FDA 1-1 Functional Data Analysis Michal Benko Institut für Statistik und Ökonometrie Humboldt-Universität zu Berlin email:benko@wiwi.hu-berlin.de FDA 1-2 Outline of this talk: Introduction Turning discrete

More information

Diagnostics for functional regression via residual processes

Diagnostics for functional regression via residual processes Diagnostics for functional regression via residual processes Jeng-Min Chiou a, Hans-Georg Müller b, a Academia Sinica, 128 Academia Road Sec.2, Taipei 11529, Taiwan b University of California, Davis, One

More information

Long Memory through Marginalization

Long Memory through Marginalization Long Memory through Marginalization Hidden & Ignored Cross-Section Dependence Guillaume Chevillon ESSEC Business School (CREAR) and CREST joint with Alain Hecq and Sébastien Laurent Maastricht University

More information

Second-Order Inference for Gaussian Random Curves

Second-Order Inference for Gaussian Random Curves Second-Order Inference for Gaussian Random Curves With Application to DNA Minicircles Victor Panaretos David Kraus John Maddocks Ecole Polytechnique Fédérale de Lausanne Panaretos, Kraus, Maddocks (EPFL)

More information

Functional Variance Processes

Functional Variance Processes Hans-Georg MÜLLER, Ulrich STADTMÜLLER, and Fang YAO Functional Variance Processes We introduce the notion of a functional variance rocess to quantify variation in functional data. The functional data are

More information

A Stickiness Coefficient for Longitudinal Data

A Stickiness Coefficient for Longitudinal Data A Stickiness Coefficient for Longitudinal Data June 2011 Andrea Gottlieb 1 Graduate Group in Biostatistics University of California, Davis 1 Shields Avenue Davis, CA 95616 U.S.A. Phone: 1 (530) 752-2361

More information

Robust Methods for Multivariate Functional Data Analysis. Pallavi Sawant

Robust Methods for Multivariate Functional Data Analysis. Pallavi Sawant Robust Methods for Multivariate Functional Data Analysis by Pallavi Sawant A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree

More information

A Stickiness Coefficient for Longitudinal Data

A Stickiness Coefficient for Longitudinal Data A Stickiness Coefficient for Longitudinal Data Revised Version November 2011 Andrea Gottlieb 1 Department of Statistics University of California, Davis 1 Shields Avenue Davis, CA 95616 U.S.A. Phone: 1

More information

Nonparametric Inference In Functional Data

Nonparametric Inference In Functional Data Nonparametric Inference In Functional Data Zuofeng Shang Purdue University Joint work with Guang Cheng from Purdue Univ. An Example Consider the functional linear model: Y = α + where 1 0 X(t)β(t)dt +

More information

6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series. MA6622, Ernesto Mordecki, CityU, HK, 2006.

6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series. MA6622, Ernesto Mordecki, CityU, HK, 2006. 6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series MA6622, Ernesto Mordecki, CityU, HK, 2006. References for Lecture 5: Quantitative Risk Management. A. McNeil, R. Frey,

More information

Course topics (tentative) The role of random effects

Course topics (tentative) The role of random effects Course topics (tentative) random effects linear mixed models analysis of variance frequentist likelihood-based inference (MLE and REML) prediction Bayesian inference The role of random effects Rasmus Waagepetersen

More information

Time Series 2. Robert Almgren. Sept. 21, 2009

Time Series 2. Robert Almgren. Sept. 21, 2009 Time Series 2 Robert Almgren Sept. 21, 2009 This week we will talk about linear time series models: AR, MA, ARMA, ARIMA, etc. First we will talk about theory and after we will talk about fitting the models

More information

Varying-coefficient functional linear regression

Varying-coefficient functional linear regression Bernoulli 163), 010, 730 758 DOI: 10.3150/09-BEJ31 Varying-coefficient functional linear regression YICHAO WU 1, JIANQING FAN and HAN-GEORG MÜLLER 3 1 Department of tatistics, North Carolina tate University,

More information

Online Appendix. j=1. φ T (ω j ) vec (EI T (ω j ) f θ0 (ω j )). vec (EI T (ω) f θ0 (ω)) = O T β+1/2) = o(1), M 1. M T (s) exp ( isω)

Online Appendix. j=1. φ T (ω j ) vec (EI T (ω j ) f θ0 (ω j )). vec (EI T (ω) f θ0 (ω)) = O T β+1/2) = o(1), M 1. M T (s) exp ( isω) Online Appendix Proof of Lemma A.. he proof uses similar arguments as in Dunsmuir 979), but allowing for weak identification and selecting a subset of frequencies using W ω). It consists of two steps.

More information

Australia. Accepted author version posted online: 08 Aug 2014.

Australia. Accepted author version posted online: 08 Aug 2014. This article was downloaded by: [University of Toronto Libraries] On: 17 November 2014, At: 19:34 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered

More information

Functional principal component and factor analysis of spatially correlated data

Functional principal component and factor analysis of spatially correlated data Boston University OpenBU Theses & Dissertations http://open.bu.edu Boston University Theses & Dissertations 2014 Functional principal component and factor analysis of spatially correlated data Liu, Chong

More information

Weighted Least Squares

Weighted Least Squares Weighted Least Squares The standard linear model assumes that Var(ε i ) = σ 2 for i = 1,..., n. As we have seen, however, there are instances where Var(Y X = x i ) = Var(ε i ) = σ2 w i. Here w 1,..., w

More information

High-Dimensional Time Series Analysis

High-Dimensional Time Series Analysis High-Dimensional Time Series Analysis Ruey S. Tsay Booth School of Business University of Chicago December 2015 Outline Analysis of high-dimensional time-series data (or dependent big data) Problem and

More information

Estimating Mixture of Gaussian Processes by Kernel Smoothing

Estimating Mixture of Gaussian Processes by Kernel Smoothing This is the author s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher s web site or your institution s library. Estimating

More information

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE

UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 5 (2010), 275 284 UNCERTAINTY FUNCTIONAL DIFFERENTIAL EQUATIONS FOR FINANCE Iuliana Carmen Bărbăcioru Abstract.

More information

Tests for separability in nonparametric covariance operators of random surfaces

Tests for separability in nonparametric covariance operators of random surfaces Tests for separability in nonparametric covariance operators of random surfaces Shahin Tavakoli (joint with John Aston and Davide Pigoli) April 19, 2016 Analysis of Multidimensional Functional Data Shahin

More information

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of

covariance function, 174 probability structure of; Yule-Walker equations, 174 Moving average process, fluctuations, 5-6, 175 probability structure of Index* The Statistical Analysis of Time Series by T. W. Anderson Copyright 1971 John Wiley & Sons, Inc. Aliasing, 387-388 Autoregressive {continued) Amplitude, 4, 94 case of first-order, 174 Associated

More information

Tests for error correlation in the functional linear model

Tests for error correlation in the functional linear model Tests for error correlation in the functional linear model Robertas Gabrys Utah State University Lajos Horváth University of Utah Piotr Kokoszka Utah State University Abstract The paper proposes two inferential

More information

A Note on Hilbertian Elliptically Contoured Distributions

A Note on Hilbertian Elliptically Contoured Distributions A Note on Hilbertian Elliptically Contoured Distributions Yehua Li Department of Statistics, University of Georgia, Athens, GA 30602, USA Abstract. In this paper, we discuss elliptically contoured distribution

More information

Estimation and Inference of Quantile Regression. for Survival Data under Biased Sampling

Estimation and Inference of Quantile Regression. for Survival Data under Biased Sampling Estimation and Inference of Quantile Regression for Survival Data under Biased Sampling Supplementary Materials: Proofs of the Main Results S1 Verification of the weight function v i (t) for the lengthbiased

More information

Financial Econometrics Return Predictability

Financial Econometrics Return Predictability Financial Econometrics Return Predictability Eric Zivot March 30, 2011 Lecture Outline Market Efficiency The Forms of the Random Walk Hypothesis Testing the Random Walk Hypothesis Reading FMUND, chapter

More information

Empirical properties of large covariance matrices in finance

Empirical properties of large covariance matrices in finance Empirical properties of large covariance matrices in finance Ex: RiskMetrics Group, Geneva Since 2010: Swissquote, Gland December 2009 Covariance and large random matrices Many problems in finance require

More information

Smooth Common Principal Component Analysis

Smooth Common Principal Component Analysis 1 Smooth Common Principal Component Analysis Michal Benko Wolfgang Härdle Center for Applied Statistics and Economics benko@wiwi.hu-berlin.de Humboldt-Universität zu Berlin Motivation 1-1 Volatility Surface

More information

Degradation Modeling and Monitoring of Truncated Degradation Signals. Rensheng Zhou, Nagi Gebraeel, and Nicoleta Serban

Degradation Modeling and Monitoring of Truncated Degradation Signals. Rensheng Zhou, Nagi Gebraeel, and Nicoleta Serban Degradation Modeling and Monitoring of Truncated Degradation Signals Rensheng Zhou, Nagi Gebraeel, and Nicoleta Serban School of Industrial and Systems Engineering, Georgia Institute of Technology Abstract:

More information

Symmetric btw positive & negative prior returns. where c is referred to as risk premium, which is expected to be positive.

Symmetric btw positive & negative prior returns. where c is referred to as risk premium, which is expected to be positive. Advantages of GARCH model Simplicity Generates volatility clustering Heavy tails (high kurtosis) Weaknesses of GARCH model Symmetric btw positive & negative prior returns Restrictive Provides no explanation

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

Supplement to Sparse Non-Negative Generalized PCA with Applications to Metabolomics

Supplement to Sparse Non-Negative Generalized PCA with Applications to Metabolomics Supplement to Sparse Non-Negative Generalized PCA with Applications to Metabolomics Genevera I. Allen Department of Pediatrics-Neurology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research

More information

Multivariate Time Series: VAR(p) Processes and Models

Multivariate Time Series: VAR(p) Processes and Models Multivariate Time Series: VAR(p) Processes and Models A VAR(p) model, for p > 0 is X t = φ 0 + Φ 1 X t 1 + + Φ p X t p + A t, where X t, φ 0, and X t i are k-vectors, Φ 1,..., Φ p are k k matrices, with

More information

Factor Models for Asset Returns. Prof. Daniel P. Palomar

Factor Models for Asset Returns. Prof. Daniel P. Palomar Factor Models for Asset Returns Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19, HKUST,

More information

MATH4210 Financial Mathematics ( ) Tutorial 7

MATH4210 Financial Mathematics ( ) Tutorial 7 MATH40 Financial Mathematics (05-06) Tutorial 7 Review of some basic Probability: The triple (Ω, F, P) is called a probability space, where Ω denotes the sample space and F is the set of event (σ algebra

More information

Variance Function Estimation in Multivariate Nonparametric Regression

Variance Function Estimation in Multivariate Nonparametric Regression Variance Function Estimation in Multivariate Nonparametric Regression T. Tony Cai 1, Michael Levine Lie Wang 1 Abstract Variance function estimation in multivariate nonparametric regression is considered

More information

Testing Jumps via False Discovery Rate Control

Testing Jumps via False Discovery Rate Control Testing Jumps via False Discovery Rate Control Yu-Min Yen August 12, 2011 Abstract Many recently developed nonparametric jump tests can be viewed as multiple hypothesis testing problems. For such multiple

More information

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands

Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Asymptotic Multivariate Kriging Using Estimated Parameters with Bayesian Prediction Methods for Non-linear Predictands Elizabeth C. Mannshardt-Shamseldin Advisor: Richard L. Smith Duke University Department

More information

Brownian Motion and Poisson Process

Brownian Motion and Poisson Process and Poisson Process She: What is white noise? He: It is the best model of a totally unpredictable process. She: Are you implying, I am white noise? He: No, it does not exist. Dialogue of an unknown couple.

More information

Goodness-of-fit tests for the cure rate in a mixture cure model

Goodness-of-fit tests for the cure rate in a mixture cure model Biometrika (217), 13, 1, pp. 1 7 Printed in Great Britain Advance Access publication on 31 July 216 Goodness-of-fit tests for the cure rate in a mixture cure model BY U.U. MÜLLER Department of Statistics,

More information

Nonparametric Regression

Nonparametric Regression Adaptive Variance Function Estimation in Heteroscedastic Nonparametric Regression T. Tony Cai and Lie Wang Abstract We consider a wavelet thresholding approach to adaptive variance function estimation

More information

AR, MA and ARMA models

AR, MA and ARMA models AR, MA and AR by Hedibert Lopes P Based on Tsay s Analysis of Financial Time Series (3rd edition) P 1 Stationarity 2 3 4 5 6 7 P 8 9 10 11 Outline P Linear Time Series Analysis and Its Applications For

More information

Properties of Principal Component Methods for Functional and Longitudinal Data Analysis 1

Properties of Principal Component Methods for Functional and Longitudinal Data Analysis 1 Properties of Principal Component Methods for Functional and Longitudinal Data Analysis 1 Peter Hall 2 Hans-Georg Müller 3,4 Jane-Ling Wang 3,5 Abstract The use of principal components methods to analyse

More information

Multivariate GARCH models.

Multivariate GARCH models. Multivariate GARCH models. Financial market volatility moves together over time across assets and markets. Recognizing this commonality through a multivariate modeling framework leads to obvious gains

More information

Estimation of Sparse Functional Additive Models. with Adaptive Group LASSO

Estimation of Sparse Functional Additive Models. with Adaptive Group LASSO Estimation of Sparse Functional Additive Models with Adaptive Group LASSO Peijun Sang, Liangliang Wang and Jiguo Cao Department of Statistics and Actuarial Science Simon Fraser University Abstract: We

More information

Introduction. Stochastic Processes. Will Penny. Stochastic Differential Equations. Stochastic Chain Rule. Expectations.

Introduction. Stochastic Processes. Will Penny. Stochastic Differential Equations. Stochastic Chain Rule. Expectations. 19th May 2011 Chain Introduction We will Show the relation between stochastic differential equations, Gaussian processes and methods This gives us a formal way of deriving equations for the activity of

More information

FE 5204 Stochastic Differential Equations

FE 5204 Stochastic Differential Equations Instructor: Jim Zhu e-mail:zhu@wmich.edu http://homepages.wmich.edu/ zhu/ January 20, 2009 Preliminaries for dealing with continuous random processes. Brownian motions. Our main reference for this lecture

More information

IS THE NORTH ATLANTIC OSCILLATION A RANDOM WALK? A COMMENT WITH FURTHER RESULTS

IS THE NORTH ATLANTIC OSCILLATION A RANDOM WALK? A COMMENT WITH FURTHER RESULTS INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 24: 377 383 (24) Published online 11 February 24 in Wiley InterScience (www.interscience.wiley.com). DOI: 1.12/joc.13 IS THE NORTH ATLANTIC OSCILLATION

More information

Detection of structural breaks in multivariate time series

Detection of structural breaks in multivariate time series Detection of structural breaks in multivariate time series Holger Dette, Ruhr-Universität Bochum Philip Preuß, Ruhr-Universität Bochum Ruprecht Puchstein, Ruhr-Universität Bochum January 14, 2014 Outline

More information

Fundamental concepts of functional data analysis

Fundamental concepts of functional data analysis Fundamental concepts of functional data analysis Department of Statistics, Colorado State University Examples of functional data 0 1440 2880 4320 5760 7200 8640 10080 Time in minutes The horizontal component

More information

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility The Slow Convergence of OLS Estimators of α, β and Portfolio Weights under Long Memory Stochastic Volatility New York University Stern School of Business June 21, 2018 Introduction Bivariate long memory

More information

Lecture 3 Stationary Processes and the Ergodic LLN (Reference Section 2.2, Hayashi)

Lecture 3 Stationary Processes and the Ergodic LLN (Reference Section 2.2, Hayashi) Lecture 3 Stationary Processes and the Ergodic LLN (Reference Section 2.2, Hayashi) Our immediate goal is to formulate an LLN and a CLT which can be applied to establish sufficient conditions for the consistency

More information

1.4 Properties of the autocovariance for stationary time-series

1.4 Properties of the autocovariance for stationary time-series 1.4 Properties of the autocovariance for stationary time-series In general, for a stationary time-series, (i) The variance is given by (0) = E((X t µ) 2 ) 0. (ii) (h) apple (0) for all h 2 Z. ThisfollowsbyCauchy-Schwarzas

More information