Constraint satisfaction problems for metabolic networks

Size: px
Start display at page:

Download "Constraint satisfaction problems for metabolic networks"

Transcription

1 Constraint satisfaction problems for metabolic networks Alessandro Seganti Università La Sapienza October 14, 213 Supervisors: F. Ricci-Tersenghi, A. De Martino A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

2 1 Introduction Reaction network Static Picture Dynamic Picture 2 Boolean activity Coarse Grained dynamics Message passing Results on Random Graphs The Mean Field Approximation 3 Real network The hypothesis Mean Field Solutions Correlation Matrix Role of the modules Preliminary results 4 Conclusions A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

3 Reaction network Introduction Reaction network What is a reaction network? A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

4 Static Picture Introduction Static Picture The most connected metabolites are removed and many topological groups are found. Ravasz et al, Science (22),297:1551. Reaction network divided in pathways that are functionally related. A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

5 Dynamic Picture Introduction Dynamic Picture In principle we should study the kinetics: ẋ µ = i ξ µ ν i i (x, k, t) u µ + noise Non equilibrium steady states of the fluxes of the reactions. Flux Balance Analysis FBA, Von Neumann growth model VN) B.O. Palsson, Systems biology (book) (26), A. De Martino et al, PNAS (29), A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

6 FBA Introduction Dynamic Picture Non equilibrium steady states of the fluxes of the reactions. Flux Balance Analysis FBA, Von Neumann growth model VN) v = v 1... = v = Solution space optimum A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

7 Boolean activity Coarse Grained dynamics Coarse Grained Dynamics Dynamical states on longer times scales than chemical processes Interested in states of the system satisfying minimal constraints inspired by the study of the fluxes. Looking at the fluxes, many reactions are never functioning. Is it possible to describe the system with boolean variables? A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

8 Boolean activity Coarse Grained dynamics Coarse Grained Dynamics Dynamical states on longer times scales than chemical processes Interested in states of the system satisfying minimal constraints inspired by the study of the fluxes. Looking at the fluxes, many reactions are never functioning. Is it possible to describe the system with boolean variables? FBA A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

9 Boolean activity Coarse Grained dynamics Coarse Grained Dynamics Dynamical states on longer times scales than chemical processes Interested in states of the system satisfying minimal constraints inspired by the study of the fluxes. Looking at the fluxes, many reactions are never functioning. Is it possible to describe the system with boolean variables? VN A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

10 Boolean activity Message passing Message Passing Constraints are written in a boolean form. We derived the equations and solved it by a message passing algorithm Solved on random reaction networks (topology similar to real network) A. Seganti, A. De Martino and F. Ricci-Tersenghi - Boolean constraint satisfaction problems for reaction networks JSTAT (213), P99 A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

11 Boolean activity Message passing Message Passing Constraints are written in a boolean form. We derived the equations and solved it by a message passing algorithm Solved on random reaction networks (topology similar to real network) A. Seganti, A. De Martino and F. Ricci-Tersenghi - Boolean constraint satisfaction problems for reaction networks JSTAT (213), P99 A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

12 Boolean activity Message passing Message Passing Constraints are written in a boolean form. We derived the equations and solved it by a message passing algorithm Solved on random reaction networks (topology similar to real network) A. Seganti, A. De Martino and F. Ricci-Tersenghi - Boolean constraint satisfaction problems for reaction networks JSTAT (213), P99 A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

13 Boolean activity Message passing Message Passing Constraints are written in a boolean form. We derived the equations and solved it by a message passing algorithm Solved on random reaction networks (topology similar to real network) A. Seganti, A. De Martino and F. Ricci-Tersenghi - Boolean constraint satisfaction problems for reaction networks JSTAT (213), P99 A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

14 Boolean activity Results on Random Graphs Results on Random Graphs θ is used to vary the fraction of reactions functioning. A typical phase transition is observed. It is possible to understand the type of the phase transition by looking at θ + and θ <µ >.6.4 λ=1, q =.8 S-MB + S-MB + H-MB + H-MB + <ν >.6.4 λ=1, q =.8 S-MB + S-MB + H-MB + H-MB θ θ A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

15 Boolean activity Results on Random Graphs Results on Random Graphs θ is used to vary the fraction of reactions functioning. A typical phase transition is observed. It is possible to understand the type of the phase transition by looking at θ + and θ. Hard-MB, θ + Soft-MB, θ + Soft-MB, θ - Hard-MB, θ - Hard-MB, θ + Soft-MB, θ + Soft-MB, θ - Hard-MB, θ q λ q λ A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

16 Boolean activity The Mean Field Approximation The Mean Field Approximation The Mean Field Approximation (MF) of VN model is another known biological approach: Network Expansion In the random case it is possible to see that MF solutions are a subset of the complete problem step 1 step 2 step 3 step 4 A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

17 Boolean activity The Mean Field Approximation The Mean Field Approximation The Mean Field Approximation (MF) of VN model is another known biological approach: Network Expansion In the random case it is possible to see that MF solutions are a subset of the complete problem <ν> + <ν> MAX + <ν> + <ν> MAX MF <ν> <ν> + <ν> MAX + <ν> + <ν> MAX MF <ν>.6.6 <ν> <ν> <µ> <µ> A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

18 Real network Hypothesis on the real network The hypothesis In real networks some hypothesis have to be made: All reactions can take place all metabolites are accessible (well mixed reactors) infinite enzymes no external regulation The direction of all the reactions is given 242 reversible reactions 565 irreversible reactions 7 uptakes A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

19 Real network Mean Field Solutions The solutions for the metabolites 6 5 #metabolites on at convergence (scope) #metabolites on at t= (seed) A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

20 Real network Mean Field Solutions The solutions for the reactions.1.8 θ=.5 θ=1 θ=1.5 θ=2 θ=2.5 θ.1.8 ALL θ.6.6 freq freq REA ON REA ON A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

21 Real network Correlation Matrix Correlation Matrix We focused on the reactions (without reversed). We defined a correlation matrix : C ij = ν i ν j + (1 ν i )(1 ν j ). ν i = 1() if reaction i is (not) operating A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

22 Real network Correlation Matrix Correlation Matrix We focused on the reactions (without reversed). We defined a correlation matrix : C ij = ν i ν j + (1 ν i )(1 ν j ). ν i = 1() if reaction i is (not) operating module sizes module sizes MLM NSP OXP PPB PPP PTR PUT PYR TCA TLM TRA TTP UNA VLI MGO AAM ACM ANA APM CEB CPG CYS FOL GLU GLY GOX GSM HISMET MLM NSP OXP PPB PPP PTR PUT PYR TCA TLM TRA TTP UNA VLI MGO AAM ACM ANA APM CEB CPG CYS FOL GLU GLY GOX GSM HISMET A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

23 Real network Role of the modules Are the modules really functional? A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

24 Real network Preliminary results Solution on E.Coli metabolic network (complete case) 1 VN <µ> + + BP <ν> + + BP θ θ 1 FBA <µ> BP + BP <ν> BP + BP θ θ A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

25 Conclusions Conclusions Modelization of metabolism in term of constraint satisfaction problem. Solved the problem on random system and understood the phase space organization. Applied the model to the real system. Modularization of the MF solutions seems correlated with the function. Preliminary solutions using the complete algorithm are promising. Work in progress: Introduction of reversibility. Connection with flux analysis/experiments. Modularization of complete problem solutions. A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

26 Conclusions Conclusions Modelization of metabolism in term of constraint satisfaction problem. Solved the problem on random system and understood the phase space organization. Applied the model to the real system. Modularization of the MF solutions seems correlated with the function. Preliminary solutions using the complete algorithm are promising. Work in progress: Introduction of reversibility. Connection with flux analysis/experiments. Modularization of complete problem solutions. A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

27 Last Conclusions Thank you for your attention. A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

28 Conclusions The Network of Ecoli # metabolites 1 1 in Degreee out Degree # reactions in Degree out Degree degree degree A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

29 The Network of Ecoli II Conclusions The stoichiometric matrix A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

30 Conclusions Finding the modules Take the correlation matrix Choose a cutoff ( C) Make an adiacency matrix: A ij = 1 if C ij > C, otherwise Find the connected components in this correlation network A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

31 Conclusions Finding the modules Take the correlation matrix Choose a cutoff ( C) Make an adiacency matrix: A ij = 1 if C ij > C, otherwise Find the connected components in this correlation network A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

32 Conclusions Finding the modules Take the correlation matrix Choose a cutoff ( C) Make an adiacency matrix: A ij = 1 if C ij > C, otherwise Find the connected components in this correlation network A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

33 Conclusions Finding the modules Take the correlation matrix Choose a cutoff ( C) Make an adiacency matrix: A ij = 1 if C ij > C, otherwise Find the connected components in this correlation network A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

34 Conclusions Choosing the cutoff Which is the right cutoff to search for the modules? It is possible to find it using an entropy measure M. Marsili, I. Mastromatteo, Y. Roudi, Arxiv: (213). 4 y=x 4 y=x A. Seganti (Università La Sapienza) CSPs for metabolic networks October 14, / 22

Genomics, Computing, Economics & Society

Genomics, Computing, Economics & Society Genomics, Computing, Economics & Society 10 AM Thu 27-Oct 2005 week 6 of 14 MIT-OCW Health Sciences & Technology 508/510 Harvard Biophysics 101 Economics, Public Policy, Business, Health Policy Class outline

More information

Flux balance analysis in metabolic networks

Flux balance analysis in metabolic networks Flux balance analysis in metabolic networks Lecture notes by Eran Eden, https://systemsbiology.usu.edu/documents/flux%20balance%20analysis%20overview%20-%202016.pdf additional slides by B. Palsson from

More information

Basic modeling approaches for biological systems. Mahesh Bule

Basic modeling approaches for biological systems. Mahesh Bule Basic modeling approaches for biological systems Mahesh Bule The hierarchy of life from atoms to living organisms Modeling biological processes often requires accounting for action and feedback involving

More information

Systems II. Metabolic Cycles

Systems II. Metabolic Cycles Systems II Metabolic Cycles Overview Metabolism is central to cellular functioning Maintenance of mass and energy requirements for the cell Breakdown of toxic compounds Consists of a number of major pathways

More information

Stoichiometric analysis of metabolic networks

Stoichiometric analysis of metabolic networks 1 SGN-6156 Computational systems biology II Antti Larjo antti.larjo@tut.fi Computational Systems Biology group 30.4.2008 30.4.2008 2 Contents Networks in cells Metabolism Metabolic networks and pathways

More information

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models

FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models FUNDAMENTALS of SYSTEMS BIOLOGY From Synthetic Circuits to Whole-cell Models Markus W. Covert Stanford University 0 CRC Press Taylor & Francis Group Boca Raton London New York Contents /... Preface, xi

More information

V15 Flux Balance Analysis Extreme Pathways

V15 Flux Balance Analysis Extreme Pathways V15 Flux Balance Analysis Extreme Pathways Stoichiometric matrix S: m n matrix with stochiometries of the n reactions as columns and participations of m metabolites as rows. The stochiometric matrix is

More information

Integrated Knowledge-based Reverse Engineering of Metabolic Pathways

Integrated Knowledge-based Reverse Engineering of Metabolic Pathways Integrated Knowledge-based Reverse Engineering of Metabolic Pathways Shuo-Huan Hsu, Priyan R. Patkar, Santhoi Katare, John A. Morgan and Venkat Venkatasubramanian School of Chemical Engineering, Purdue

More information

Predicting rice (Oryza sativa) metabolism

Predicting rice (Oryza sativa) metabolism Predicting rice (Oryza sativa) metabolism Sudip Kundu Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, WB, India. skbmbg@caluniv.ac.in Collaborators: Mark G Poolman

More information

New Results on Energy Balance Analysis of Metabolic Networks

New Results on Energy Balance Analysis of Metabolic Networks New Results on Energy Balance Analysis of Metabolic Networks Qinghua Zhou 1, Simon C.K. Shiu 2,SankarK.Pal 3,andYanLi 1 1 College of Mathematics and Computer Science, Hebei University, Baoding City 071002,

More information

Chapter 7: Metabolic Networks

Chapter 7: Metabolic Networks Chapter 7: Metabolic Networks 7.1 Introduction Prof. Yechiam Yemini (YY) Computer Science epartment Columbia University Introduction Metabolic flux analysis Applications Overview 2 1 Introduction 3 Metabolism:

More information

Stoichiometric network analysis

Stoichiometric network analysis Stoichiometric network analysis In stoichiometric analysis of metabolic networks, one concerns the effect of the network structure on the behaviour and capabilities of metabolism. Questions that can be

More information

V19 Metabolic Networks - Overview

V19 Metabolic Networks - Overview V19 Metabolic Networks - Overview There exist different levels of computational methods for describing metabolic networks: - stoichiometry/kinetics of classical biochemical pathways (glycolysis, TCA cycle,...

More information

Written Exam 15 December Course name: Introduction to Systems Biology Course no

Written Exam 15 December Course name: Introduction to Systems Biology Course no Technical University of Denmark Written Exam 15 December 2008 Course name: Introduction to Systems Biology Course no. 27041 Aids allowed: Open book exam Provide your answers and calculations on separate

More information

Introduction to Bioinformatics

Introduction to Bioinformatics Systems biology Introduction to Bioinformatics Systems biology: modeling biological p Study of whole biological systems p Wholeness : Organization of dynamic interactions Different behaviour of the individual

More information

V14 extreme pathways

V14 extreme pathways V14 extreme pathways A torch is directed at an open door and shines into a dark room... What area is lighted? Instead of marking all lighted points individually, it would be sufficient to characterize

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 273 Analogizing And Investigating Some Applications of Metabolic Pathway Analysis Methods Gourav Mukherjee 1,

More information

The architecture of complexity: the structure and dynamics of complex networks.

The architecture of complexity: the structure and dynamics of complex networks. SMR.1656-36 School and Workshop on Structure and Function of Complex Networks 16-28 May 2005 ------------------------------------------------------------------------------------------------------------------------

More information

Flux Balance Analysis

Flux Balance Analysis Lecture 10: Flux Balance Analysis Tue 7 March 2006 with the collaboration of Luna De Ferrari 1 Images and text from: E. Klipp, Systems Biology in Practice, Wiley-VCH, 2005 Ch 5 Edwards JS, Palsson BO,

More information

Network motifs in the transcriptional regulation network (of Escherichia coli):

Network motifs in the transcriptional regulation network (of Escherichia coli): Network motifs in the transcriptional regulation network (of Escherichia coli): Janne.Ravantti@Helsinki.Fi (disclaimer: IANASB) Contents: Transcription Networks (aka. The Very Boring Biology Part ) Network

More information

Metabolic Control Analysis (MCA)

Metabolic Control Analysis (MCA) Metabolic Control Analysis (MCA) The restriction imposed by MCA is that we only study effects of small perturbations: what will happen if we nudge the metabolic system slightly of its current steady state

More information

THE PHYSICS OF COUNTING AND SAMPLING ON RANDOM INSTANCES. Lenka Zdeborová

THE PHYSICS OF COUNTING AND SAMPLING ON RANDOM INSTANCES. Lenka Zdeborová THE PHYSICS OF COUNTING AND SAMPLING ON RANDOM INSTANCES Lenka Zdeborová (CEA Saclay and CNRS, France) MAIN CONTRIBUTORS TO THE PHYSICS UNDERSTANDING OF RANDOM INSTANCES Braunstein, Franz, Kabashima, Kirkpatrick,

More information

Modeling Biological Networks

Modeling Biological Networks Modeling Biological Networks Dr. Carlo Cosentino School of Computer and Biomedical Engineering Department of Experimental and Clinical Medicine Università degli Studi Magna Graecia Catanzaro, Italy carlo.cosentino@unicz.it

More information

arxiv: v1 [q-bio.mn] 30 Dec 2008

arxiv: v1 [q-bio.mn] 30 Dec 2008 arxiv:0812.5094v1 [q-bio.mn] 30 Dec 2008 Study of the Structure and Dynamics of Complex Biological Networks A thesis submitted for the degree of Doctor of Philosophy in the Faculty of Science Areejit Samal

More information

Matteo Figliuzzi

Matteo Figliuzzi Supervisors: Prof. Andrea De Martino, Prof. Enzo Marinari Dottorato in sica, XXVI ciclo (N,1) model (N,M) model 25-10-2013 Systems Biology & Networks (N,1) model (N,M) model Arabidopsis regulatory network

More information

Metabolic modelling. Metabolic networks, reconstruction and analysis. Esa Pitkänen Computational Methods for Systems Biology 1 December 2009

Metabolic modelling. Metabolic networks, reconstruction and analysis. Esa Pitkänen Computational Methods for Systems Biology 1 December 2009 Metabolic modelling Metabolic networks, reconstruction and analysis Esa Pitkänen Computational Methods for Systems Biology 1 December 2009 Department of Computer Science, University of Helsinki Metabolic

More information

Overview of Kinetics

Overview of Kinetics Overview of Kinetics [P] t = ν = k[s] Velocity of reaction Conc. of reactant(s) Rate of reaction M/sec Rate constant sec -1, M -1 sec -1 1 st order reaction-rate depends on concentration of one reactant

More information

Supplementary Figure 3

Supplementary Figure 3 Supplementary Figure 3 a 1 (i) (ii) (iii) (iv) (v) log P gene Q group, % ~ ε nominal 2 1 1 8 6 5 A B C D D' G J L M P R U + + ε~ A C B D D G JL M P R U -1 1 ε~ (vi) Z group 2 1 1 (vii) (viii) Z module

More information

Metabolic Network Analysis

Metabolic Network Analysis Metabolic Network Analysis Christoph Flamm Institute for Theoretical Chemistry University Vienna Harvest Network Course, Brno, April 1-6, 2011 The Systems Biology Modelling Space Network Models Level of

More information

Description of the algorithm for computing elementary flux modes

Description of the algorithm for computing elementary flux modes Description of the algorithm for computing elementary flux modes by Stefan Schuster, Thomas Dandekar,, and David Fell Department of Bioinformatics, Max Delbrück Centre for Molecular Medicine D-9 Berlin-Buch,

More information

V14 Graph connectivity Metabolic networks

V14 Graph connectivity Metabolic networks V14 Graph connectivity Metabolic networks In the first half of this lecture section, we use the theory of network flows to give constructive proofs of Menger s theorem. These proofs lead directly to algorithms

More information

A First Course on Kinetics and Reaction Engineering Example 1.2

A First Course on Kinetics and Reaction Engineering Example 1.2 Example 1.2 Problem Purpose This example shows how to determine when it is permissible to choose a basis for your calculations. It also illustrates how to use reaction progress variables and the initial

More information

Computational Systems Biology

Computational Systems Biology Computational Systems Biology Vasant Honavar Artificial Intelligence Research Laboratory Bioinformatics and Computational Biology Graduate Program Center for Computational Intelligence, Learning, & Discovery

More information

Structural analysis in stoichiometric and signal flow networks

Structural analysis in stoichiometric and signal flow networks Structural analysis in stoichiometric and signal flow networks Magdalena San Román Laboratorio de Biología de Sistemas Facultad de Ciencias Universidad de la República Montevideo, Uruguay msanroman@fcien.edu.uy

More information

Phase Transitions (and their meaning) in Random Constraint Satisfaction Problems

Phase Transitions (and their meaning) in Random Constraint Satisfaction Problems International Workshop on Statistical-Mechanical Informatics 2007 Kyoto, September 17 Phase Transitions (and their meaning) in Random Constraint Satisfaction Problems Florent Krzakala In collaboration

More information

Chapter 8: An Introduction to Metabolism

Chapter 8: An Introduction to Metabolism AP Biology Reading Guide Name Chapter 8: An Introduction to Metabolism Concept 8.1 An organism s metabolism transforms matter and energy, subject to the laws of thermodynamics 1. Define metabolism. 2.

More information

Unravelling the biochemical reaction kinetics from time-series data

Unravelling the biochemical reaction kinetics from time-series data Unravelling the biochemical reaction kinetics from time-series data Santiago Schnell Indiana University School of Informatics and Biocomplexity Institute Email: schnell@indiana.edu WWW: http://www.informatics.indiana.edu/schnell

More information

Efficient inference of interactions from non-equilibrium data and application to multi-electrode neural recordings

Efficient inference of interactions from non-equilibrium data and application to multi-electrode neural recordings Efficient inference of interactions from non-equilibrium data and application to multi-electrode neural recordings ESR: 1 Supervisor: Dr. Yasser Roudi 1, 2 1 Kavli Institute for Systems Neuroscience, Trondheim

More information

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 6

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 6 ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 6 KINETICS OF ENZYME CATALYSED REACTIONS Having understood the chemical and

More information

Reversible reactions

Reversible reactions Reversible reactions A reversible enzymic reaction (e.g. the conversion of glucose to fructose, catalysed by glucose isomerase) may be represented by the following scheme where the reaction goes through

More information

Statistical mechanics of lymphocyte networks modelled with slow and fast variables

Statistical mechanics of lymphocyte networks modelled with slow and fast variables modelled with slow and fast variables Institute for Mathematical and Molecular Biomedicine, King s College London. June 17, 2016 Outline Adaptive Immune System Motivation Dynamics of clonal expansion Statistical

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

Quantifying thermodynamic bottlenecks of metabolic pathways. Elad Noor TAU, October 2012

Quantifying thermodynamic bottlenecks of metabolic pathways. Elad Noor TAU, October 2012 Quantifying thermodynamic bottlenecks of metabolic pathways Elad Noor TAU, October 2012 Hulda S. Haraldsdóttir Ronan M. T. Fleming Wolfram Liebermeister Ron Milo Arren Bar-Even Avi Flamholz Why are there

More information

Thermodynamic principles governing metabolic operation : inference, analysis, and prediction Niebel, Bastian

Thermodynamic principles governing metabolic operation : inference, analysis, and prediction Niebel, Bastian University of Groningen Thermodynamic principles governing metabolic operation : inference, analysis, and prediction Niebel, Bastian IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

Regulation of metabolism

Regulation of metabolism Regulation of metabolism So far in this course we have assumed that the metabolic system is in steady state For the rest of the course, we will abandon this assumption, and look at techniques for analyzing

More information

Bioinformatics: Network Analysis

Bioinformatics: Network Analysis Bioinformatics: Network Analysis Flux Balance Analysis and Metabolic Control Analysis COMP 572 (BIOS 572 / BIOE 564) - Fall 2013 Luay Nakhleh, Rice University 1 Flux Balance Analysis (FBA) Flux balance

More information

Critical properties of disordered XY model on sparse random graphs

Critical properties of disordered XY model on sparse random graphs Manuale di Identità Visiva Sapienza Università di Roma Sapienza Università di Roma Scuola di Dottorato Vito Volterra Dipartimento di Fisica Critical properties of disordered XY model on sparse random graphs

More information

Stoichiometric vector and matrix

Stoichiometric vector and matrix Stoichiometric vector and matrix The stoichiometric coefficients of a reaction are collected to a vector s r In s r there is a one position for each metabolite in the metabolic system, and the stoichiometric

More information

Modeling (bio-)chemical reaction networks

Modeling (bio-)chemical reaction networks Mathematical iology: Metabolic Network nalysis Interdisciplinary lecture series for ioinformatics, Mathematics, iology and/or Life Science & Technology dr. Sander Hille shille@math.leidenuniv.nl http://pub.math.leidenuniv.nl/~hillesc

More information

Metabolic Flux-Based Modularity using Shortest Retroactive distances

Metabolic Flux-Based Modularity using Shortest Retroactive distances Sridharan et al. BMC Systems Biology 2012, 6:155 RESEARCH ARTICLE Open Access Metabolic Flux-Based Modularity using Shortest Retroactive distances Gautham Vivek Sridharan 1, Michael Yi 1, Soha Hassoun

More information

Learning the dynamics of biological networks

Learning the dynamics of biological networks Learning the dynamics of biological networks Thierry Mora ENS Paris A.Walczak Università Sapienza Rome A. Cavagna I. Giardina O. Pohl E. Silvestri M.Viale Aberdeen University F. Ginelli Laboratoire de

More information

Definition: A "system" of equations is a set or collection of equations that you deal with all together at once.

Definition: A system of equations is a set or collection of equations that you deal with all together at once. System of Equations Definition: A "system" of equations is a set or collection of equations that you deal with all together at once. There is both an x and y value that needs to be solved for Systems

More information

Cellular Systems Biology or Biological Network Analysis

Cellular Systems Biology or Biological Network Analysis Cellular Systems Biology or Biological Network Analysis Joel S. Bader Department of Biomedical Engineering Johns Hopkins University (c) 2012 December 4, 2012 1 Preface Cells are systems. Standard engineering

More information

IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology

IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology Chiu Fan Lee Department of Bioengineering, Imperial College London, UK Biology inspires new physics Biology Physics

More information

Persistence and Stationary Distributions of Biochemical Reaction Networks

Persistence and Stationary Distributions of Biochemical Reaction Networks Persistence and Stationary Distributions of Biochemical Reaction Networks David F. Anderson Department of Mathematics University of Wisconsin - Madison Discrete Models in Systems Biology SAMSI December

More information

Winter School in Mathematical & Computational Biology

Winter School in Mathematical & Computational Biology 1 Network reconstruction, topology and feasible solution space From component to systems biology Component biology Systems biology Component view Systems view Needed homeostasis Function S+E X E+P Reaction

More information

Metabolic Networks analysis

Metabolic Networks analysis Metabolic Networks analysis Department of Computer Science, University of Verona, Italy Dynamics of membrane systems Courtesy of prof. Manca, Univ. VR, IT Metabolic Systems Dynamics of membrane systems

More information

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University NATIONAL TAIWAN UNIVERSITY, COLLOQUIUM, MARCH 10, 2015 Quantum and classical annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Cheng-Wei Liu (BU) Anatoli Polkovnikov (BU)

More information

Resource allocation in metabolic networks: kinetic optimization and approximations by FBA

Resource allocation in metabolic networks: kinetic optimization and approximations by FBA Resource allocation in metabolic networks: kinetic optimization and approximations by FBA Stefan Müller *1, Georg Regensburger *, Ralf Steuer + * Johann Radon Institute for Computational and Applied Mathematics,

More information

Control Of Metabolic Systems Modeled with Timed Continuous Petri Nets

Control Of Metabolic Systems Modeled with Timed Continuous Petri Nets Control Of Metabolic Systems Modeled with Timed Continuous Petri Nets Roberto Ross-León Antonio Ramirez-Treviño José Alejandro Morales Javier Ruiz-León June 14, 2010 Outline 1 Introduction Introduction

More information

Satisfying Flux Balance and Mass-Action Kinetics in a Network of Biochemical Reactions

Satisfying Flux Balance and Mass-Action Kinetics in a Network of Biochemical Reactions Satisfying Flux Balance and Mass-Action Kinetics in a Network of Biochemical Reactions Speakers Senior Personnel Collaborators Michael Saunders and Ines Thiele Ronan Fleming, Bernhard Palsson, Yinyu Ye

More information

CYCLIC UNIVERSES FROM TORUS GEOMETRY

CYCLIC UNIVERSES FROM TORUS GEOMETRY COSMOLOGY CYCLIC UNIVERSES FROM TORUS GEOMETRY R. MURDZEK Physics Department, Al. I. Cuza University rmurdzek@yahoo.com Received April 27, 2006 The models of cyclic universes emerge in a natural way from

More information

Structures and Hyperstructures in Metabolic Networks

Structures and Hyperstructures in Metabolic Networks Structures and Hyperstructures in Metabolic Networks Alberto Marchetti-Spaccamela (Sapienza U. Rome) joint work with V. Acuña, L.Cottret, P. Crescenzi, V. Lacroix, A. Marino, P. Milreu, A. Ribichini, MF.

More information

Program for the rest of the course

Program for the rest of the course Program for the rest of the course 16.4 Enzyme kinetics 17.4 Metabolic Control Analysis 19.4. Exercise session 5 23.4. Metabolic Control Analysis, cont. 24.4 Recap 27.4 Exercise session 6 etabolic Modelling

More information

Analysis and Simulation of Biological Systems

Analysis and Simulation of Biological Systems Analysis and Simulation of Biological Systems Dr. Carlo Cosentino School of Computer and Biomedical Engineering Department of Experimental and Clinical Medicine Università degli Studi Magna Graecia Catanzaro,

More information

Parameter estimation using simulated annealing for S- system models of biochemical networks. Orland Gonzalez

Parameter estimation using simulated annealing for S- system models of biochemical networks. Orland Gonzalez Parameter estimation using simulated annealing for S- system models of biochemical networks Orland Gonzalez Outline S-systems quick review Definition of the problem Simulated annealing Perturbation function

More information

Basic Synthetic Biology circuits

Basic Synthetic Biology circuits Basic Synthetic Biology circuits Note: these practices were obtained from the Computer Modelling Practicals lecture by Vincent Rouilly and Geoff Baldwin at Imperial College s course of Introduction to

More information

For logistic growth, we have

For logistic growth, we have Dr. Lozada Econ. 5250 For logistic growth, we have. Harvest H depends on effort E and on X. With harvesting, Ẋ = F (X) H. Suppose that for a fixed level of effort E, H depends linearly on X: If E increases,

More information

A game-theoretical approach to the analysis of microbial metabolic pathways

A game-theoretical approach to the analysis of microbial metabolic pathways A game-theoretical approach to the analysis of microbial metabolic pathways Stefan Schuster Dept. of Bioinformatics Friedrich Schiller University Jena, Germany Introduction Widely used hypothesis: During

More information

Using mathematical models & approaches to quantify BRAIN (dynamic) Positron Emission Tomography (PET) data

Using mathematical models & approaches to quantify BRAIN (dynamic) Positron Emission Tomography (PET) data Using mathematical models & approaches to quantify BRAIN (dynamic) Positron Emission Tomography (PET) data Imaging Seminars Series Stony Brook University, Health Science Center Stony Brook, NY - January

More information

Erzsébet Ravasz Advisor: Albert-László Barabási

Erzsébet Ravasz Advisor: Albert-László Barabási Hierarchical Networks Erzsébet Ravasz Advisor: Albert-László Barabási Introduction to networks How to model complex networks? Clustering and hierarchy Hierarchical organization of cellular metabolism The

More information

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ . α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω Friday April 1 ± ǁ 1 Chapter 5. Photons: Covariant Theory 5.1. The classical fields 5.2. Covariant

More information

Dynamic modeling and analysis of cancer cellular network motifs

Dynamic modeling and analysis of cancer cellular network motifs SUPPLEMENTARY MATERIAL 1: Dynamic modeling and analysis of cancer cellular network motifs Mathieu Cloutier 1 and Edwin Wang 1,2* 1. Computational Chemistry and Bioinformatics Group, Biotechnology Research

More information

Grundlagen der Systembiologie und der Modellierung epigenetischer Prozesse

Grundlagen der Systembiologie und der Modellierung epigenetischer Prozesse Grundlagen der Systembiologie und der Modellierung epigenetischer Prozesse Sonja J. Prohaska Bioinformatics Group Institute of Computer Science University of Leipzig October 25, 2010 Genome-scale in silico

More information

Networks in systems biology

Networks in systems biology Networks in systems biology Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2017 M. Macauley (Clemson) Networks in systems

More information

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9 A First Course on Kinetics and Reaction Engineering Class 9 on Unit 9 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going A. Rate Expressions - 4. Reaction Rates and Temperature

More information

Structural Analysis of Expanding Metabolic Networks

Structural Analysis of Expanding Metabolic Networks Genome Informatics 15(1): 35 45 (24) 35 Structural Analysis of Expanding Metabolic Networks Oliver Ebenhöh oliver.ebenhoeh@rz.hu-berlin.de Reinhart Heinrich reinhart.heinrich@rz.hu-berlin.de Thomas Handorf

More information

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai

Network Biology: Understanding the cell s functional organization. Albert-László Barabási Zoltán N. Oltvai Network Biology: Understanding the cell s functional organization Albert-László Barabási Zoltán N. Oltvai Outline: Evolutionary origin of scale-free networks Motifs, modules and hierarchical networks Network

More information

About OMICS Group Conferences

About OMICS Group Conferences About OMICS Group OMICS Group International is an amalgamation of Open Access publications and worldwide international science conferences and events. Established in the year 27 with the sole aim of making

More information

Statistical Mechanics and Thermodynamics of Small Systems

Statistical Mechanics and Thermodynamics of Small Systems Statistical Mechanics and Thermodynamics of Small Systems Luca Cerino Advisors: A. Puglisi and A. Vulpiani Final Seminar of PhD course in Physics Cycle XXIX Rome, October, 26 2016 Outline of the talk 1.

More information

a systems approach to biology

a systems approach to biology a systems approach to biology jeremy gunawardena department of systems biology harvard medical school lecture 8 27 september 2011 4. metabolism, continued recap warning: a single number, like the CI or

More information

Cluster Expansion in the Canonical Ensemble

Cluster Expansion in the Canonical Ensemble Università di Roma Tre September 2, 2011 (joint work with Dimitrios Tsagkarogiannis) Background Motivation: phase transitions for a system of particles in the continuum interacting via a Kac potential,

More information

Global organization of metabolic fluxes in the bacterium, Escherichia coli

Global organization of metabolic fluxes in the bacterium, Escherichia coli Global organization of metabolic fluxes in the bacterium, Escherichia coli E. Almaas 1, B. Kovács 1,2, T. Vicsek 2, Z. N. Oltvai 3, A.-L. Barabási 1 1 Department of Physics, University of Notre Dame, Notre

More information

September 16, 2004 The NEURON Book: Chapter 2

September 16, 2004 The NEURON Book: Chapter 2 Chapter 2 The ing perspective This and the following chapter deal with concepts that are not NEURON-specific but instead pertain equally well to any tools used for neural ing. Why? In order to achieve

More information

An Introduction to Metabolism

An Introduction to Metabolism Chapter 8 An Introduction to Metabolism PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from

More information

Bow-tie topological features of metabolic networks and the. functional significance

Bow-tie topological features of metabolic networks and the. functional significance Bow-tie topological features of metabolic networks and the functional significance ZHAO JING 1,2,4, TAO LIN 2, YU HONG 2, LUO JIAN-HUA 1,2, CAO Z. W. 2 and LI YIXUE 2,3,1 1 School of Life Sciences & Technology,

More information

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P

Enzyme Reactions. Lecture 13: Kinetics II Michaelis-Menten Kinetics. Margaret A. Daugherty Fall v = k 1 [A] E + S ES ES* EP E + P Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site

Michaelis-Menten Kinetics. Lecture 13: Kinetics II. Enzyme Reactions. Margaret A. Daugherty. Fall Substrates bind to the enzyme s active site Lecture 13: Kinetics II Michaelis-Menten Kinetics Margaret A. Daugherty Fall 2003 Enzyme Reactions E + S ES ES* EP E + P E = enzyme ES = enzyme-substrate complex ES* = enzyme/transition state complex EP

More information

Lecture notes for /12.586, Modeling Environmental Complexity. D. H. Rothman, MIT October 22, 2014

Lecture notes for /12.586, Modeling Environmental Complexity. D. H. Rothman, MIT October 22, 2014 Lecture notes for 12.086/12.586, Modeling Environmental Complexity D. H. Rothman, MIT October 22, 2014 Contents 1 Origin of biogeochemical cycles 1 1.1 The carbon cycle......................... 1 1.1.1

More information

Bioinformatics Advance Access published March 7, 2007

Bioinformatics Advance Access published March 7, 2007 Bioinformatics Advance Access published March 7, 27 teuer et al. Table 1. Main reactions of a model of the TCA cycle. The system consists of 16 reactions, including simplified overall reactions. ATP is

More information

Engineering Model Reduction and Entropy-based Lyapunov Functions in Chemical Reaction Kinetics

Engineering Model Reduction and Entropy-based Lyapunov Functions in Chemical Reaction Kinetics Entropy 2010, 12, 772-797; doi:10.3390/e12040772 Article OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Engineering Model Reduction and Entropy-based Lyapunov Functions in Chemical Reaction

More information

Energy and Cellular Metabolism

Energy and Cellular Metabolism 1 Chapter 4 About This Chapter Energy and Cellular Metabolism 2 Energy in biological systems Chemical reactions Enzymes Metabolism Figure 4.1 Energy transfer in the environment Table 4.1 Properties of

More information

biologically-inspired computing lecture 12 Informatics luis rocha 2015 INDIANA UNIVERSITY biologically Inspired computing

biologically-inspired computing lecture 12 Informatics luis rocha 2015 INDIANA UNIVERSITY biologically Inspired computing lecture 12 -inspired Sections I485/H400 course outlook Assignments: 35% Students will complete 4/5 assignments based on algorithms presented in class Lab meets in I1 (West) 109 on Lab Wednesdays Lab 0

More information

Functional Characterization and Topological Modularity of Molecular Interaction Networks

Functional Characterization and Topological Modularity of Molecular Interaction Networks Functional Characterization and Topological Modularity of Molecular Interaction Networks Jayesh Pandey 1 Mehmet Koyutürk 2 Ananth Grama 1 1 Department of Computer Science Purdue University 2 Department

More information

Conservation and dissipation principles for PDEs

Conservation and dissipation principles for PDEs Conservation and dissipation principles for PDEs Modeling through conservation laws The notion of conservation - of number, energy, mass, momentum - is a fundamental principle that can be used to derive

More information

CS224W: Social and Information Network Analysis

CS224W: Social and Information Network Analysis CS224W: Social and Information Network Analysis Reaction Paper Adithya Rao, Gautam Kumar Parai, Sandeep Sripada Keywords: Self-similar networks, fractality, scale invariance, modularity, Kronecker graphs.

More information

MODELLING AND CONTROL OF ENVIRONMENTAL SYSTEMS A.A

MODELLING AND CONTROL OF ENVIRONMENTAL SYSTEMS A.A Università di Padova SECOND CYCLE DEGREE PROGRAMME (MSC LEVEL) IN ENVIRONMENTAL ENGINEERING MODELLING AND CONTROL OF ENVIRONMENTAL SYSTEMS A.A. 2014-2015 Modelling procedure Problem definition Model conceptualization

More information

Stochastic analysis of biochemical reaction networks with absolute concentration robustness

Stochastic analysis of biochemical reaction networks with absolute concentration robustness Stochastic analysis of biochemical reaction networks with absolute concentration robustness David F. Anderson anderson@math.wisc.edu Department of Mathematics University of Wisconsin - Madison Boston University

More information

AMSC 663 Project Proposal: Upgrade to the GSP Gyrokinetic Code

AMSC 663 Project Proposal: Upgrade to the GSP Gyrokinetic Code AMSC 663 Project Proposal: Upgrade to the GSP Gyrokinetic Code George Wilkie (gwilkie@umd.edu) Supervisor: William Dorland (bdorland@umd.edu) October 11, 2011 Abstract Simulations of turbulent plasma in

More information

Carbon labeling for Metabolic Flux Analysis. Nicholas Wayne Henderson Computational and Applied Mathematics. Abstract

Carbon labeling for Metabolic Flux Analysis. Nicholas Wayne Henderson Computational and Applied Mathematics. Abstract Carbon labeling for Metabolic Flux Analysis Nicholas Wayne Henderson Computational and Applied Mathematics Abstract Metabolic engineering is rapidly growing as a discipline. Applications in pharmaceuticals,

More information