Domain-wall brane model building

Size: px
Start display at page:

Download "Domain-wall brane model building"

Transcription

1 Domain-wall brane model building From chirality to cosmology Damien George Theoretical Particle Physics group School of Physics University of Melbourne Australia PhD completion seminar 17 th October 2008

2 Acknowledgements Supervisor: Ray Volkas. Supervisory panel: Bruce McKellar, Lloyd Hollenberg. Fellow TPPers: Sandy Law, Alison Demaria, Kristian McDonald, Andrew Coulthurst, Jason Doukas, Ben Carson, Thomas Jacques, Jayne Thompson, Nadine Pesor. Collaborators: Rhys Davies (Oxford, UK), Mark Trodden, Kamesh Wali (Syracuse, NY), Aharon Davidson (Ben-Gurion, Israel), Archil Kobakhidze, Gareth Dando (Melbourne). Scholarships: Elizabeth and Vernon Puzey postgraduate research scholarship, Postgraduate Overseas Research Experience Scholarship (PORES). 2 / 37

3 PhD summary Focus of PhD: theory of domain-wall brane models, with applications to the standard model of particle physics and cosmology. Papers published: G. Dando, A. Davidson, D.P. George, R.R. Volkas and K.C. Wali The clash of symmetries in a Randall-Sundrum-like spacetime Phys.Rev. D (2005), arxiv:hep-ph/ D.P. George and R.R. Volkas Stability of domain walls coupled to Abelian gauge fields Phys.Rev. D (2005), arxiv:hep-ph/ E. Di Napoli, D. George, M. Hertzberg, F. Metzler and E. Siegel Dark Matter In Minimal Trinification Proceedings of the LXXXVI Les Houches Summer School, pp (2006), arxiv:hep-ph/ D.P. George and R.R. Volkas Kink modes and effective four dimensional fermion and Higgs brane models Phys. Rev. D (2007), arxiv:hep-ph/ R. Davies and D.P. George Fermions, scalars and Randall-Sundrum gravity on domain-wall branes Phys. Rev. D (2007), arxiv: R. Davies, D.P. George and R.R. Volkas The standard model on a domain-wall brane? Phys. Rev. D (2008), arxiv: A. Davidson, D.P. George, A. Kobakhidze, R.R. Volkas and K.C. Wali SU(5) grand unification on a domain-wall brane from an E 6 -invariant action Phys. Rev. D (2008), arxiv: D.P. George, M. Trodden, R.R. Volkas Domain-wall brane cosmology In preparation 3 / 37

4 Talk outline Context: physics beyond the standard model extra dimensions. We will cover: Randall-Sundrum 2 model with delta-function brane. Domain walls (kinks/solitons). Trapping scalar and fermion fields to a domain wall. Using Dvali-Shifman mechanism to trap gauge fields. SU(5) grand unified domain-wall model. Extending SU(5) to E 6. Cosmology the expansion of a brane universe. 4 / 37

5 Introduction We are inspired by the Randall-Sundrum warped metric solution. RS1 is a compact extra dimension: provides a solution to the hierarchy problem lots of work on this model. Branes are string theory like objects. Warped throats, inflation, dark matter,... (Randall & Sundrum, PRL83, 3370 (1999)) RS2 is an infinite extra dimension: solves the trapping of low-energy gravity. Not as much interest because it doesn t solve any major problems, just introduces another dimension. (Randall & Sundrum, PRL83, 4690 (1999)) We will pursue RS2 because it seems a natural extension of 3+1 space. 5 / 37

6 Brane worlds

7 Brane worlds Premise: take the standard model and general relativity add an infinite extra space dimension recover the standard model and general relativity at low energies 7 / 37

8 Brane worlds Premise: take the standard model and general relativity add an infinite extra space dimension recover the standard model and general relativity at low energies S = d 4 x dy g [ M 3 R ] 7 / 37

9 Brane worlds Premise: take the standard model and general relativity add an infinite extra space dimension recover the standard model and general relativity at low energies S = d 4 x dy g [ M 3 ] R + δ(y)l SM 7 / 37

10 RS2 model Need brane and bulk sources: [ g ( M S = d 4 x dy 3 R Λ bulk ) + ] g (4) δ(y)(l SM Λ brane ) (1) 8 / 37

11 RS2 model Need brane and bulk sources: [ g ( M S = d 4 x dy 3 R Λ bulk ) + Solve the theory: ] g (4) δ(y)(l SM Λ brane ) Randall-Sundrum metric ansatz: ds 2 = e 2k y g (4) µν dx µ dx ν dy 2 Solve Einstein s equations (L SM = 0 and R (4) = 0): Λ bulk = 12k 2 M 3 Λ brane = 12kM 3 Write R in terms of R (4) : R = e 2k y R (4) 16kδ(y) + 20k 2 (1) 8 / 37

12 RS2 model Need brane and bulk sources: [ g ( M S = d 4 x dy 3 R Λ bulk ) + Solve the theory: ] g (4) δ(y)(l SM Λ brane ) Randall-Sundrum metric ansatz: ds 2 = e 2k y g (4) µν dx µ dx ν dy 2 Solve Einstein s equations (L SM = 0 and R (4) = 0): Λ bulk = 12k 2 M 3 Λ brane = 12kM 3 (1) Write R in terms of R (4) : R = e 2k y R (4) 16kδ(y) + 20k 2 Substitute into (1) and integrate over y: S = d 4 x g (4) [ M 3 ] k R(4) + L SM A dimensionally reduced theory. 8 / 37

13 Newton s law Just need to check Newton s law. Linear tensor fluctuations are: The zero mode h (4) 0 µν g µν = e 2k y η µν + n h (4) n µν(x µ )ψ n (y) dominates the Kaluza-Klein tower. 9 / 37

14 Newton s law Just need to check Newton s law. Linear tensor fluctuations are: g µν = e 2k y η µν + n h (4) n µν(x µ )ψ n (y) The zero mode h (4) 0 µν dominates the Kaluza-Klein tower. Newton s law is modified to: ) m 1 m 2 V (r) = G N (1 + ɛ2 r r 2 (where ɛ = 1/k) Current experimental bounds are very weak: ɛ < 12µm = k > ev 9 / 37

15 Newton s law Just need to check Newton s law. Linear tensor fluctuations are: g µν = e 2k y η µν + n h (4) n µν(x µ )ψ n (y) The zero mode h (4) 0 µν dominates the Kaluza-Klein tower. Newton s law is modified to: ) m 1 m 2 V (r) = G N (1 + ɛ2 r r 2 (where ɛ = 1/k) Current experimental bounds are very weak: ɛ < 12µm = k > ev We have what we wanted: a 5D theory that at low energies looks like our 4D universe. But almost no new phenomenology. Next step: brane forms naturally. 9 / 37

16 Thick and smooth RS2 We want to remove the δ(y) part of the action: [ g ( M ] S = d 4 x dy 3 R Λ bulk ) + g (4) δ(y)(l SM Λ brane ) Everything from now on is one way of doing that. 10 / 37

17 Thick and smooth RS2 We want to remove the δ(y) part of the action: [ g ( M ] S = d 4 x dy 3 R Λ bulk ) + g (4) δ(y)(l SM Λ brane ) Everything from now on is one way of doing that. Geometry, hence gravity, is 5D. So why not try to make all fields 5D? First we show how to make a dynamical brane. Then we show how to trap scalars, fermions and gauge fields to the brane. Finally we present a 4+1-d SU(5) based extension to the standard model. 10 / 37

18 Thick and smooth RS2 We want to remove the δ(y) part of the action: [ g ( M ] S = d 4 x dy 3 R Λ bulk ) + g (4) δ(y)(l SM Λ brane ) Everything from now on is one way of doing that. Geometry, hence gravity, is 5D. So why not try to make all fields 5D? First we show how to make a dynamical brane. Then we show how to trap scalars, fermions and gauge fields to the brane. Finally we present a 4+1-d SU(5) based extension to the standard model. Turn off warped gravity for now just think about trapping 5D fields. 10 / 37

19 A domain wall as a brane V(φ) -v +v φ A domain-wall is a (thin) region separating two vacua. The field φ interpolates between two vacua as one moves along the extradimension. 11 / 37

20 A domain wall as a brane V(φ) -v +v φ A domain-wall is a (thin) region separating two vacua. The field φ interpolates between two vacua as one moves along the extradimension. Lagrangian for φ(x µ, y): L = 1 2 Mφ M φ V (φ) A solution is the kink: φ(y) = v tanh( 2λvy) It is stable! 11 / 37

21 More complicated domain walls (DPG & Volkas, PRD72, (2005)) These examples use two scalar fields to form the wall. V = λ 1 (φ φ2 2 v2 ) 2 + λ 2 φ 2 1 φ2 2 V = λ(φ 2 1 +φ2 2 v2 1 )2 (φ 2 1 +φ2 2 +v2 2 ) 12 / 37

22 More complicated domain walls (DPG & Volkas, PRD72, (2005)) These examples use two scalar fields to form the wall. V = λ 1 (φ φ2 2 v2 ) 2 + λ 2 φ 2 1 φ2 2 V = λ(φ 2 1 +φ2 2 v2 1 )2 (φ 2 1 +φ2 2 +v2 2 ) In a realistic model, symmetries dictate V. To determine stability, expand φ in normal modes about the background: φ(x, t) = φ bg (x) + n ξ n(x)e iωnt. Make sure ω 2 n 0 12 / 37

23 Trapping matter fields

24 Trapping scalar fields (DPG & Volkas, PRD75, (2007)) Aim: to trap a 5D scalar field Ξ(x µ, y) to the brane. A simple quartic coupling works: [ 1 S = d 4 x dy 2 M φ M φ V (φ) + 1 ] 2 M Ξ M Ξ W (Ξ) gφ 2 Ξ 2 14 / 37

25 Trapping scalar fields (DPG & Volkas, PRD75, (2007)) Aim: to trap a 5D scalar field Ξ(x µ, y) to the brane. A simple quartic coupling works: [ 1 S = d 4 x dy 2 M φ M φ V (φ) + 1 ] 2 M Ξ M Ξ W (Ξ) gφ 2 Ξ 2 Expand Ξ in extra dimensional (Kaluza-Klein) modes: Ξ(x µ, y) = n ξ n (x µ )k n (y) ξ n are the 4D fields, k n their extra-dimensional profile. The profiles satisfy a Schrödinger equation: ) ( d2 dy 2 + 2gφ2 bg k n (y) = Enk 2 n (y) The energy eigenvalues E n are related to the mass of the 4D field ξ n. 14 / 37

26 Trapping via a potential well (DPG & Volkas, PRD75, (2007)) The effective potential acts like a well. ( ) d2 + 2gφ 2 dy 2 bg k n = Enk 2 n effective potential k n profile extra dimension y extra dimension y 15 / 37

27 Trapping via a potential well (DPG & Volkas, PRD75, (2007)) The effective potential acts like a well. ( ) d2 + 2gφ 2 dy 2 bg k n = Enk 2 n effective potential k n profile extra dimension y extra dimension y To get 4D theory, substitute mode expansion into action and integrate y: [ ( ) ] 1 S = d 4 x 2 µ ξ n µ ξ n m 2 nξn 2 + (higher order terms) n Orthonormal basis k n m n can be tuned. = diagonal kinetic and mass terms. 15 / 37

28 Trapping fermions (DPG & Volkas, PRD75, (2007)) We can trap a fermion Ψ(x µ, y) to the brane with a Yukawa coupling: [ ] 1 S = d 4 x dy 2 M φ M φ V (φ) + ΨiΓ M M Ψ hφψψ 16 / 37

29 Trapping fermions (DPG & Volkas, PRD75, (2007)) We can trap a fermion Ψ(x µ, y) to the brane with a Yukawa coupling: [ ] 1 S = d 4 x dy 2 M φ M φ V (φ) + ΨiΓ M M Ψ hφψψ Decompose into left- and right-chiral fields and Kaluza-Klein modes: Ψ(x µ, y) = n [ψ Ln (x µ )f Ln (y) + ψ Rn (x µ )f Rn (y)] 16 / 37

30 Trapping fermions (DPG & Volkas, PRD75, (2007)) We can trap a fermion Ψ(x µ, y) to the brane with a Yukawa coupling: [ ] 1 S = d 4 x dy 2 M φ M φ V (φ) + ΨiΓ M M Ψ hφψψ Decompose into left- and right-chiral fields and Kaluza-Klein modes: Ψ(x µ, y) = [ψ Ln (x µ )f Ln (y) + ψ Rn (x µ )f Rn (y)] n Schrödinger equation (mode index n suppressed): ) ( d2 dy 2 + (h2 φ 2 bg hφ bg ) f L,R (y) = m 2 f L,R (y) effective potential extra dimension y relative mode energy 10 L 2 R f Ln profile extra dimension y f Rn profile extra dimension y 16 / 37

31 Gravity and matter fields Brane (domain wall/kink), trapped scalar and fermion. Plus gravity: S = d 4 x dy [ g M 3 R Λ bulk M φ M φ V (φ) M Ξ M Ξ W (Ξ) gφ 2 Ξ 2 ] + ΨiΓ M M Ψ hφψψ 17 / 37

32 Gravity and matter fields Brane (domain wall/kink), trapped scalar and fermion. Plus gravity: S = d 4 x dy [ g M 3 R Λ bulk M φ M φ V (φ) M Ξ M Ξ W (Ξ) gφ 2 Ξ 2 ] + ΨiΓ M M Ψ hφψψ Dimensionally reduce by integrating over y: [ S = d 4 x g (4) M4D 2 R(4) + (brane dynamics) µ ξ n µ ξ n m 2 nξn 2 τ mnop ξ m ξ n ξ o ξ p (brane interactions) ] + ψ L0 iγ µ µ ψ L0 + ψ n (iγ µ µ µ n )ψ n (brane interactions) 4D parameters (M 4D, m n, τ mnop, µ n, brane dynamics) determined by eigenvalue spectra and overlap integrals. 17 / 37

33 Warped matter (Davies & DPG, PRD76, (2007)) Warped metric ds 2 = e 2σ(y) η µν dx µ dx ν dy 2 modifies profile equation: ( d2 dy 2 + d ) 5σ dy + 2σ 6σ 2 + U(y) f Ln (y) = m 2 ne 2σ f Ln (y) 18 / 37

34 Warped matter (Davies & DPG, PRD76, (2007)) Warped metric ds 2 = e 2σ(y) η µν dx µ dx ν dy 2 modifies profile equation: ( d2 dy 2 + d ) 5σ dy + 2σ 6σ 2 + U(y) f Ln (y) = m 2 ne 2σ f Ln (y) Conformal coordinates ds 2 = e 2σ(y(z)) (η µν dx µ dx ν dz 2 ). Rescale f Ln (y) = e 2σ fln (z): ) ( d2 dz 2 + e 2σ(y(z)) U(y(z)) f Ln (z) = m 2 f n Ln (z) Matter trapping potentials are warped down. 18 / 37

35 Warped matter (Davies & DPG, PRD76, (2007)) Warped metric ds 2 = e 2σ(y) η µν dx µ dx ν dy 2 modifies profile equation: ( d2 dy 2 + d ) 5σ dy + 2σ 6σ 2 + U(y) f Ln (y) = m 2 ne 2σ f Ln (y) Conformal coordinates ds 2 = e 2σ(y(z)) (η µν dx µ dx ν dz 2 ). Rescale f Ln (y) = e 2σ fln (z): ) ( d2 dz 2 + e 2σ(y(z)) U(y(z)) f Ln (z) = m 2 f n Ln (z) Matter trapping potentials are warped down. Finite bound state lifetimes. Resonances. Tiny probability of interaction with continuum. left-handed potential W / k a=0 a=0.04 a= dimensionless conformal coordinate kz brane interaction density (a 1/M 3 5D Newton s constant) a=0 a= (mass of mode / k) 2 18 / 37

36 Trapping gauge fields

37 Confining gauge fields Need to trap gauge fields or e.g. Coulomb potential would be V Coulomb 1/r 2. Not as simple as a Kaluza-Klein mode expansion: Photon and gluons must remain massless. Need to preserve gauge universality at 3+1-d level. We use the Dvali-Shifman mechanism, Dvali & Shifman, PLB396, 64 (1997). The following discussion is based on Dvali, Nielsen & Tetradis, PRD77, (2008). 20 / 37

38 Abelian Higgs model U(1) gauge theory (think 5d photon). Charged Higgs χ (gives mass to photon). M χ χ 0 extra dimension 21 / 37

39 Abelian Higgs model U(1) gauge theory (think 5d photon). Charged Higgs χ (gives mass to photon). χ M χ 0 extra dimension U(1) superconductor superconductor In the bulk: U(1) is broken, massive photon M χ. Higgs vacuum is a superconductor. Electric charges are screened. On the brane: U(1) is restored, massless photon. Electric field ends on Higgs vacuum. Charge screening leaks onto the brane! 21 / 37

40 Using a dual superconductor SU(2) gauge theory (3 gluons ). Adjoint Higgs χ a (a = 1, 2, 3) (gives mass). M χ χ 0 extra dimension 22 / 37

41 Using a dual superconductor SU(2) gauge theory (3 gluons ). Adjoint Higgs χ a (a = 1, 2, 3) (gives mass). χ M χ 0 SU(2) dual superconductor extra dimension U(1) SU(2) dual superconductor In the bulk: SU(2) is restored, in confining regime. Large mass gap M χ to colourless state. QCD-like vacuum is dual superconductor. On the brane: SU(2) broken to U(1), massless photon. Electric field repelled from dual superconductor. For distances much larger than brane width, electric potential 1/r. 22 / 37

42 Dvali-Shifman model Stabilise the domain wall with an extra uncharged scalar field η: [ 1 S = d 4 x dy 4g 2 GaMN G a MN M η M η (DM χ a ) D M χ a ] λ(η 2 v 2 ) 2 λ 2 (χa χ a + κ 2 v 2 + η 2 ) 2 η has a kink profile. If κ 2 v 2 < 0, χ becomes tachyonic near domain wall (where η 0). True vacuum has χ 0 near domain wall. χ breaks symmetry near wall and confines gauge fields. field profile v 0 -v η χ extra dimension y 23 / 37

43 Dvali-Shifman model Stabilise the domain wall with an extra uncharged scalar field η: [ 1 S = d 4 x dy 4g 2 GaMN G a MN M η M η (DM χ a ) D M χ a ] λ(η 2 v 2 ) 2 λ 2 (χa χ a + κ 2 v 2 + η 2 ) 2 η has a kink profile. If κ 2 v 2 < 0, χ becomes tachyonic near domain wall (where η 0). True vacuum has χ 0 near domain wall. χ breaks symmetry near wall and confines gauge fields. field profile v 0 -v η χ extra dimension y Can add gravity: self consistently solve σ (warped metric profile), η, χ. 23 / 37

44 Dvali-Shifman mechanism The Dvali-Shifman mechanism: Works with any non-abelian SU(N) theory. Assumes the SU(N) theory is confining (not proven for 5D). Has gauge universality: Charges in the bulk are connected to the brane by a flux tube. Coupling to gauge fields is independent of extra dimensional profile. 24 / 37

45 Dvali-Shifman mechanism The Dvali-Shifman mechanism: Works with any non-abelian SU(N) theory. Assumes the SU(N) theory is confining (not proven for 5D). Has gauge universality: Charges in the bulk are connected to the brane by a flux tube. Coupling to gauge fields is independent of extra dimensional profile. Obvious choice for SU(N) group is SU(5). 24 / 37

46 SU(5) basics

47 Quantum numbers of the standard model Representations under SU(3) SU(2) L U(1) Y : q L (3, 2) 1/3 u R (3, 1) 4/3 d R (3, 1) 2/3 l L (1, 2) 1 ν R (1, 1) 0 e R (1, 1) 2 26 / 37

48 Quantum numbers of the standard model Representations under SU(3) SU(2) L U(1) Y : q L (3, 2) 1/3 u R (3, 1) 4/3 d R (3, 1) 2/3 l L (1, 2) 1 ν R (1, 1) 0 e R (1, 1) 2 SU(2) L ν L d R u L e R e R u L d R ν R ν L d L u R e L U(1) Y e L u R d L ν R 26 / 37

49 Quantum numbers of the standard model Representations under SU(3) SU(2) L U(1) Y : q L (3, 2) 1/3 u R (3, 1) 4/3 d R (3, 1) 2/3 l L (1, 2) 1 ν R (1, 1) 0 e R (1, 1) 2 SU(2) L ν L d R u L e R e R u L d R ν R ν L d L u R e L U(1) Y e L u R d L ν R 5 d r,w,b L ν L e L (5 5) A = 10 u r,w,b L u r,w,b L d r,w,b L e L 26 / 37

50 Putting it all together

51 The SU(5) model (Davies, DPG & Volkas, PRD77, (2008)) Want the standard model on the brane: SU(3) SU(2) L U(1) Y. Dvali-Shifman needs a larger gauge group in the bulk: Unify the fermions as usual: 5, 10. Higgs doublet goes in a 5. SU(5) is a perfect fit! 28 / 37

52 The SU(5) model (Davies, DPG & Volkas, PRD77, (2008)) Want the standard model on the brane: SU(3) SU(2) L U(1) Y. Dvali-Shifman needs a larger gauge group in the bulk: Unify the fermions as usual: 5, 10. Higgs doublet goes in a 5. Summary: SU(5) is a perfect fit! dimensional theory all spatial dimensions the same. SU(5) local gauge symmetry, Z 2 discrete symmetry. Field content: gauge fields: G MN 24. scalars: η 1, χ 24, Φ 5. fermions: Ψ 5 5, Ψ The standard model emerges as a low energy approximation. Ignore gravity for now. 28 / 37

53 The action (without gravity) (Davies, DPG & Volkas, PRD77, (2008)) The theory is described by: [ 1 S = d 4 x dy 4g 2 GaMN G a MN + 1 ( ) 2 M η M η + Tr (D M χ) (D M χ) + (D M Φ) (D M Φ) + Ψ 5 iγ M D M Ψ 5 + Ψ 10 iγ M D M Ψ 10 h 5η Ψ 5 Ψ 5 η h 5χ Ψ 5 χ T Ψ 5 h 10η Tr(Ψ 10 Ψ 10 )η + 2h 10χ Tr(Ψ 10 χψ 10 ) h (Ψ 5 ) c Ψ 10 Φ h + (ɛ(ψ 10 ) c Ψ 10 Φ ) + h.c. (cη 2 µ 2 χ) Tr(χ 2 ) dη Tr(χ 3 ) λ 1 [ Tr(χ 2 ) ] 2 λ2 Tr(χ 4 ) l(η 2 v 2 ) 2 µ 2 ΦΦ Φ λ 3 (Φ Φ) 2 λ 4 Φ Φη 2 ] 2λ 5 Φ Φ Tr(χ 2 ) λ 6 Φ (χ T ) 2 Φ λ 7 Φ χ T Φη with kinetic, brane trapping, mass and Dvali-Shifman terms. 29 / 37

54 Split fermions (Davies, DPG & Volkas, PRD77, (2008)) Let Ψ ny be the components of Ψ 5 and Ψ 10 (n = 5, 10, Y = hypercharge of component), e.g. Ψ 5 Ψ 5, 1 = l L. Dirac equation: [ ] 3 iγ M Y M h nη η(y) 5 2 h nχχ 1 (y) Ψ ny (x µ, y) = 0 Each Ψ ny is a non-chiral 5D field: need to extract the confined left-chiral zero-mode (recall the mode expansion and Schrödinger equation approach): Ψ ny (x µ, y) = ψ ny,l (x µ )f ny (y) + massive modes 30 / 37

55 Split fermions (Davies, DPG & Volkas, PRD77, (2008)) Let Ψ ny be the components of Ψ 5 and Ψ 10 (n = 5, 10, Y = hypercharge of component), e.g. Ψ 5 Ψ 5, 1 = l L. Dirac equation: [ ] 3 iγ M Y M h nη η(y) 5 2 h nχχ 1 (y) Ψ ny (x µ, y) = 0 Each Ψ ny is a non-chiral 5D field: need to extract the confined left-chiral zero-mode (recall the mode expansion and Schrödinger equation approach): Ψ ny (x µ, y) = ψ ny,l (x µ )f ny (y) + massive modes The effective Schrödinger potential depends on Y. f 5 Y d c L ll Thus each component ψ ny,l different profile f ny. has a f 10 Y dimensionless coordinate ky e c L u c L q L 30 / 37

56 Split Higgs (Davies, DPG & Volkas, PRD77, (2008)) Φ contains the Higgs doublet Φ w and a coloured triplet Φ c. Mode expand Φ w,c (x µ, y) = φ w,c (x µ )p w,c (y). Schrödinger equation for p w,c is: ( d2 dy 2 + 3Y ) λ 6χ 2 Y λ 7ηχ p w,c (y) = m 2 w,cp w,c (y) Critical that ground states have: m 2 w < 0 to break electroweak symmetry. m 2 c > 0 to preserve QCD. 31 / 37

57 Split Higgs (Davies, DPG & Volkas, PRD77, (2008)) Φ contains the Higgs doublet Φ w and a coloured triplet Φ c. Mode expand Φ w,c (x µ, y) = φ w,c (x µ )p w,c (y). Schrödinger equation for p w,c is: ( d2 dy 2 + 3Y ) λ 6χ 2 Y λ 7ηχ p w,c (y) = m 2 w,cp w,c (y) Critical that ground states have: m 2 w < 0 to break electroweak symmetry. m 2 c > 0 to preserve QCD. W -1 W 2/3 Large enough parameter space to allow this. W Y dimensionless coordinate ky 31 / 37

58 Features (Davies, DPG & Volkas, PRD77, (2008)) Standard model parameters are computed from overlap integrals. With one generation of fermions, parameters are easy to fit. The model overcomes the major SU(5) obstacles: m e = m d not obtained due to naturally split fermions. Coloured Higgs induced proton decay is suppressed. Gauge coupling constant running modified due to Kaluza-Klein modes appearing (not analysed yet). 32 / 37

59 Features (Davies, DPG & Volkas, PRD77, (2008)) Standard model parameters are computed from overlap integrals. With one generation of fermions, parameters are easy to fit. The model overcomes the major SU(5) obstacles: m e = m d not obtained due to naturally split fermions. Coloured Higgs induced proton decay is suppressed. Gauge coupling constant running modified due to Kaluza-Klein modes appearing (not analysed yet). Adding gravity: Solve for warped metric, kink and Dvali-Shifman background. Continuum fermion and scalar modes are highly suppressed on the brane. Main features remain. 32 / 37

60 Going beyond SU(5) (Davidson, DPG, Kobakhidze, Volkas & Wali, PRD77, (2008)) One promising extension is to the E 6 group: E 6 SO(10) in the bulk. SO(10) SU(5) on the brane due to clash-of-symmetries (CoS) and Dvali-Shifman. Can eliminate kink scalar field η. Can unify Ψ 5 and Ψ 10. Large reduction of free parameters. V(φ) -v +v φ π -8.0x x10-3 (10, ) -1.2x10-3 φ π/2-1.4x x10-3 (10, ) (10,+) 0-1.8x10-3 fx (10,+) -π -π/2 0 π/2 π θ fe (+ s are SO(10) s) (top domain-wall has CoS) 33 / 37

61 Domain-wall cosmology

62 The scale factor on a brane Most important cosmological fact: expanding universe. FRW: ds 2 = dt 2 + a 2 (t) dx dx Energy density ρ dictates expansion: H = ȧ a (Hubble parameter) H 2 = 8πG 3 ρ (spatially flat universe) 35 / 37

63 The scale factor on a brane Most important cosmological fact: expanding universe. FRW: ds 2 = dt 2 + a 2 (t) dx dx Energy density ρ dictates expansion: H = ȧ a (Hubble parameter) H 2 = 8πG 3 ρ (spatially flat universe) FRW for a brane: ds 2 = n 2 (t, y)dt 2 + a 2 (t, y) dx dx + dy 2 H 2 brane = 8πG 3 ( 1 + ρ ) ρ 2σ σ is the energy density (tension) of the brane; σ (1MeV ) 4 from BBN. (Binétruy, Deffayet & Langlois, Nucl. Phys. B565, 269 (2000)) 35 / 37

64 Species-dependent scale factor (DPG, Trodden & Volkas, in prep.) ds 2 = n 2 (t, y)dt 2 +a 2 (t, y)dx dx+dy 2 Each slice at constant y has a different scale factor. a(t, y = 3 ) a(t, y = 2 ) a(t, y = ) a(t, y = 0) a(t, y = ) a(t, y = 2 ) a(t, y = 3 ) a(t, y) 36 / 37

65 Species-dependent scale factor (DPG, Trodden & Volkas, in prep.) ds 2 = n 2 (t, y)dt 2 +a 2 (t, y)dx dx+dy 2 Each slice at constant y has a different scale factor. a(t, y = 3 ) a(t, y = 2 ) a(t, y = ) a(t, y = 0) a(t, y = ) a(t, y = 2 ) a(t, y = 3 ) a(t, y) f sp (t, y) For thick branes, different species (electron, quark, KK mode) experience different expansion rates. ( a sp (t) = a 0 (t) 1 + ρ ) I sp (t) 2σH 0 I sp (t) = f 2 sp (t, y) dy f 2 sp (t, y) e σ y /6M 3 5 dy 1 Different localisation profile f sp for different energies! No chiral fermions! 36 / 37

66 Summary and outlook Our universe may be a brane residing in a higher dimensional bulk. We have investigated the possibility that the brane is in fact a domain-wall. Main results: Scalar field: forms stable domain wall. RS2 warped metric: traps gravity. Dvali-Shifman mechanism: traps gauge fields. SU(5) domain-wall model: overcomes major SU(5) obstacles. E 6 extension: unify fields and reduce parameters. Cosmology: species-dependent expansion rate. Outlook: extra-dimensions a real possibility! Will be tested by LHC (e.g. KK modes) and cosmological observations. 37 / 37

Modelling an extra dimension with domain-wall branes

Modelling an extra dimension with domain-wall branes Modelling an extra dimension with domain-wall branes Damien George Nikhef theory seminar 5 th November 2009 Overview Physics beyond the standard model: extra dimensions. Brane domain wall (topological

More information

A framework for domain-wall brane model building

A framework for domain-wall brane model building A framework for domain-wall brane model building Raymond R. Volkas The University of Melbourne Beyond the Standard Models of Particle Physics, Cosmology and Astrophysics Feb 2010 Raymond R. Volkas (U Melbourne)

More information

Neutrinos and flavour in a brane model

Neutrinos and flavour in a brane model Neutrinos and flavour in a brane model Raymond R. Volkas The University of Melbourne Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics September 2009 Raymond R. Volkas (U Melbourne) Neutrinos

More information

Trapped in an infinite extra dimension

Trapped in an infinite extra dimension Trapped in an infinite extra dimension Damien George Nikhef theory group Nikhef Jamboree 15 16 th December 2009 Amsterdam Extra dimensions D.P. George Trapped in an infinite extra dimension 2/11 Beyond

More information

Introduction to (Large) Extra Dimensions

Introduction to (Large) Extra Dimensions SLAC Dark Matter & Exotic Physics WG p. 1/39 Introduction to (Large) Extra Dimensions A. Lionetto Department of Physics & INFN Roma Tor Vergata SLAC Dark Matter & Exotic Physics WG p. 2/39 Outline Introduction

More information

STABILIZING EXTRA DIMENSIONS

STABILIZING EXTRA DIMENSIONS STABILIZING EXTRA DIMENSIONS Gero von Gersdorff (École Polytechnique) Warsaw, October 19th 2009 Collaboration with J.A.Cabrer and M.Quirós OUTLINE Features of Warped Extra Dimensions Stabilizing Models

More information

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland)

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland) BEYOND THE SM (II) Kaustubh Agashe (University of Maryland) ierarchy problems (from lecture 1) Planck-weak hierarchy problem Flavor (hierarchy) puzzle...extra dimensions can address both... Extra dimensions:

More information

1. Introduction. [Arkani-Hamed, Dimopoulos, Dvali]

1. Introduction. [Arkani-Hamed, Dimopoulos, Dvali] 2014 Ï Ò (í «) Ò Ò Ù Åǽ À 20145 7 Content 1. Introduction and Motivation 2. f(r)-brane model and solutions 3. Localization of gravity on f(r)-brane 4. Gravity resonances on f(r)-brane 5. Corrections to

More information

Gravitational perturbations on branes

Gravitational perturbations on branes º ( Ò Ò ) Ò ± 2015.4.9 Content 1. Introduction and Motivation 2. Braneworld solutions in various gravities 2.1 General relativity 2.2 Scalar-tensor gravity 2.3 f(r) gravity 3. Gravitational perturbation

More information

Domain Wall Brane in Eddington Inspired Born-Infeld Gravity

Domain Wall Brane in Eddington Inspired Born-Infeld Gravity 2012cüWâfÔn»Æï? Domain Wall Brane in Eddington Inspired Born-Infeld Gravity µ4œ Ç =²ŒÆnØÔnïÄ Email: yangke09@lzu.edu.cn I# Ÿ 2012.05.10 Outline Introduction to Brane World Introduction to Eddington Inspired

More information

Elementary/Composite Mixing in Randall-Sundrum Models

Elementary/Composite Mixing in Randall-Sundrum Models Elementary/Composite Mixing in Randall-Sundrum Models Brian Batell University of Minnesota with Tony Gherghetta - arxiv:0706.0890 - arxiv:0710.1838 Cornell 1/30/08 5D Warped Dimension = 4D Strong Dynamics

More information

Introduction to the Beyond the Standard Model session

Introduction to the Beyond the Standard Model session Introduction to the Beyond the Standard Model session JJC 2014 Dec. 11th 2014 Samuel Calvet Outline Why do we need Beyond the Standard Model (BSM) theories? BSM theories on the market : their predictions/particles

More information

Aharonov-Bohm Effect and Unification of Elementary Particles. Yutaka Hosotani, Osaka University Warsaw, May 2006

Aharonov-Bohm Effect and Unification of Elementary Particles. Yutaka Hosotani, Osaka University Warsaw, May 2006 Aharonov-Bohm Effect and Unification of Elementary Particles Yutaka Hosotani, Osaka University Warsaw, May 26 - Part 1 - Aharonov-Bohm effect Aharonov-Bohm Effect! B)! Fµν = (E, vs empty or vacuum!= Fµν

More information

Inter-brane distance stabilization by bulk Higgs field in RS model

Inter-brane distance stabilization by bulk Higgs field in RS model EPJ Web of Conferences 58, 0500 07 QFTHEP 07 DOI: 0.05/epjconf/07580500 Inter-brane distance stabilization by bulk Higgs field in RS model Vadim Egorov,, and Igor Volobuev, Skobeltsyn Institute of Nuclear

More information

General Warped Solution in 6d Supergravity. Christoph Lüdeling

General Warped Solution in 6d Supergravity. Christoph Lüdeling General Warped Solution in 6d Supergravity Christoph Lüdeling DESY Hamburg DPG-Frühjahrstagung Teilchenphysik H. M. Lee, CL, JHEP 01(2006) 062 [arxiv:hep-th/0510026] C. Lüdeling (DESY Hamburg) Warped 6d

More information

Warped Models in String Theory

Warped Models in String Theory Warped Models in String Theory SISSA/ISAS Trieste (Italy) Rutgers 14 November 2006 (Work in collaboration with B.S.Acharya and F.Benini) Appearing soon Introduction 5D Models 5D warped models in a slice

More information

Introduction to the Beyond the Standard Model session

Introduction to the Beyond the Standard Model session Introduction to the Beyond the Standard Model session JRJC 2015 Nov. 19th 2015 Samuel Calvet Outline Why do we need Beyond the Standard Model (BSM) theories? BSM theories on the market : their predictions/particles

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

Braneworld in f(r) gravity and critical gravity

Braneworld in f(r) gravity and critical gravity Braneworld in f(r) gravity and critical gravity Yu-Xiao Liu Institute of Theoretical Physics, Lanzhou University ICTS, USTC, Hefei 2011.12.13 Content Introduction and motivation f(r) thick brane f(r) thick

More information

Thick Brane World. Seyen Kouwn Korea Astronomy and Space Science Institute Korea

Thick Brane World. Seyen Kouwn Korea Astronomy and Space Science Institute Korea Thick Brane World Seyen Kouwn Korea Astronomy and Space Science Institute Korea Introduction - Multidimensional theory 1 Why are the physically observed dimensions of our Universe = 3 + 1 (space + time)?

More information

BRANE COSMOLOGY and Randall-Sundrum model

BRANE COSMOLOGY and Randall-Sundrum model BRANE COSMOLOGY and Randall-Sundrum model M. J. Guzmán June 16, 2009 Standard Model of Cosmology CMB and large-scale structure observations provide us a high-precision estimation of the cosmological parameters:

More information

Cosmology and astrophysics of extra dimensions

Cosmology and astrophysics of extra dimensions Cosmology and astrophysics of extra dimensions Astrophysical tests of fundamental physics Porto, 27-29 March 2007 P. Binétruy, APC Paris Why extra dimensions? Often appear in the context of unifying gravitation

More information

arxiv: v4 [hep-ph] 25 Aug 2010

arxiv: v4 [hep-ph] 25 Aug 2010 Fermion masses and mixing in a 4+1-dimensional SU(5) domain-wall brane model Benjamin D. Callen and Raymond R. Volkas School of Physics, The University of Melbourne, Victoria 3010, Australia Abstract arxiv:1008.1855v4

More information

Large Extra Dimensions and the Hierarchy Problem

Large Extra Dimensions and the Hierarchy Problem Large Extra Dimensions and the Hierarchy Problem The Hierarchy Problem - At Planck energies (M P L 10 19 GeV ) all four forces have the same strength. -At the Electroweak scale (M EW 1T ev ) the four forces

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Non-SUSY BSM: Lecture 1/2

Non-SUSY BSM: Lecture 1/2 Non-SUSY BSM: Lecture 1/2 Generalities Benasque September 26, 2013 Mariano Quirós ICREA/IFAE Mariano Quirós (ICREA/IFAE) Non-SUSY BSM: Lecture 1/2 1 / 31 Introduction Introduction There are a number of

More information

Theories with Compact Extra Dimensions

Theories with Compact Extra Dimensions Instituto de Física USP PASI 2012 UBA Theories with Compact Extra dimensions Part II Generating Large Hierarchies with ED Theories Warped Extra Dimensions Warped Extra Dimensions One compact extra dimension.

More information

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS.

LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS. LOCALIZATION OF FIELDS ON A BRANE IN SIX DIMENSIONS Merab Gogberashvili a and Paul Midodashvili b a Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 3877, Georgia E-mail: gogber@hotmail.com

More information

Accidental SUSY at the LHC

Accidental SUSY at the LHC Accidental SUSY at the LHC Tony Gherghetta (University of Melbourne) PACIFIC 2011, Moorea, French Polynesia, September 12, 2011 with Benedict von Harling and Nick Setzer [arxiv:1104.3171] 1 What is the

More information

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris Braneworlds: gravity & cosmology David Langlois APC & IAP, Paris Outline Introduction Extra dimensions and gravity Large (flat) extra dimensions Warped extra dimensions Homogeneous brane cosmology Brane

More information

Domain-Wall Brane Phenomenology in Five and Six Dimensions

Domain-Wall Brane Phenomenology in Five and Six Dimensions Domain-Wall Brane Phenomenology in Five and Six Dimensions Benjamin David Callen Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy June 2014 School of Physics University

More information

S = 2 decay in Warped Extra Dimensions

S = 2 decay in Warped Extra Dimensions S = 2 decay in Warped Extra Dimensions Faisal Munir IHEP, Beijing Supervisor: Cai-Dian Lü HFCPV CCNU, Wuhan October 28, 2017 based on: Chin. Phys. C41 (2017) 053106 [arxiv:1607.07713] F. Munir (IHEP) New

More information

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge Searching for Extra Space Dimensions at the LHC M.A.Parker Cavendish Laboratory Cambridge I shall use ATLAS to illustrate LHC physics, because it is the experiment I know best. Both general purpose detectors

More information

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC)

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC) 2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC) hep-th/0606045 Success of 2T-physics for particles on worldlines. Field theory version of 2T-physics. Standard Model in 4+2 dimensions.

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

Gauge field localization on brane worlds

Gauge field localization on brane worlds Gauge field localization on brane worlds Rommel Guerrero and R. Omar Rodriguez Universidad Centroccidental Lisandro Alvarado - Venezuela Miami 2013 R. Guerrero UCLA) Gauge field localization December 2013

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Holographic study of magnetically induced QCD effects:

Holographic study of magnetically induced QCD effects: Holographic study of magnetically induced QCD effects: split between deconfinement and chiral transition, and evidence for rho meson condensation. Nele Callebaut, David Dudal, Henri Verschelde Ghent University

More information

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration.

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration. EXOTICA AT LHC Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration pmine@poly.in2p3.fr Chia, Sardinia, Italy October 24-27 2001 1 EXOTICA AT LHC Beyond the Standard Model, Supersymmetry

More information

Warp Duality in Braneworlds

Warp Duality in Braneworlds Warp Duality in Braneworlds Andrew B. McGowan September 14, 2007 Abstract In recent years there have emerged numerous models of spacetime that include extra dimensions. In particular there have been a

More information

E 6 Spectra at the TeV Scale

E 6 Spectra at the TeV Scale E 6 Spectra at the TeV Scale Instituts-Seminar Kerne und Teilchen, TU Dresden Alexander Knochel Uni Freiburg 24.06.2010 Based on: F. Braam, AK, J. Reuter, arxiv:1001.4074 [hep-ph], JHEP06(2010)013 Outline

More information

Scalar field dark matter and the Higgs field

Scalar field dark matter and the Higgs field Scalar field dark matter and the Higgs field Catarina M. Cosme in collaboration with João Rosa and Orfeu Bertolami Phys. Lett., B759:1-8, 2016 COSMO-17, Paris Diderot University, 29 August 2017 Outline

More information

Phenomenological Aspects of Local String Models

Phenomenological Aspects of Local String Models Phenomenological Aspects of Local String Models F. Quevedo, Cambridge/ICTP. PASCOS-2011, Cambridge. M. Dolan, S. Krippendorf, FQ; arxiv:1106.6039 S. Krippendorf, M. Dolan, A. Maharana, FQ; arxiv:1002.1790

More information

Brane world scenarios

Brane world scenarios PRAMANA cfl Indian Academy of Sciences Vol. 60, No. 2 journal of February 2003 physics pp. 183 188 Brane world scenarios DILEEP P JATKAR Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Theory Perspective of Top Production: Top Resonances. Tim M.P. Tait

Theory Perspective of Top Production: Top Resonances. Tim M.P. Tait Theory Perspective of Top Production: Top Resonances Tim M.P. Tait APS April Meeting May 3 2009 Outline Top Resonances are EVERYWHERE! Models, Models, and more Models High Mass Resonances and Boosted Tops

More information

A naturally light & bent dilaton

A naturally light & bent dilaton A naturally light & bent dilaton Javi Serra with B.Bellazzini, C.Csaki, J.Hubisz, J.Terning arxiv:1305.3919 arxiv:14xx.xxxx SUSY 2014 Manchester July 22, 2014 1 Motivation. DILATON =Goldstone Boson of

More information

Theoretical Aspects of the Equivalence Principle

Theoretical Aspects of the Equivalence Principle Theoretical Aspects of the Equivalence Principle Thibault Damour Institut des Hautes Études Scientifiques Thibault Damour (IHES) Theoretical Aspects of the EP Q2C5 Cologne 9 12 October 2012 1 / 22 (Einstein)

More information

SU(5) Grand Unification on a Domain-Wall Brane from an E_6-Invariant Action

SU(5) Grand Unification on a Domain-Wall Brane from an E_6-Invariant Action Syracuse University SURFACE Physics College of Arts and Sciences 3-26-2008 SU(5) Grand Unification on a Domain-Wall Brane from an E_6-Invariant Action Aharon Davidson Ben-Gurion University Damien P. George

More information

Life with More Than 4: Extra Dimensions

Life with More Than 4: Extra Dimensions Life with More Than 4: Extra Dimensions Andrew Larkoski 4/15/09 Andrew Larkoski SASS 5 Outline A Simple Example: The 2D Infinite Square Well Describing Arbitrary Dimensional Spacetime Motivations for Extra

More information

Lepton flavour violation in RS models

Lepton flavour violation in RS models Lepton flavour violation in RS models P. Moch with M. Beneke and J. Rohrwild Theoretische Physik 1 Uni Siegen Outline: Introduction Strategy and formalism Results P. Moch (Uni Siegen LVF in RS PSI, Oktober

More information

arxiv:hep-ph/ v1 31 Jan 2003

arxiv:hep-ph/ v1 31 Jan 2003 UT-03-05 Warped QCD without the Strong CP Problem arxiv:hep-ph/0301273v1 31 Jan 2003 Akito Fukunaga and Izawa K.-I. Department of Physics, University of Tokyo, Tokyo 113-0033, Japan Abstract QCD in a five-dimensional

More information

Axial symmetry in the chiral symmetric phase

Axial symmetry in the chiral symmetric phase Axial symmetry in the chiral symmetric phase Swagato Mukherjee June 2014, Stoney Brook, USA Axial symmetry in QCD massless QCD Lagrangian is invariant under U A (1) : ψ (x) e i α ( x) γ 5 ψ(x) μ J 5 μ

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass rather

More information

Generalized N = 1 orientifold compactifications

Generalized N = 1 orientifold compactifications Generalized N = 1 orientifold compactifications Thomas W. Grimm University of Wisconsin, Madison based on: [hep-th/0602241] Iman Benmachiche, TWG [hep-th/0507153] TWG Madison, Wisconsin, November 2006

More information

FLAVOUR IN WARPED EXTRA DIMENSIONS

FLAVOUR IN WARPED EXTRA DIMENSIONS FLAVOUR IN WARPED EXTRA DIMENSIONS G. CACCIAPAGLIA Institut de Physique Nucléaire de Lyon, Université Lyon, CNRS/IN2P3, F-69622 Villeurbanne Cedex, France Models in warped extra dimensions are very attractive

More information

Large Mass Hierarchy from a Small Extra Dimension

Large Mass Hierarchy from a Small Extra Dimension Large Mass Hierarchy from a Small Extra Dimension Sridip Pal (09MS002) DPS PH4204 April 4,2013 Sridip Pal (09MS002) DPS PH4204 () Large Mass Hierarchy from a Small Extra Dimension April 4,2013 1 / 26 Outline

More information

arxiv:hep-ph/ v1 21 Dec 2006

arxiv:hep-ph/ v1 21 Dec 2006 Kink modes and effective four dimensional fermion and Higgs brane models Damien P. George and Raymond R. Volkas School of Physics, Research Centre for High Energy Physics, The University of Melbourne,

More information

Dynamical Domain Wall and Localization

Dynamical Domain Wall and Localization Dynamical Domain Wall and Localization Shin ichi Nojiri Department of Physics & Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya Univ. Typeset by FoilTEX 1 Based on

More information

Gauge Field Localization in Models with Large Extra Dimensions

Gauge Field Localization in Models with Large Extra Dimensions Gauge Field Localization in Models with Large Extra Dimensions Norisuke Sakai (Tokyo Woman s Christian University) In collaboration with Kazutoshi Ohta, Progress of Theoretical Physics 124, 71 (2010) [arxiv:1004.4078],talk

More information

arxiv: v2 [hep-th] 23 Sep 2011

arxiv: v2 [hep-th] 23 Sep 2011 Dynamics of the infinitely-thin kink NIKHEF/2009-028 Damien P. George 1 Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands School of Physics, The University of Melbourne, Victoria 3010, Australia

More information

The mass of the Higgs boson

The mass of the Higgs boson The mass of the Higgs boson LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12 a prediction Higgs boson found standard model Higgs boson T.Plehn, M.Rauch Spontaneous symmetry breaking confirmed

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

Attractor Structure of Gauged Nambu-Jona-Lasinio Model

Attractor Structure of Gauged Nambu-Jona-Lasinio Model Attractor Structure of Gauged ambu-jona-lasinio Model Department of Physics, Hiroshima University E-mail: h-sakamoto@hiroshima-u.ac.jp We have studied the inflation theory in the gauged ambu-jona-lasinio

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS 8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS Lecturer: McGreevy Scribe: Francesco D Eramo October 16, 2008 Today: 1. the boundary of AdS 2. Poincaré patch 3. motivate boundary

More information

An extended standard model and its Higgs geometry from the matrix model

An extended standard model and its Higgs geometry from the matrix model An extended standard model and its Higgs geometry from the matrix model Jochen Zahn Universität Wien based on arxiv:1401.2020 joint work with Harold Steinacker Bayrischzell, May 2014 Motivation The IKKT

More information

Partial Compositeness and

Partial Compositeness and Partial Compositeness and its implications for the LHC Roberto Contino Università Roma La Sapienza & INFN In collaboration with: Raman Sundrum Thomas Kramer Minho Son Motivation: Solving the Hierarchy

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

S 3 Symmetry as the Origin of CKM Matrix

S 3 Symmetry as the Origin of CKM Matrix S 3 Symmetry as the Origin of CKM Matrix Ujjal Kumar Dey Physical Research Laboratory October 25, 2015 Based on: PRD 89, 095025 and arxiv:1507.06509 Collaborators: D. Das and P. B. Pal 1 / 25 Outline 1

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 1: Boundary of AdS;

More information

Boundary Conditions in AdS Life Without a Higgs

Boundary Conditions in AdS Life Without a Higgs Boundary Conditions in AdS Life Without a Higgs Csáki, Grojean, Murayama, Pilo, JT hep-ph/0305237 Csáki, Grojean, Pilo, JT hep-ph/0308038 Csáki, Grojean, Hubisz, Shirman, JT hep-ph/0310355 Cacciapaglia,

More information

Exploring Universal Extra-Dimensions at the LHC

Exploring Universal Extra-Dimensions at the LHC Exploring Universal Extra-Dimensions at the LHC Southampton University & Rutherford Appleton Laboratory 1 Problems to be addressed by the underlying theory The Nature of Electroweak Symmetry Breaking The

More information

A Derivation of the Standard Model. ``String Phenomenology 2015, Madrid, June 12, 2015 Based on Nucl.Phys. B883 (2014) with B.

A Derivation of the Standard Model. ``String Phenomenology 2015, Madrid, June 12, 2015 Based on Nucl.Phys. B883 (2014) with B. A Derivation of the Standard Model ``String Phenomenology 2015, Madrid, June 12, 2015 Based on Nucl.Phys. B883 (2014) 529-580 with B. Gato Rivera A Derivation of the Standard Model discrete structure of

More information

The cosmological constant puzzle

The cosmological constant puzzle The cosmological constant puzzle Steven Bass Cosmological constant puzzle: Accelerating Universe: believed to be driven by energy of nothing (vacuum) Vacuum energy density (cosmological constant or dark

More information

Spectral action, scale anomaly. and the Higgs-Dilaton potential

Spectral action, scale anomaly. and the Higgs-Dilaton potential Spectral action, scale anomaly and the Higgs-Dilaton potential Fedele Lizzi Università di Napoli Federico II Work in collaboration with A.A. Andrianov (St. Petersburg) and M.A. Kurkov (Napoli) JHEP 1005:057,2010

More information

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U

How does neutrino confine GUT and Cosmology? July T. Fukuyama Center of Quantum Universe, Okayama-U How does neutrino confine GUT and Cosmology? July 11 08 T. Fukuyama (Rits) @ Center of Quantum Universe, Okayama-U 1. Introduction Neutrino oscillation breaks SM. Then is OK? does not predict 1. Gauge

More information

Brane-World Cosmology and Inflation

Brane-World Cosmology and Inflation ICGC04, 2004/1/5-10 Brane-World Cosmology and Inflation Extra dimension G µν = κ T µν? Misao Sasaki YITP, Kyoto University 1. Introduction Braneworld domain wall (n 1)-brane = singular (time-like) hypersurface

More information

Exotic Dark Matter as Spin-off of Proton Stability. Kaustubh Agashe (University of Maryland)

Exotic Dark Matter as Spin-off of Proton Stability. Kaustubh Agashe (University of Maryland) Exotic Dark Matter as Spin-off of Proton Stability Kaustubh Agashe (University of Maryland) Outline and Summary Warped extra dimensions address Planckweak and flavor hierarchies: new (KK) particles at

More information

Lecturer: Bengt E W Nilsson

Lecturer: Bengt E W Nilsson 9 3 19 Lecturer: Bengt E W Nilsson Last time: Relativistic physics in any dimension. Light-cone coordinates, light-cone stuff. Extra dimensions compact extra dimensions (here we talked about fundamental

More information

COSMOLOGY IN HIGHER DIMENSIONS

COSMOLOGY IN HIGHER DIMENSIONS COSMOLOGY IN HIGHER DIMENSIONS 1. Introduction 2. Overview of Higher Dimensional Cosmology 3. Cosmology in Higher Dimensions 4. String Frame 5. Summary Kei-ichi MAEDA Waseda University 1. INTRODUCTION

More information

Modelling the evolution of small black holes

Modelling the evolution of small black holes Modelling the evolution of small black holes Elizabeth Winstanley Astro-Particle Theory and Cosmology Group School of Mathematics and Statistics University of Sheffield United Kingdom Thanks to STFC UK

More information

Yet Another Alternative to Compactification by Heterotic Five-branes

Yet Another Alternative to Compactification by Heterotic Five-branes The University of Tokyo, Hongo: October 26, 2009 Yet Another Alternative to Compactification by Heterotic Five-branes arxiv: 0905.285 [hep-th] Tetsuji KIMURA (KEK) Shun ya Mizoguchi (KEK, SOKENDAI) Introduction

More information

Warped Penguins. Based on arxiv: In collaboration with Csaba Csáki, Yuval Grossman, Philip Tanedo. LEPP Particle Theory Seminar

Warped Penguins. Based on arxiv: In collaboration with Csaba Csáki, Yuval Grossman, Philip Tanedo. LEPP Particle Theory Seminar Warped Penguins Based on arxiv:1004.2037 In collaboration with Csaba Csáki, Yuval Grossman, Philip Tanedo Cornell University LEPP Particle Theory Seminar Yuhsin Tsai, Cornell University/LEPP Warped Penguins

More information

Scale invariance and the electroweak symmetry breaking

Scale invariance and the electroweak symmetry breaking Scale invariance and the electroweak symmetry breaking ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, The University of Melbourne, VIC 3010 and School of Physics, The

More information

Where are we heading? Nathan Seiberg IAS 2016

Where are we heading? Nathan Seiberg IAS 2016 Where are we heading? Nathan Seiberg IAS 2016 Two half-talks A brief, broad brush status report of particle physics and what the future could be like The role of symmetries in physics and how it is changing

More information

Extra-dimensional models on the lattice and the Layer Phase. Petros Dimopoulos

Extra-dimensional models on the lattice and the Layer Phase. Petros Dimopoulos Extra-dimensional models on the lattice and the Layer Phase Petros Dimopoulos Frascati, 7/6/008 OUTLINE Introductory hints on the extra dimensional theories Models with extra dimension on the lattice;

More information

q form field and Hodge duality on brane

q form field and Hodge duality on brane Lanzhou University (=²ŒÆ) With C.E. Fu, H. Guo and S.L. Zhang [PRD 93 (206) 064007] 4th International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry December 29-3, 206, December 3,

More information

International Journal of Theoretical Physics, October 2015, Volume 54, Issue 10, pp ABSTRACT

International Journal of Theoretical Physics, October 2015, Volume 54, Issue 10, pp ABSTRACT 1 meson-nucleon coupling constant from the soft-wall AdS/QCD model Narmin Huseynova a,b1 and Shahin Mamedov a a Institute for Physical Problems, Baku State University, Z.Khalilov 3, Baku, AZ-1148, Azerbaijan

More information

125 GeV Higgs Boson and Gauge Higgs Unification

125 GeV Higgs Boson and Gauge Higgs Unification 125 GeV Higgs Boson and Gauge Higgs Unification Nobuchika Okada The University of Alabama Miami 2013, Fort Lauderdale, Dec. 12 18, 2013 Discovery of Higgs boson at LHC! 7/04/2012 Standard Model Higgs boson

More information

Phenomenological Aspects of LARGE Volume Models

Phenomenological Aspects of LARGE Volume Models Phenomenological Aspects of LARGE Volume Models Joseph P. Conlon (Cavendish Laboratory & DAMTP, Cambridge) 15th Irish Quantum Field Theory Meeting May(nooth) 2008 Phenomenological Aspects of LARGE Volume

More information

The Randall-Sundrum model

The Randall-Sundrum model The Randall-Sundrum model Aleksandr Chatrchyan & Björn Jüliger After a brief non-technical introduction to the Hierarchy problem, we first discuss the old five-dimensional Kaluza-Klein model, its tower

More information

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011 ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011 OUTLINE How can Extra Dimensions explain the electroweak

More information

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Satoshi Iso (KEK, Sokendai) Based on collaborations with H.Aoki (Saga) arxiv:1201.0857

More information

Brane-World Black Holes

Brane-World Black Holes Brane-World Black Holes A. Chamblin, S.W. Hawking and H.S. Reall DAMTP University of Cambridge Silver Street, Cambridge CB3 9EW, United Kingdom. Preprint DAMTP-1999-133 arxiv:hep-th/990905v 1 Oct 1999

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

Baryon Physics in Holographic QCD Models (and Beyond) in collaboration with A. Wulzer

Baryon Physics in Holographic QCD Models (and Beyond) in collaboration with A. Wulzer Baryon Physics in Holographic QCD Models (and Beyond) Alex Pomarol (Univ. Autonoma Barcelona) in collaboration with A. Wulzer One of the main goals of AdS/CFT: Find the string dual theory of QCD One of

More information