Incomplete Generalized Jacobsthal and Jacobsthal-Lucas Numbers

Size: px
Start display at page:

Download "Incomplete Generalized Jacobsthal and Jacobsthal-Lucas Numbers"

Transcription

1 ELSEVIER Available online at MATHEMATICAL AND COMPUTER MODELLING Mathematical Computer Modelling 42 (2005) Incomplete Generalized Jacobsthal Jacobsthal-Lucas Numbers G. B. DJORDJEVI6 Department of Mathematics Faculty of Technology University of Nig YU Lesovad, Serbia Montenegro, Yugoslavia ganedj ~eunet. yu H. M. SRIVASTAVA Department of Mathematics Statistics University of Victoria Victoria, British Columbia V8W 3P4, Canada harimsri~math, uvic. ca (Received accepted October 200~) Abstract--In this paper, we present a systematic investigation of the incomplete generalized Jacobsthal numbers the incomplete generalized Jacobsthal-Lueas numbers. The main results, which we derive here, involve the generating functions of these incomplete 2005 Elsevier Ltd. All rights reserved. Keywords--Incomplete generalized Jacobsthal numbers, Incomplete generalized Jacobsthal- Lucas numbers, Generating functions. 1. INTRODUCTION AND DEFINITIONS Recently, Djordjcvid [1,2] considered four interesting classes of polynomials: the generalized Jacobsthal polynomials Jn,m(x), the generalized Jacobsthal-Lucas polynomials jn,m(x), their associated polynomials F~,.~(z) fi~,m(x). These polynomials are defined by the following recurrence relations (cf., [1-3]): (n _-->.~; ~, ~ ~ N; J0,~ (x) &,m (X) =,~n 1,m (x) -~ 2xol n... (x) j~,~ (x) (~ >=.~;.~, ~ ~ N; jo,~ (~) F,,,,,, (x) (,,~ > 'm; 'm, n C N; Fo,m (~) = 0, J,~,,~ (x) = 1, when n = 1,...,rn- 1), = jn--l,m (X) + 2xj... (X) = 2, j... (x) = 1, when n = 1,...,m-- 1), = F,~-I,~ (x) + 2xF,~... (x) + 3 (1.1) (1.2) = O, Fn,m (x) = 1, when n = 1,...,m- 1), (1.3) Tile present investigation was supported, in part, by the Natural Sciences Engineering Research Council of Canada under Grant OGP /05/$ - see front 2005 Elsevier Ltd. All rights reserved. doi: /j.mcm Typeset by Aj~S-'I~X

2 1050 C.B. DJORDJEVIC AND H. M. SRIVASTAVA A,,z (*) = A-,,m (~) + 2~f~_,%,, (~) + 5 (n_>_m; rn, nen; fo,m(x) = 0; f,,,~(x)=l, whenn=l,...,m-1), N being the set of natural numbers (1.4) No := N u {o} = {o, 1, m...}. Explicit representations for these four classes of polynomials are given by [(,~-l)/m] dn,m(x' : E (n-l-r(m-i)r)(2x)r (1.5) r=0 [~/m] n-- (rn - 2) (n- (m- 1))(2x) (1.6) J... (~)= ZX (.~ 1) ' =O F~,m (x) =Y~,~ (x) +3 [(rz--rn+ l ) /m] r=o r+l ' (I.7) f,... (.) =&,.,(.)+5 [(... +l)/rn] E (n-m+l-(m-1)r) (2z)~ r=o r+l ' respectively. Tables for Jn,m (x) jn,m (x) are provided in [2]. By setting x = 1 in definitions (1.1)-(1.4), we obtain the generalized Yacobsthal numbers (1.8) [(n-1)/rn] Jn,m := Orn,rn (1) = r=0 the generalized Yacobsthal-Lucas numbers (n-l-(m-l)r) 2 ~ ' r (1.9) their associated numbers -(m-2) r(n-(m-1)r) [~/m] j,,,m := j,,,,, (1) = ~ _n _ 2 ~, (1.10) ~=o n (m 1) r r F~,., :=F,,,m(1)=J~,m(1)+3 [(n--m+l)/m n- m (m- 1) r'~2~ r+l J (i.ii) [(n--m+l)/rn] f,~,,~ := f7... (1)= J~,~ (1)+5 E /~n-m+l- (m-1) r)2 C" (1.12) ~=0 r+l Particular cases of these numbers are the so-called Jacobsthal numbers Yn the daeobsthal- Lucas numbers Jn, which were investigated earlier by Horadam [41. (See also a systematic investigation by Raina Srivastava [5], dealing with an interesting class of numbers associated with the familiar Lucas numbers.) Motivated essentially by the recent wors by Filipponi [6], Pint6r Srivastava [71, Chu Vicenti [8], we aim here at introducing ( investigating the generating functions of) the analogously incomplete version of each of these four classes of numbers.

3 Incomplete Generalized Jacobsthal GENERATING FUNCTIONS OF THE INCOMPLETE GENERALIZED JACOBSTHAL AND JACOBSTHAL-LUCAS NUMBERS We begin by defining the incomplete generalized Jacobsthal numbers J~,m by Jn, m := E(n-l-(m-1) r) r r=o 2 r (o_< [-~] ;,~,,~ c N), (2.1) so that, obviously, j[(n-1)/rn(n-1)/rn] = Jn rn, (2.2) J~,,~ = 0 (O<=n<m+l), (2.a) J~+t,.~ = Jm+/-1,.~ (l = 1,.., m). (2.4) The following nown result (due essentially to Pintdr Srivastava [7]) will be required in our investigation of the generating flmetions of such incomplete numbers as the incomplete generalized Jacobsthal numbers g~,m defined by (2.1). For the theory applications of the various methods techniques for deriving generating functions of special functions polynomials, we may refer the interested reader to a recent treatise on the subject of generating functions by Srivastava Manocha [9]. LEMMA 1. (See [7, p. 593].) Let {st~}n =0 be a complex sequence satisfying the following nonhomogeneous recurrence relation: Sn = Sn-1 n t- 2sn-rn + rn (n >= rr~; m, rt E N), (2.5) where {rn} is a given complex sequence. Then the generating function S(t) of the sequence {s,~} is S(t)= so-to+ E tz(sz-sl 1 rz)+g(t) (1-t-2tm) -', (2.6) /=1 where G(t) is the generating function of the sequence {rn}. Our first result on generating functions is contained in Theorem 1 below. THEOREM 1. The generating function of the incomplete generaiized 3acobsthaI numbers J~,,~ ( C No) is given by oo R~ (t) = ~ J;,,,,t ~ 7":0 rn--1 = tm+l Jm,m -~ E tl (Jrn+l,m l=l [(l-t-2t m)(1-t) +l]-'. --Jm+/-1,m)] (1 t) +l 2+lt m) (2.7)

4 1052 G.B. DJORDJEVIC AND H. M. SRIVASTAVA PROOF. From (1.1) (with x = 1) (2.1), we get ]~,m_j~_],m_2j~_~,m= E n- 1 - (rn- 1)r 2,. r=o r -E(n-2-(m-l)r)2r-E(n-l-m-(m-1)r) r r=o r=0 ~( P ) ( g ) r=o r=o +l -Z(~-~-(m-l/~) ~~-1 = n-l-(m-1)r 2~ - n-2-(m-1)r 2~ z (~-1-(~-1)~)~_~ ~ ~-~-(m-1)~)~ ~ - 1 r=o -E(n--2--(m--1)r)2r-- (n-2--(rn--1)(+l)) E[( n-2-(mr 1),')+ (n ~r-1 (m --1)r) ] Next, in view of (2.3) (2.4), we set -1- (n-2-(m-1)( l)2+l+e(n-l-(m-1)r)2~ ~=o r ----E(n-l-(m-1) r)2r+l-e(n-l-(m-1)r) r r'=l -1- <n- 2- (m- X) ( + l))2+l = _ (n-l-m-(m-1) 2+1 C~ 1 ~ Iv 1/~) n m - m 2 +l (n > m in; E No) SO = J~+l... Sl = J~+2,m,'", 8m-1 ~-~ J~n+m,m (2.8) Suppose also that Sn ~ J~+n+l,m" r0 =rl... r,~-l=0 r~ =2+l(n-m+~.-- \ n--m / Then, for the generating function G (t) of the sequence {rn}, we can show that c(t) - 2+lt m (I - t) +l Thus, in view of the above lemma, the generating function S~(t) of the sequence {sn} satisfies the following relationship: 2+ltm S~ (t) (1 -- t -- 2t m) + (1 -- t) +l ~--i -- Jm,m (]g) q- E tl (Jrn+l,m 2+ltm Jrn+l-l,m) + (1 -- t) +l' /=1

5 Incomplete Generalized Jacobsthal 1053 Hence, we conclude that This completes the proof of Theorem 1. = t sm (t). COROLLARY 1. The incomplete Jacobsthal numbers J~ ( E No) are defined by Jn::Jn'2:z(n--l--r) v=0 the corresponding generating function is given by (2.7) when m = 2, that is, by R2 (t)--t 2+1 [J2 Jr-t(J2+l--,/2) (1--t) +l-2+1t2] [(1--t--2t 2) (1--t)+l] -1. (2.9) 3. INCOMPLETE GENERALIZED JACOBSTHAL-LUCAS NUMBERS For the incomplete generalized Jacobsthal-Lucas numbers defined by [cf. equation (1.10)] 3n,m' := ~X--"(m2) - _ r(n(m--1) r 2~ ~=0n (m 1)r r (3.1) we now prove the following generating function. THEOREM 2. The generating function of the incomplete generalized gacobsthal-lucas numbers 3~,~' ( E No) is given by oo 7"=0 3,,~ t [( me ) 1 = t m jm-l,,~-t- E tl (jm+/-1,,~--jm+/-2,~) (1 -- t) +l-2+lt m (2 -- t) (3.2) l=l [(1 -- t -- 2t m) (1 -- t)+l] -1 PROOf. First of all, it follows from definition (3.1) that j[n/,q = j... (3.3) n,m. 3n,,~ = 0 (0 <= n < in), (3.4) (l 1,,,~) (3.5) ~mtl,m = ~m+l--l,m ~- Thus, just as in our derivation of (2.8), we can apply (1.2) (1.10) (with x - 1) in order to obtain... n-m+2[n-m+~2+l"" (3.6)

6 1054 Let G. B. DJORDJEVIC AND H. M. SRIVASTAVA SO : Jm-1... Sl ~-- jrn......, Srn 1 z jra+... Sn ---- jrn+n+l,rn. Suppose also that 7"0 : 7"1 = "'" ~" rm--1 ~" 0 ~'~ - -~-- n- m + 2 (n- m + )2+~ 7~-+-~ ~ -. ~ Then, the generating function G(t) of the sequence {rn} is given by o(t) = 2+lt m (2 -- t) (I - t) +l Hence, the generating function of the sequence {s~} satisfies relation (3.2), which leads us to Theorem 2. COROLLARY 2. For the incomplete 3acobsthal-Lucas numbers 3n,2, the generating function is given by (3.2) when m 2, that is, by W (t): t 2 [(J2-1-- t (j2 -- j2-1)) (1-- t) +l-2+lt 2 (2--t)]. [(Z--t-- ~t 2) (1--t)+l] TWO FURTHER PAIRS OF INCOMPLETE NUMBERS For a natural number, the incomplete numbers in (1.11) are defined by F~,r~ corresponding to the numbers Fn,m j +3E(n--m l--(m--1)r)2 r (0<< [-~ml]" m, n cn), (4.1) Fr~,m := n,m r+l ' r=0 where V2,m =.]n~, rn = O, (n<m +in). THEOREM 3. The generating function of the incomplete numbers F~,m ( No) is given by rn+l t Srn (t), where ] S~m (t) = Fm,m + E tz (Fm+/,m - Fm+l-l,m) (1 -- t -- 2tin) -1 l=1 (4.2) 3t TM (1 - t) +l - 2+lt "~ (1 - t + 3P -1) (1 - t -- 2t m) (1 - t) +2 PROOF. Our proof of Theorem 3 is much ain to those of Theorems 1 2 above. Here, we let SO = F~n+l,rn ~ Frn, $1 = F~n+2, m frn-l,m,..., Sin-1 = fr~+m,m : ~m+m-l,m, Sn ~ ~r~-fn+l,m"

7 Incomplete Generalized Jacobsthal 1055 Suppose also that r0 =~"1 = "'' =rm-1 =-0 rn = 2 +l l n-m n-m+ " Then, by using the stard method based upon the above lemma, we can prove that ~a 2+lt rn (1 - t + 3t m-l) a (t) = Z ~-tn = t)~+~,~=o (1 - Let S,~(t) be the generating fimction of F~,,~. Then, it follows that s,~ (t) = ~o + t~ s~f ~ +..., tsar(t) = tso + t2sl + ''' q- tns~_l q- ''", 2tmS m (t) - 2t'~so + 2tin+is t~sn_~, +..., G (t) = ro + rlt rnt ~ +'". The generating function tm+ls~(t) asserted by Theorem 3 would now result easily. COROLLARY 3. For the incomplete numbers Fn,2 defined by (4.1) with rn = 2, the generating function is given by t2+xs~ (t) = t 2+1.([F2+t(F2+l--F2)](1--t)+2+3t2(1--t)+2--2+lt2(1--t+3t2)). (4.3) (1 - t- 2t 2) (1 - t) +~ Finally, the incomplete numbers f~,.~ ( C No) corresponding to the numbers f.~,m in (1.12) are defined by f,,,,:=d~,,+5~(n+l-m-(m-1)r)2r (0_<<_ I-n@]. m, n EN) (4.4) ' r 0 r + l ' " THEOREM 4. The incomplete numbers f~,,~ ( E No) have the following generating function: m-- I 7 W~ (t) = t "*+l fm,m + ~ t ~ (fm+l,m -- f~+l--l,-~)j (1 -- t -- 2t'~) -1 /=1 q_trn+l (5tm (1-- t)+l -- 2+ltm (2 ~ t~ 5tm--1) ) (1 t 2t "~) (1 - t) +2 (4.5) PROOF. Here, we set SO -- ft~q-l,m -- lin,m, 81 = fr~+2,m = frn+l,m, Sm--l,m : ~z +... ~- frn+m-l,rr~,

8 "" " 1056 G.B. DJORDJEVIC AND H. M. SRIVASTAVA We also suppose that Sn = fr~+n+l,m ---- fm+n,rn. ro = rl = = T'm-1 = 0 7"n = 2+IQTL--TTL-[-~7) 2_+_l(T~--27T~-~-2 -t- ~) +5- n--m n 2m+1 Then, by using the nown method based upon the above lemma, we find that a(t) = 2+lt m (1 - t + 5t m-t) (1 - t) +2 is the generating function of the sequence {rn}. Theorem 4 now follows easily. In its special case when m = 2, Theorem 4 yields the following generating function for the incomplete numbers investigated in [6,7]. COROLLARY 4. The generating function of the incomplete numbers f~,2 is given by (4.5) when m = 2, that is, by W2 (t) = t 2-l-1 (4.6) REFERENCES 1. G.B. Djordjevid, Generalized Jacobsthal polynomials, Fibonacci Quart. 38, , (2000). 2. G.B. Djordjevid, Derivative sequences of generalized Jacobsthal JacobsthM-Lucas polynomials, Fibonacci Quart. 38, , (2000). 3. A.F. Horadam, Jacobsthal representation polynomials, Fibonacci Quart. 35, 13~148, (1997). 4. A.F. Horadam, Jacobsthal representation numbers, Fibonacci Quart. 34, 40-54, (1996). 5. R.K. Raina H.M. Srivastava, A class of numbers associated with the Lucas numbers, Mathl. Comput. Modelling 25 (7), 15-22, (1997). 6. P. Filipponi, Incomplete Fibonacci Lucas numbers, Rend. Circ. Mat. Palermo (Set. 2) 45, 37-56, (1996). 7. A. Pintgr H.M. Srivastava, Generating functions of the incomplete Fibonacci Lucas numbers, Rend. Circ. Mat. Palermo (Set. 2) 48, , (1999). 8. W.-C. Chu V. Vicenti, Funzione generatrice e polinomi incompleti di Fibonacci e Lueas, Boll. Un. Mat. Ital. B (Ser. 8) 6, , (2003). 9. H.M. Srivastava H.L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley Sons, New Yor, (1984).

EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES

EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES PAUL F. BYRD San Jose State College, San Jose, California 1. INTRODUCTION In a previous article [_ 1J, certain

More information

Impulse Response Sequences and Construction of Number Sequence Identities

Impulse Response Sequences and Construction of Number Sequence Identities Impulse Response Sequences and Construction of Number Sequence Identities Tian-Xiao He Department of Mathematics Illinois Wesleyan University Bloomington, IL 6170-900, USA Abstract As an extension of Lucas

More information

INCOMPLETE BALANCING AND LUCAS-BALANCING NUMBERS

INCOMPLETE BALANCING AND LUCAS-BALANCING NUMBERS INCOMPLETE BALANCING AND LUCAS-BALANCING NUMBERS BIJAN KUMAR PATEL, NURETTIN IRMAK and PRASANTA KUMAR RAY Communicated by Alexandru Zaharescu The aim of this article is to establish some combinatorial

More information

Incomplete Tribonacci Numbers and Polynomials

Incomplete Tribonacci Numbers and Polynomials 1 3 47 6 3 11 Journal of Integer Sequences, Vol. 17 (014, Article 14.4. Incomplete Tribonacci Numbers and Polynomials José L. Ramírez 1 Instituto de Matemáticas y sus Aplicaciones Calle 74 No. 14-14 Bogotá

More information

ADVANCED PROBLEMS AND SOLUTIONS Edited By RAYMOND E.WHITNEY Lock Haven State College, Lock Haven, Pennsylvania

ADVANCED PROBLEMS AND SOLUTIONS Edited By RAYMOND E.WHITNEY Lock Haven State College, Lock Haven, Pennsylvania ADVANCED PROBLEMS AND SOLUTIONS Edited By RAYMOND E.WHITNEY Loc Haven State College, Loc Haven, Pennsylvania Send all communications concerning Advanced Problems and Solutions to Raymond E. Whitney, Mathematics

More information

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3 - - - - ff ff - - - - - - B B BB f f f f f f f 6 96 f f f f f f f 6 f LF LZ f 6 MM f 9 P D RR DD M6 M6 M6 M. M. M. M. M. SL. E 6 6 9 ZB Z EE RC/ RC/ RC/ RC/ RC/ ZM 6 F FP 6 K KK M. M. M. M. M M M M f f

More information

Hypergeometric functions of three variables in terms of integral representations

Hypergeometric functions of three variables in terms of integral representations IOSR Journal of Mathematics IOSR-JM) e-issn: 78-578, p-issn:39-765x. Volume 8, Issue 5 Nov. Dec. 03), PP 67-73 Hypergeometric functions of three variables in terms of integral representations Showkat Ahmad.

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journal of Inequalities in Pure and Applied Mathematics INTEGRAL MEANS INEQUALITIES FOR FRACTIONAL DERIVATIVES OF SOME GENERAL SUBCLASSES OF ANALYTIC FUNCTIONS TADAYUKI SEKINE, KAZUYUKI TSURUMI, SHIGEYOSHI

More information

Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuş-Srivastava Polynomials

Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuş-Srivastava Polynomials Proyecciones Journal of Mathematics Vol. 33, N o 1, pp. 77-90, March 2014. Universidad Católica del Norte Antofagasta - Chile Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials

More information

Fibonacci and k Lucas Sequences as Series of Fractions

Fibonacci and k Lucas Sequences as Series of Fractions DOI: 0.545/mjis.06.4009 Fibonacci and k Lucas Sequences as Series of Fractions A. D. GODASE AND M. B. DHAKNE V. P. College, Vaijapur, Maharashtra, India Dr. B. A. M. University, Aurangabad, Maharashtra,

More information

,.*Hffi;;* SONAI, IUERCANTII,N I,IMITDII REGD- 0FFICE: 105/33, VARDHMAN GotD[N PLNLA,R0AD No.44, pitampura, DELHI *ffigfk"

,.*Hffi;;* SONAI, IUERCANTII,N I,IMITDII REGD- 0FFICE: 105/33, VARDHMAN GotD[N PLNLA,R0AD No.44, pitampura, DELHI *ffigfk $ S, URCT,,MTD RGD 0C: 10/, VRDM G[ LL,R0D.44, ptmpur, DL114 C: l22ldll98l,c0224gb, eb:.nlmernte.m T, Dte: 17h tber, 201 BS Lmted hre ]eejeebhy Ter Dll Street Mumb 41 The Mnger (Ltng) Delh Stk xhnge /1,

More information

Fibonacci and Lucas Identities the Golden Way

Fibonacci and Lucas Identities the Golden Way Fibonacci Lucas Identities the Golden Way Kunle Adegoe adegoe00@gmail.com arxiv:1810.12115v1 [math.nt] 25 Oct 2018 Department of Physics Engineering Physics, Obafemi Awolowo University, 220005 Ile-Ife,

More information

The generalized order-k Fibonacci Pell sequence by matrix methods

The generalized order-k Fibonacci Pell sequence by matrix methods Journal of Computational and Applied Mathematics 09 (007) 33 45 wwwelseviercom/locate/cam The generalized order- Fibonacci Pell sequence by matrix methods Emrah Kilic Mathematics Department, TOBB University

More information

n

n p l p bl t n t t f Fl r d, D p rt nt f N t r l R r, D v n f nt r r R r, B r f l. n.24 80 T ll h, Fl. : Fl r d D p rt nt f N t r l R r, B r f l, 86. http://hdl.handle.net/2027/mdp.39015007497111 r t v n

More information

2 MUMTAZ AHMAD KHAN AND KHURSHEED AHMAD Later on, in 977, the polynomials L n (x) were also studied by R. Panda [9]. It may be remarked here that in t

2 MUMTAZ AHMAD KHAN AND KHURSHEED AHMAD Later on, in 977, the polynomials L n (x) were also studied by R. Panda [9]. It may be remarked here that in t SOOCHOW JOURNAL OF MATHEMATICS Volume 26, No., pp. 9-27, January 2 A STUDY OF BESSEL POLYNOMIALS SUGGESTED BY THE POLYNOMIALS L n (x) OF PRABHAKAR AND REKHA BY MUMTAZ AHMAD KHAN AND KHURSHEED AHMAD Abstract.

More information

^ ) = ^ : g ' f ^4(x)=a(xr + /xxr,

^ ) = ^ : g ' f ^4(x)=a(xr + /xxr, Edited by Stanley Rablnowitz Please send all material for ELEMENTARY PROBLEMS AND SOLUTIONS to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

ON SECOND-ORDER LINEAR RECURRENCE SEQUENCES: WALL AND WYLER REVISITED

ON SECOND-ORDER LINEAR RECURRENCE SEQUENCES: WALL AND WYLER REVISITED ON SECOND-ORDER LINEAR RECURRENCE SEQUENCES: WALL AND WYLER REVISITED Hua-Chieh Li Dept. of Mathematics, National Tsing Hua University, Hsin Chu, 300, Taiwan, R.O.C. (Submitted March 1998-Final Revision

More information

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n R P RT F TH PR D NT N N TR T F R N V R T F NN T V D 0 0 : R PR P R JT..P.. D 2 PR L 8 8 J PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D.. 20 00 D r r. Pr d nt: n J n r f th r d t r v th

More information

Certain Generating Functions Involving Generalized Mittag-Leffler Function

Certain Generating Functions Involving Generalized Mittag-Leffler Function International Journal of Mathematical Analysis Vol. 12, 2018, no. 6, 269-276 HIKARI Ltd, www.m-hiari.com https://doi.org/10.12988/ijma.2018.8431 Certain Generating Functions Involving Generalized Mittag-Leffler

More information

w = X ^ = ^ ^, (i*i < ix

w = X ^ = ^ ^, (i*i < ix A SUMMATION FORMULA FOR POWER SERIES USING EULERIAN FRACTIONS* Xinghua Wang Math. Department, Zhejiang University, Hangzhou 310028, China Leetsch C. Hsu Math. Institute, Dalian University of Technology,

More information

On the properties of k-fibonacci and k-lucas numbers

On the properties of k-fibonacci and k-lucas numbers Int J Adv Appl Math Mech (1) (01) 100-106 ISSN: 37-59 Available online at wwwijaammcom International Journal of Advances in Applied Mathematics Mechanics On the properties of k-fibonacci k-lucas numbers

More information

A SYSTEM OF AXIOMATIC SET THEORY PART VI 62

A SYSTEM OF AXIOMATIC SET THEORY PART VI 62 THE JOOBNAL OF SYMBOLIC LOGIC Volume 13, Number 2, June 1948 A SYSTEM OF AXIOMATIC SET THEORY PART VI 62 PAUL BEKNAYS 16. The r61e of the restrictive axiom. Comparability of classes. Till now we tried

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1866 Colby College Catalogue 1866-1867 Colby College Follow this and additional works at: http://digitalcommons.colby.edu/catalogs

More information

17 Advancement Operator Equations

17 Advancement Operator Equations November 14, 2017 17 Advancement Operator Equations William T. Trotter trotter@math.gatech.edu Review of Recurrence Equations (1) Problem Let r(n) denote the number of regions determined by n lines that

More information

D t r l f r th n t d t t pr p r d b th t ff f th l t tt n N tr t n nd H n N d, n t d t t n t. n t d t t. h n t n :.. vt. Pr nt. ff.,. http://hdl.handle.net/2027/uiug.30112023368936 P bl D n, l d t z d

More information

{~}) n -'R 1 {n, 3, X)RU, k, A) = {J (" J. j =0

{~}) n -'R 1 {n, 3, X)RU, k, A) = {J ( J. j =0 2l WEIGHTED STIRLING NUMBERS OF THE FIRST AND SECOND KIND II [Oct. 6. CONCLUSION We have proven a number-theoretical problem about a sequence, which is a computer-oriented type, but cannot be solved by

More information

The extended Srivastava s triple hypergeometric functions and their integral representations

The extended Srivastava s triple hypergeometric functions and their integral representations Available online at www.tjnsa.com J. Nonlinear Sci. Al. 9 216, 486 4866 Research Article The extended Srivastava s trile hyergeometric functions and their integral reresentations Ayşegül Çetinkaya, M.

More information

DIVISIBILITY BY FIBONACCI AND LUCAS SQUARES

DIVISIBILITY BY FIBONACCI AND LUCAS SQUARES DIVISIBILITY BY FIBONACCI AND LUCAS SQUARES V. E. HOGGATT, JR., and MARJORIE B5CKNELL JOHNSON San Jose State University, San Jose, California 95192 1. INTRODUCTION In Matijasevic's paper [1] on Hilbert's

More information

JACOBI TYPE AND GEGENBAUER TYPE GENERALIZATION OF CERTAIN POLYNOMIALS. Mumtaz Ahmad Khan and Mohammad Asif. 1. Introduction

JACOBI TYPE AND GEGENBAUER TYPE GENERALIZATION OF CERTAIN POLYNOMIALS. Mumtaz Ahmad Khan and Mohammad Asif. 1. Introduction MATEMATIQKI VESNIK 64 (0) 47 58 June 0 originalni nauqni rad research paper JACOBI TYPE AND GEGENBAUER TYPE GENERALIZATION OF CERTAIN POLYNOMIALS Mumtaz Ahmad Khan and Mohammad Asif Abstract. This paper

More information

Convoluted Convolved Fibonacci Numbers

Convoluted Convolved Fibonacci Numbers 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 7 (2004, Article 04.2.2 Convoluted Convolved Fibonacci Numbers Pieter Moree Max-Planc-Institut für Mathemati Vivatsgasse 7 D-53111 Bonn Germany moree@mpim-bonn.mpg.de

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

Exact Determinants of the RFPrLrR Circulant Involving Jacobsthal, Jacobsthal-Lucas, Perrin and Padovan Numbers

Exact Determinants of the RFPrLrR Circulant Involving Jacobsthal, Jacobsthal-Lucas, Perrin and Padovan Numbers Tingting Xu Zhaolin Jiang Exact Determinants of the RFPrLrR Circulant Involving Jacobsthal Jacobsthal-Lucas Perrin and Padovan Numbers TINGTING XU Department of Mathematics Linyi University Shuangling

More information

DYNAMICS OF THE ZEROS OF FIBONACCI POLYNOMIALS M. X. He Nova Southeastern University, Fort Lauderdale, FL. D, Simon

DYNAMICS OF THE ZEROS OF FIBONACCI POLYNOMIALS M. X. He Nova Southeastern University, Fort Lauderdale, FL. D, Simon M. X. He Nova Southeastern University, Fort Lauderdale, FL D, Simon Nova Southeastern University, Fort Lauderdale, FL P. E. Ricci Universita degli Studi di Roma "La Sapienza," Rome, Italy (Submitted December

More information

BIVARIATE JACOBSTHAL AND BIVARIATE JACOBSTHAL-LUCAS MATRIX POLYNOMIAL SEQUENCES SUKRAN UYGUN, AYDAN ZORCELIK

BIVARIATE JACOBSTHAL AND BIVARIATE JACOBSTHAL-LUCAS MATRIX POLYNOMIAL SEQUENCES SUKRAN UYGUN, AYDAN ZORCELIK Available online at http://scik.org J. Math. Comput. Sci. 8 (2018), No. 3, 331-344 https://doi.org/10.28919/jmcs/3616 ISSN: 1927-5307 BIVARIATE JACOBSTHAL AND BIVARIATE JACOBSTHAL-LUCAS MATRIX POLYNOMIAL

More information

O N T H E fc**-order F-L I D E N T I T Y

O N T H E fc**-order F-L I D E N T I T Y O N T H E fc**-order F-L I D E N T I T Y Chizhong Zhou Department of Computer and Information Engineering, Yueyang Normal University Yueyang, Hunan 414000, PR China email: chizhongz@yeah.net Fredric T*

More information

T O r - B O N A C C I P O L Y N O M I A L S. M.N.S.SWAMY Sir George Williams University, Montreal, P.O., Canada. n-1

T O r - B O N A C C I P O L Y N O M I A L S. M.N.S.SWAMY Sir George Williams University, Montreal, P.O., Canada. n-1 A FORMULA FOR F k (x)y " k T O r - B O N A C C I P O L Y N O M I A L S AND ITS GENERALIZATION M.N.S.SWAMY Sir George Williams Uiversity, Motreal, P.O., Caada. INTRODUCTION Some years ago, Carlitz [] had

More information

A NOTE ON ENTIRE AND MEROMORPHIC FUNCTIONS

A NOTE ON ENTIRE AND MEROMORPHIC FUNCTIONS A NOTE ON ENTIRE AND MEROMORPHIC FUNCTIONS S. K. SINGH 1. The classical theorem of Borel states that for an entire function f(z) of positive integral order the exponent of convergence of the a-points of

More information

GENERATING FUNCTIONS OF CENTRAL VALUES IN GENERALIZED PASCAL TRIANGLES. CLAUDIA SMITH and VERNER E. HOGGATT, JR.

GENERATING FUNCTIONS OF CENTRAL VALUES IN GENERALIZED PASCAL TRIANGLES. CLAUDIA SMITH and VERNER E. HOGGATT, JR. GENERATING FUNCTIONS OF CENTRAL VALUES CLAUDIA SMITH and VERNER E. HOGGATT, JR. San Jose State University, San Jose, CA 95. INTRODUCTION In this paper we shall examine the generating functions of the central

More information

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n :4 T P bl D n, l d t z d   th tr t. r pd l n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

More information

Linear transformations preserving the strong q-log-convexity of polynomials

Linear transformations preserving the strong q-log-convexity of polynomials Linear transformations preserving the strong q-log-convexity of polynomials Bao-Xuan Zhu School of Mathematics and Statistics Jiangsu Normal University Xuzhou, PR China bxzhu@jsnueducn Hua Sun College

More information

Humanistic, and Particularly Classical, Studies as a Preparation for the Law

Humanistic, and Particularly Classical, Studies as a Preparation for the Law University of Michigan Law School University of Michigan Law School Scholarship Repository Articles Faculty Scholarship 1907 Humanistic, and Particularly Classical, Studies as a Preparation for the Law

More information

COMPOSITIONS AND FIBONACCI NUMBERS

COMPOSITIONS AND FIBONACCI NUMBERS COMPOSITIONS AND FIBONACCI NUMBERS V. E. HOGGATT, JR., and D. A. LIND San Jose State College, San Jose, California and University of Cambridge, England 1, INTRODUCTION A composition of n is an ordered

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYMOND E. WHITNEY Please send all communications concerning to RAYMOND E. WHITNEY, MATHEMATICS DEPARTMENT, LOCK HAVEN UNIVERSITY, LOCK HAVEN, PA 17745. This department especially welcomes problems

More information

A NOVEL SUBCLASS OF UNIVALENT FUNCTIONS INVOLVING OPERATORS OF FRACTIONAL CALCULUS P.N. Kamble 1, M.G. Shrigan 2, H.M.

A NOVEL SUBCLASS OF UNIVALENT FUNCTIONS INVOLVING OPERATORS OF FRACTIONAL CALCULUS P.N. Kamble 1, M.G. Shrigan 2, H.M. International Journal of Applied Mathematics Volume 30 No. 6 2017, 501-514 ISSN: 1311-1728 printed version; ISSN: 1314-8060 on-line version doi: http://dx.doi.org/10.12732/ijam.v30i6.4 A NOVEL SUBCLASS

More information

Bilinear generating relations for a family of q-polynomials and generalized basic hypergeometric functions

Bilinear generating relations for a family of q-polynomials and generalized basic hypergeometric functions ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 16, Number 2, 2012 Available online at www.math.ut.ee/acta/ Bilinear generating relations for a family of -polynomials and generalized

More information

arxiv: v1 [math.nt] 17 Nov 2011

arxiv: v1 [math.nt] 17 Nov 2011 sequences of Generalized Van der Laan and Generalized Perrin Polynomials arxiv:11114065v1 [mathnt] 17 Nov 2011 Kenan Kaygisiz a,, Adem Şahin a a Department of Mathematics, Faculty of Arts and Sciences,

More information

GOLDEN SEQUENCES OF MATRICES WITH APPLICATIONS TO FIBONACCI ALGEBRA

GOLDEN SEQUENCES OF MATRICES WITH APPLICATIONS TO FIBONACCI ALGEBRA GOLDEN SEQUENCES OF MATRICES WITH APPLICATIONS TO FIBONACCI ALGEBRA JOSEPH ERCOLANO Baruch College, CUNY, New York, New York 10010 1. INTRODUCTION As is well known, the problem of finding a sequence of

More information

k-jacobsthal and k-jacobsthal Lucas Matrix Sequences

k-jacobsthal and k-jacobsthal Lucas Matrix Sequences International Mathematical Forum, Vol 11, 016, no 3, 145-154 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/101988/imf0165119 k-jacobsthal and k-jacobsthal Lucas Matrix Sequences S Uygun 1 and H Eldogan Department

More information

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

~,. :'lr. H ~ j. l' , ...,~l. 0 ' ~ bl '!; 1'1. :<! f'~.., I,, r: t,... r':l G. t r,. 1'1 [<, . f' 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'.. ,, 'l t (.) :;,/.I I n ri' ' r l ' rt ( n :' (I : d! n t, :?rj I),.. fl.),. f!..,,., til, ID f-i... j I. 't' r' t II!:t () (l r El,, (fl lj J4 ([) f., () :. -,,.,.I :i l:'!, :I J.A.. t,.. p, - ' I I I

More information

CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES*

CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES* CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES* Alwyn F. Horadam University of New England, Armidale, Australia Piero FilipponI Fondazione Ugo Bordoni, Rome, Italy

More information

LINEAR RECURRENCES AND CHEBYSHEV POLYNOMIALS

LINEAR RECURRENCES AND CHEBYSHEV POLYNOMIALS LINEAR RECURRENCES AND CHEBYSHEV POLYNOMIALS Sergey Kitaev Matematik Chalmers tekniska högskola och Göteborgs universitet S-412 96 Göteborg Sweden e-mail: kitaev@math.chalmers.se Toufik Mansour Matematik

More information

l f t n nd bj t nd x f r t l n nd rr n n th b nd p phl t f l br r. D, lv l, 8. h r t,., 8 6. http://hdl.handle.net/2027/miun.aey7382.0001.001 P bl D n http://www.hathitrust.org/access_use#pd Th r n th

More information

A LINEAR BINOMIAL RECURRENCE AND THE BELL NUMBERS AND POLYNOMIALS

A LINEAR BINOMIAL RECURRENCE AND THE BELL NUMBERS AND POLYNOMIALS Applicable Analysis and Discrete Mathematics, 1 (27, 371 385. Available electronically at http://pefmath.etf.bg.ac.yu A LINEAR BINOMIAL RECURRENCE AND THE BELL NUMBERS AND POLYNOMIALS H. W. Gould, Jocelyn

More information

252 P. ERDÖS [December sequence of integers then for some m, g(m) >_ 1. Theorem 1 would follow from u,(n) = 0(n/(logn) 1/2 ). THEOREM 2. u 2 <<(n) < c

252 P. ERDÖS [December sequence of integers then for some m, g(m) >_ 1. Theorem 1 would follow from u,(n) = 0(n/(logn) 1/2 ). THEOREM 2. u 2 <<(n) < c Reprinted from ISRAEL JOURNAL OF MATHEMATICS Vol. 2, No. 4, December 1964 Define ON THE MULTIPLICATIVE REPRESENTATION OF INTEGERS BY P. ERDÖS Dedicated to my friend A. D. Wallace on the occasion of his

More information

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

More information

Search Trees and Stirling Numbers

Search Trees and Stirling Numbers ELS~rIF~R An Intemational Joumal Available online at: www.sciencedirect.com computers &.,~.c=c~o,.=.. mathematics with applications Computers and Mathematics with Applications 48 (2004) 747-754 www.elsevier.com/locat

More information

arxiv: v1 [math.nt] 13 Jun 2016

arxiv: v1 [math.nt] 13 Jun 2016 arxiv:606.03837v [math.nt] 3 Jun 206 Identities on the k-ary Lyndon words related to a family of zeta functions Irem Kucukoglu,a and Yilmaz Simsek,b a ikucukoglu@akdeniz.edu.tr b ysimsek@akdeniz.edu.tr

More information

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy.

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy. LTNY OF TH SNTS Cntrs Gnt flwng ( = c. 100) /G Ddd9/F ll Kybrd / hv Ddd9 hv hv Txt 1973, CL. ll rghts rsrvd. Usd wth prmssn. Musc: D. Bckr, b. 1953, 1987, D. Bckr. Publshd by OCP. ll rghts rsrvd. SMPL

More information

Pascal Eigenspaces and Invariant Sequences of the First or Second Kind

Pascal Eigenspaces and Invariant Sequences of the First or Second Kind Pascal Eigenspaces and Invariant Sequences of the First or Second Kind I-Pyo Kim a,, Michael J Tsatsomeros b a Department of Mathematics Education, Daegu University, Gyeongbu, 38453, Republic of Korea

More information

Catalan triangle numbers and binomial coefficients

Catalan triangle numbers and binomial coefficients Contemporary Mathematics Volume 73, 208 https://doiorg/0090/conm/73/435 Catalan triangle numbers and binomial coefficients Kyu-Hwan Lee and Se-jin Oh Abstract The binomial coefficients and Catalan triangle

More information

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

More information

CATALAN TRIANGLE NUMBERS AND BINOMIAL COEFFICIENTS arxiv:6006685v2 [mathco] 7 Oct 207 KYU-HWAN LEE AND SE-JIN OH Abstract The binomial coefficients and Catalan triangle numbers appear as weight multiplicities

More information

Graphs and Combinatorics

Graphs and Combinatorics Graphs and Combinatorics 7, 1-6 (1991) Graphs and Combinatorics Springer-Verlag 1991 Ramsey Graphs Contain Many Distinct Induced Subgraphs N. Alon 1 and A. Hajnal 2 1 Bellcore, Morristown, NJ 07960, USA

More information

,. *â â > V>V. â ND * 828.

,. *â â > V>V. â ND * 828. BL D,. *â â > V>V Z V L. XX. J N R â J N, 828. LL BL D, D NB R H â ND T. D LL, TR ND, L ND N. * 828. n r t d n 20 2 2 0 : 0 T http: hdl.h ndl.n t 202 dp. 0 02802 68 Th N : l nd r.. N > R, L X. Fn r f,

More information

Maximal Number of Subsets of a Finite Set No k of Which are Pairwise Disjoint

Maximal Number of Subsets of a Finite Set No k of Which are Pairwise Disjoint JOURNAL OF COMBINATORIAL THEORY 5, 157--163 (1968) Maximal Number of Subsets of a Finite Set No k of Which are Pairwise Disjoint DANIEL J. KLEITMAN* Massachusetts Institute of Technology, Cambridge, Massachusetts

More information

q-counting hypercubes in Lucas cubes

q-counting hypercubes in Lucas cubes Turkish Journal of Mathematics http:// journals. tubitak. gov. tr/ math/ Research Article Turk J Math (2018) 42: 190 203 c TÜBİTAK doi:10.3906/mat-1605-2 q-counting hypercubes in Lucas cubes Elif SAYGI

More information

On Some Properties of Bivariate Fibonacci and Lucas Polynomials

On Some Properties of Bivariate Fibonacci and Lucas Polynomials 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 11 (2008), Article 08.2.6 On Some Properties of Bivariate Fibonacci and Lucas Polynomials Hacène Belbachir 1 and Farid Bencherif 2 USTHB/Faculty of Mathematics

More information

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v ll f x, h v nd d pr v n t fr tf l t th f nt r n r

More information

A STUDY OF q-lagranges POLYNOMIALS OF THREE VARIABLES

A STUDY OF q-lagranges POLYNOMIALS OF THREE VARIABLES Pro Mathematica Vol. XVIII, Nos. 35-36, 24 A STUDY OF q-lagranges POLYNOMIALS OF THREE VARIABLES Mumtaz Ahmad Khan and Abdul Rahman Khan Abstract The present paper introduces a q-analogue of Lagranges

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

THE GENERALIZED TRIBONACCI NUMBERS WITH NEGATIVE SUBSCRIPTS

THE GENERALIZED TRIBONACCI NUMBERS WITH NEGATIVE SUBSCRIPTS #A3 INTEGERS 14 (014) THE GENERALIZED TRIBONACCI NUMBERS WITH NEGATIVE SUBSCRIPTS Kantaphon Kuhapatanakul 1 Dept. of Mathematics, Faculty of Science, Kasetsart University, Bangkok, Thailand fscikpkk@ku.ac.th

More information

Pledged_----=-+ ---'l\...--m~\r----

Pledged_----=-+ ---'l\...--m~\r---- , ~.rjf) )('\.. 1,,0-- Math III Pledged_----=-+ ---'l\...--m~\r---- 1. A square piece ofcardboard with each side 24 inches long has a square cut out at each corner. The sides are then turned up to form

More information

The k-fibonacci matrix and the Pascal matrix

The k-fibonacci matrix and the Pascal matrix Cent Eur J Math 9(6 0 403-40 DOI: 0478/s533-0-0089-9 Central European Journal of Mathematics The -Fibonacci matrix and the Pascal matrix Research Article Sergio Falcon Department of Mathematics and Institute

More information

< < or a. * or c w u. "* \, w * r? ««m * * Z * < -4 * if # * « * W * <r? # *» */>* - 2r 2 * j j. # w O <» x <» V X * M <2 * * * *

< < or a. * or c w u. * \, w * r? ««m * * Z * < -4 * if # * « * W * <r? # *» */>* - 2r 2 * j j. # w O <» x <» V X * M <2 * * * * - W # a a 2T. mj 5 a a s " V l UJ a > M tf U > n &. at M- ~ a f ^ 3 T N - H f Ml fn -> M - M. a w ma a Z a ~ - «2-5 - J «a -J -J Uk. D tm -5. U U # f # -J «vfl \ \ Q f\ \ y; - z «w W ^ z ~ ~ / 5 - - ^

More information

ALTERNATING SUMS OF FIBONACCI PRODUCTS

ALTERNATING SUMS OF FIBONACCI PRODUCTS ALTERNATING SUMS OF FIBONACCI PRODUCTS ZVONKO ČERIN Abstract. We consider alternating sums of squares of odd even terms of the Fibonacci sequence alternating sums of their products. These alternating sums

More information

ON QUADRAPELL NUMBERS AND QUADRAPELL POLYNOMIALS

ON QUADRAPELL NUMBERS AND QUADRAPELL POLYNOMIALS Hacettepe Journal of Mathematics and Statistics Volume 8() (009), 65 75 ON QUADRAPELL NUMBERS AND QUADRAPELL POLYNOMIALS Dursun Tascı Received 09:0 :009 : Accepted 04 :05 :009 Abstract In this paper we

More information

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ

Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ Ğ Ü Ü Ü ğ ğ ğ Öğ ş öğ ş ğ öğ ö ö ş ğ ğ ö ğ Ğ ğ ğ Ğ ğ Öğ ç ğ ö öğ ğ ŞÇ ğ ğ l _.j l L., c :, c Ll Ll, c :r. l., }, l : ö,, Lc L.. c l Ll Lr. 0 c (} >,! l LA l l r r l rl c c.r; (Y ; c cy c r! r! \. L : Ll.,

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

On Some Mean Value Results for the Zeta-Function and a Divisor Problem

On Some Mean Value Results for the Zeta-Function and a Divisor Problem Filomat 3:8 (26), 235 2327 DOI.2298/FIL6835I Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat On Some Mean Value Results for the

More information

2 K cos nkx + K si" nkx) (1.1)

2 K cos nkx + K si nkx) (1.1) PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 71, Number 1, August 1978 ON THE ABSOLUTE CONVERGENCE OF LACUNARY FOURIER SERIES J. R. PATADIA Abstract. Let / G L[ it, -n\ be 27r-periodic. Noble

More information

SOME IDENTITIES INVOLVING GENERALIZED GENOCCHI POLYNOMIALS AND GENERALIZED FIBONACCI-LUCAS SEQUENCES

SOME IDENTITIES INVOLVING GENERALIZED GENOCCHI POLYNOMIALS AND GENERALIZED FIBONACCI-LUCAS SEQUENCES SOME IDENTITIES INVOLVING GENERALIZED GENOCCHI POLYNOMIALS AND GENERALIZED FIBONACCI-LUCAS SEQUENCES Zhizheng Zhang and Jingyu Jin Department of mathematics, Luoyang Teachers College, Luoyang, Henan, 471022,

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

PAijpam.eu ON THE BOUNDS FOR THE NORMS OF R-CIRCULANT MATRICES WITH THE JACOBSTHAL AND JACOBSTHAL LUCAS NUMBERS Ş. Uygun 1, S.

PAijpam.eu ON THE BOUNDS FOR THE NORMS OF R-CIRCULANT MATRICES WITH THE JACOBSTHAL AND JACOBSTHAL LUCAS NUMBERS Ş. Uygun 1, S. International Journal of Pure and Applied Mathematics Volume 11 No 1 017, 3-10 ISSN: 1311-8080 (printed version); ISSN: 1314-335 (on-line version) url: http://wwwijpameu doi: 10173/ijpamv11i17 PAijpameu

More information

arxiv: v1 [math.nt] 9 Sep 2017

arxiv: v1 [math.nt] 9 Sep 2017 arxiv:179.2954v1 [math.nt] 9 Sep 217 ON THE FACTORIZATION OF x 2 +D GENERALIZED RAMANUJAN-NAGELL EQUATION WITH HUGE SOLUTION) AMIR GHADERMARZI Abstract. Let D be a positive nonsquare integer such that

More information

On a quantitative refinement of the Lagrange spectrum

On a quantitative refinement of the Lagrange spectrum ACTA ARITHMETICA 102.1 (2002) On a quantitative refinement of the Lagrange spectrum by Edward B. Burger Amanda Folsom Alexander Pekker Rungporn Roengpitya and Julia Snyder (Williamstown MA) 1. Introduction.

More information

SOME SUMS FORMULAE FOR PRODUCTS OF TERMS OF PELL, PELL- LUCAS AND MODIFIED PELL SEQUENCES

SOME SUMS FORMULAE FOR PRODUCTS OF TERMS OF PELL, PELL- LUCAS AND MODIFIED PELL SEQUENCES SOME SUMS FORMULAE FOR PRODUCTS OF TERMS OF PELL PELL- LUCAS AND MODIFIED PELL SEQUENCES Serpil HALICI Sakarya Üni. Sciences and Arts Faculty Dept. of Math. Esentepe Campus Sakarya. shalici@ssakarya.edu.tr

More information

SOME IDENTITIES INVOLVING THE FIBONACCI POLYNOMIALS*

SOME IDENTITIES INVOLVING THE FIBONACCI POLYNOMIALS* * Yi Yuan and Wenpeeg Zhang Research Center for Basic Science, Xi'an Jiaotong University, Xi'an Shaanxi. P.R. China (Submitted June 2000-Final Revision November 2000) 1. INTROBUCTION AND RESULTS As usual,

More information

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz

ELEMENTARY PROBLEMS AND SOLUTIONS. Edited by Stanley Rabinowitz Edited by Stanley Rabinowitz Please send all material for to Dr. STANLEY RABINOWITZ; 12 VINE BROOK RD; WESTFORD, MA 01886-4212 USA. Correspondence may also be sent to the problem editor by electronic mail

More information

Some Integrals Involving Associated Legendre Functions

Some Integrals Involving Associated Legendre Functions MATHEMATICS OF COMPUTATION, VOLUME 28, NUMBER 125, JANUARY, 1974 Some Integrals Involving Associated Legendre Functions By S. N. Samaddar Abstract. Calculations of some uncommon integrals involving Legendre

More information

Polynomial expansions in the Borel region

Polynomial expansions in the Borel region Polynomial expansions in the Borel region By J. T. HURT and L. R. FORD, Rice Institute, Houston, Texas. (Received 22nd August, 1936. Read 6th November, 1936.) This paper deals with certain expansions of

More information

THE NUMBER OF SDR'S IN CERTAIN REGUlAR SYSTEMS DAVID A. KLARNER STAN-CS APRIL 1973

THE NUMBER OF SDR'S IN CERTAIN REGUlAR SYSTEMS DAVID A. KLARNER STAN-CS APRIL 1973 THE NUMBER OF SDR'S N CERTAN REGUlAR SYSTEMS BY DAVD A KLARNER STAN-CS-73-354 APRL 1973 COMPUTER SCENCE DEPARTMENT School of Humanities and Sciences STANFORD UNVERSTY The Number ofsdr's in Certain Regular

More information

On a reduction formula for the Kampé de Fériet function

On a reduction formula for the Kampé de Fériet function On a reduction formula for the Kampé de Fériet function Yong Sup Kim, Tibor K. Pogány, and Arjun K. Rathie Abstract The aim of this short research note is to provide a reduction formula for the Kampé de

More information

The Second Solution of the Hermite Equation and the Monomiality Formalism

The Second Solution of the Hermite Equation and the Monomiality Formalism Pure Mathematical Sciences, Vol. 2, 2013, no. 4, 147-152 HIKARI Ltd, www.m-hikari.com The Second Solution of the Hermite Equation and the Monomiality Formalism G. Dattoli Gruppo Fisica Teorica e Matematica

More information

MIXED PELL POLYNOMIALS. A. F, HORADAM University of New England, Armidale, Australia

MIXED PELL POLYNOMIALS. A. F, HORADAM University of New England, Armidale, Australia A. F, HORADAM University of New England, Armidale, Australia Bro. J. M. MAHON Catholic College of Education, Sydney, Australia (Submitted April 1985) 1. INTRODUCTION Pell polynomials P n (x) are defined

More information

N V R T F L F RN P BL T N B ll t n f th D p rt nt f l V l., N., pp NDR. L N, d t r T N P F F L T RTL FR R N. B. P. H. Th t t d n t r n h r d r

N V R T F L F RN P BL T N B ll t n f th D p rt nt f l V l., N., pp NDR. L N, d t r T N P F F L T RTL FR R N. B. P. H. Th t t d n t r n h r d r n r t d n 20 2 04 2 :0 T http: hdl.h ndl.n t 202 dp. 0 02 000 N V R T F L F RN P BL T N B ll t n f th D p rt nt f l V l., N., pp. 2 24. NDR. L N, d t r T N P F F L T RTL FR R N. B. P. H. Th t t d n t r

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE fa it) On the Jacobi Polynomials PA ' Gregory Matviyenko Research Report YALETJ/DCS/RR-1076 June 13, 1995 DTI,* QUALITY DEFECTED 3 YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE & k.-. *,«.

More information

or - CHAPTER 7 Applications of Integration Section 7.1 Area of a Region Between Two Curves 1. A= ~2[0- (x :2-6x)] dr=-~2(x 2-6x) dr

or - CHAPTER 7 Applications of Integration Section 7.1 Area of a Region Between Two Curves 1. A= ~2[0- (x :2-6x)] dr=-~2(x 2-6x) dr CHAPTER 7 Applications of Integration Section 7.1 Area of a Region Between Two Curves 1. A= ~[0- (x : 6x)] dr=-~(x 6x) dr 6~ 1356 or - 6. A: ~[(x- 1) 3 -(x-1)]dx 11. [~/3 ( - see x) dx 5- - 3 - I 1 3 5

More information