Some Examples of Limits of Kleinian Groups

Size: px
Start display at page:

Download "Some Examples of Limits of Kleinian Groups"

Transcription

1 Some Examples of Limits of Kleiia Groups Jeff Brock August 21, 2007 The goal of this lecture will be to exhibit the thick-thi decompositio for a collectio of examples of Kleiia groups. I this lecture, we ll demostrate how geometric limits, as opposed to algebraic limits, ca be a good tool to do this. The limitig pheomea that we would like to i this lecture discuss are the followig: 1. (Jørgese) A sequece of represetatio ρ : Z Isom + (H 3 ), where {ρ (Z)} coverges geometrically to a group isomorphic to Z Z 2. (Kerchoff-Thursto) A sequece of quasi-fuchsia groups give by iteratio of a Deh twist o a Bers slice, such that Q(X, T X) has o parabolics but coverges geometrically to a maifold with a rak two cusp. 3.(Jørgese-Thursto-Boaho-Otal) A sequece of groups Q that coverges geometrically to group whose quotiet maifold has ifiitely may cusps. This is doe by doig higher ad higher Deh twists o a sequece of curves. I each of these examples, the boudaries of the thi parts remai cotrolled, so the thick part of the maifold stabilizes. I the ext example this is ot the case. 4. A sequece of groups Q(X, φ X), where φ is a partially pseudo-aosov mappig class, i.e. whe φ restricted to some compoet or compoets is a pseudo-aosov, ad whe restricted to others is the idetity map. β α As a example of this last type, suppose φ were give by τ 1 α τ β, where α ad β are the 1

2 curves show above. The φ is a pseudo-aosov whe restricted to the oe-holed torus o the right of the above diagram. I this case, the covex core boudaries o oe side of the maifold stay close together, as there is a figure eight homotopy betwee them. To push curves through the other side of the maifold, however, takes a very log time, ad we see a large Margulis tube appearig. Short homotopy Margulis tube Schematic Picture Because the restrictio of φ to the right had side of the surface is pseudo-aosov, the right half of the maifold looks icreasigly like a cyclic cover of a maifold fiberig over the circle with puctured torus fiber. I the approximates, we therefore see a maifold whose geometric structure o oe side is roughly periodic. 2

3 Jørgeses example- As a first example, [ we retur to] the sequece of represetatios e ω sih(ω ρ : Z PSL 2 (C) defied by ρ (1) = ), where ω 0 e ω = 1 + πi 2. To uderstad the geometric limit of these represetatios, we fix attetio o a sigle poit x. For ay, the loxodromic elemet ρ (1) correspods to twistig x aroud a coe whose axis is the axis of ρ (1). As icreases, the axis of ρ (1) moves further ad further from x. The followig illustratio shows these coes for m >. ρ ()x ρ (m)x m ρ (2)x ρ (1)x x x ρ (1) ad ρ () traslate x by roughly the same amout, but i differet directios alog the coe. As icreases, the coe through x becomes very flat, ad i the limit we see a horosphere through x. This is clearly visible i the ball model, i which the regular eigborhood of the loxodromic axis is a baaa rather tha a coe, ad oe sees the edpoits of its axis comig closer ad closer together. x By the defiitio of the geometric limit, both lim ρ (1) ad lim ρ () must be i the geometric limit, so the geometric limit has two geerators. α(x) β(x) α=lim ρ (1) g x β=lim ρ () g Note that lim ρ () is ot i the algebraic limit, as the algebraic limit cosists of limits 3

4 of represetatios of fixed elemets. The algebraic limit is geerated by the limits of the geerators, so i this case is a cyclic group geerated by the sigle parabolic lim ρ (1). While the algebraic limit is isomorphic to the origial group, ad the geometric limit is ot, though the quotiet maifold of the geometric limit looks much more like the approximates tha the quotiet maifold of the algebraic limit. The Kerhoff-Thursto Example- I this example, we look at a sequece of quasi-fuchsia groups whose covex core boudaries have cotrolled geometry, but whose geometric limit develops a rak-two cusp i its iterior. Let X be a poit i the Teichmüller space of geus two surfaces, ad τ the elemet of the modular group give by Deh twistig aroud the curve show below. Cosider the sequece of quasi-fuchsia three maifolds Q(X, τ X) give by simultaeous uiformizatio of X ad τ X. This sequece sits i the Bers slice based at X, which is precompact i the algebraic topology. As a result, by passig to a subsequece we ca esure that Q(X, τ X) coverges to Q = H 3 /Γ A. 1 Let Γ G be the geometric limit of the groups Q(X, τ X), M G the quotiet maifold. Theorem: (Kerckhoff-Thursto) M G = S R 0 Missig Curve Oe sees a rak two cusp appear i the limit comig from a tubular eighborhood of the curve. π 1 (N ()) = Z Z, ad this gives a rak two parabolic subgroup of the geometric limit. 1 Actually, this sequece coverges without passig to subsequece. 4

5 To prove this theorem, we fix a set of geerators for the fudametal group of the surface ad cosider how τ acts o these geerators. We choose a basepoit o oe side of the curve, ad geerators as show below. α 1 α 2 τ α 1 1 α 2 β β 2 1 β 1 β 2 1 As a automorphism of the fudametal group, τ fixes α 1 ad β 1, but cojugates α 2 ad β 2 by. As Q(X, τ X) Q = H 3 /Γ A, we ca choose represetatios ρ : π 1 (S) Isom + (H 3 ) with Q(X, τ X) = H 3 /ρ (π 1 (S)) ad ρ (π 1 (S)) Γ A as goes to ifiity. A key trick i aalyzig limits of such iteratios is to otice that by precomposig the represetatio by a automorphism of the group, oe does ot chage the image Kleiia group. If ρ = ρ τ 1, the the images of ρ ad ρ are the same quasi-fuchsia group. This sequece is give by remarkig the iitial surface usig τ, so the correspodig maifold is Q(τ X, τ τ X) = Q(τ X, X). The Bers slice {Q(Y, X) Y Teich(S)} is also precompact, so agai we ca fid a sequece ρ that coverges algebraically. I chagig from the sequece ρ to the sequece ρ, we have shifted our attetio from oe side of the quasi-fuchsia maifold to the other, however as far as the images of these represetatios are cocered we have doe othig. We are lookig at the same group, we have simply chaged our perspective o which ed is twisted. As the sequece of groups is the same, their geometric limits are the same group Γ G. We already have a list of elemets that must be i the group Γ G, amely the limits of ρ () ρ (α 1 ) = ρ (α 1 ), ρ (β 1 ) = ρ (β 1 ) ρ (α 2 ), ρ (β 2 ) ρ (α 2 ) = ρ ( )ρ (α 2 )ρ ( ), ρ (β 2 ) = ρ ( )ρ (β 2 )ρ ( ) We claim that ρ ( ) also coverges to some Isom(H 3 ). To see this, otice that ρ ( ) seds the fixed poits of ρ (α 2 ) to the fixed poits of ρ (α 2 ), as if ρ (α 2 )x = x, the ρ (α 2 )(ρ ( )x) = (ρ (α 2 )ρ ( ))x = (ρ ( )ρ (α 2 ))x = ρ ( )x. I fact, the same argumet shows that for ay word w α 2, β 2, ρ ( ) seds the set of fixed poits of ρ (w) to the set of fixed poits for ρ (w). As α 2 ad β 2 geerate a rak-2 free group, there are ifiitely may boudary poits that are fixed by words w α 2, β 2. We ca therefore pick three words w 1, w 2 ad w 3 ad distict poits o the sphere at ifiity x 1, x 2 ad x 3 such that ρ (w 1 )x 1 = x 1, ρ (w 2 )x 2 = x 2 ad ρ (w 3 )x 3 = x 3. As goes to ifiity, 5

6 x i coverges to a fixed poit x i of ρ (w i ) ad ρ ( )x i coverges to a fixed poit y i of ρ (w i ). Thus lim ρ ( )x i = y i. This shows that ρ ( ) coverges to the uique Möbius trasformatio that seds x 1 y 1, x 2 y 2 ad x 3 y 3. As ρ ( ), is i Γ G by the defiitio of the geometric limit. We claim that is ot i the algebraic limit. Suppose it were, i.e. suppose there exists a elemet g such that lim ρ (g) =. The ρ (g) ρ ( ) = ρ (g ) id. By Gromov s compactess theorem (see exercises), the geometric limit is a discrete group, so there is some lower boud ɛ o the ijectivity radius of all elemets of Γ G. Thus if ɛ is the ijectivity radius of ρ (π 1 (S)), the ρ (π 1 (S)) Γ G implies that ɛ ɛ. I particular, for large eough, the ijectivity radius of elemets i ρ (π 1 (S)) is bouded below by ɛ/2. As ρ (g ) id, for sufficietly large ρ (g ) has ijectivity radius below ɛ/2, ad therefore equals the idetity. The represetatios ρ are faithful, however, so this is a cotradictio. We ca also show, ρ () = Z Z. The first thig to check is that these two elemets commute. ρ ( ) ad ρ () commute for all, so the limit of their commutator is the idetity. This shows that, ρ () = Z Z or, ρ () = Z. If the latter is the case, the i = ρ () j for some i ad j, so ρ ( i )ρ ( j ) = ρ ( i j ) id. Applyig the same argumet as before, we have that ρ ( i j ) is equal to the idetity for sufficietly large, which agai cotradicts the faithfuless of the represetatio. We ow kow that we have a rak two free abelia subgroup, which must correspod to a cusp i a hyperbolic maifold. Because is homotopic to the core curve of this cusp i the approximates, the same is true i the limit, so the quotiet of H 3 by the group geerated by the elemets we have foud so far is homeomorphic to S R {0}. Oe ca use the theory of Klei-Maskit combiatio to show that there are o other elemets i the geometric limit, but we wo t give the details of that here. A Example where the Geometric Limit is ot Fiitely Geerated- Let η ad be a pair of fillig curves, i.e. homeomorphic to a disjoit uio of disks. curves η ad such that S {η } is η The previous example dealt with simultaeous uiformizatio of a surface ad a re-markig of that surface by a Deh twist about a sigle curve. I this example, we will Deh twist 6

7 about a sequece of curves. Cosider the sequece of maifolds Q(X, τ τ η X), Q(X, τ 2 τ η 2 τ 2 τ η 2 X),..., Q(X, τ τ η τ τ η... τ τ η X),... }{{} These have a algebraic limit Q by the compactess of the closure of the Bers slice, but this algebraic limit gives very little iformatio about the approximates. As far as the algebraic limit is cocered oly the fial t is importat. This is because the image of ay curve uder the mappig class τ τ η τ τ η... τ τ η will look like a curve that is highly twisted about. The algebraic limit of this sequece will look like the algebraic limit i the Kerckhoff-Thursto example, so we see a cusp i the limit correspodig to. By performig the same remarkig trick as i the previous example, however, we ca brig differet twists i the sequece ito focus, e.g. the algebraic limit of the sequece Q(τ 1 X, τ η X), Q(τ 2 X, τη 2 τ 2 τ η 2 X),..., Q(τ 1 X, τη τ τ η... τ τ η X),... }{{} will have a cusp correspodig to a differet curve. Iteratig this remarkig trick, we ca see a whole sequece of cusps. Just like i the previous example, the topology of our surfaces is S R after fillig i some deleted curves, however ow this sequece of curves goes off to ifiity.... Limits with missig subsurfaces- We will ow see what happes whe we iterate a reducible mappig class. Let φ be a mappig class o a geus two surface whose restrictio to oe half of the surface is a psuedo-aosov ad whose restrictio to the other is the idetity. The sequece of maifolds Q(X, φ (X) coverges algebraically to a group Q that is partially degeerate, where some of the eds have short curves exitig them ad others do t. If we look at Q(X, φ (X)) for large, we see a bouded homotopy o oe side of the maifold, as the curves α 1 ad β 1 o oe covex core boudary are homotopic to their represetatives o the other side of the covex core. Ay homotopy betwee curves o the pseudo-aosov side of the maifold, however, takes loger ad loger to occur. Oe way to see this is to otice that the bouded legth curves o oe side of the maifold are α 2 ad β 2, ad the bouded legth curves o the other side are φ (α 2 ) ad φ (β 2 ). As φ (α 2 ) 7

8 ad φ (β 2 ) itersect α 2 ad β 2 a lot, the collar lemma gives that α 2 ad β 2 must be very log o the side where φ (α 2 ) ad φ (β 2 ) have bouded legth. The geometric limit of this sequece is homeomorphic to S R S, where, S is the subsurface o which φ acts as a pseudo-aosov. Geometrically what we see i the approximates is a Margulis tube appearig which gives oe half of the maifold room to spread out, as was described at the begiig of this talk. This Margulis tube is differet from those i the previous examples, because its boudary does ot have cotrolled geometry. For large, the boudary of the thi part of the maifold becomes very large. Because φ restricted to S is a pseudo-aosov, the side of the maifold correspodig to S looks more ad more like the Z cover of a maifold fiberig over the circle with fiber S. The limit therefore has a periodic geometric structure o this side. A more faithful geometric picture of this maifold is show below. As the above picture shows, the geometric limit has ew degeerate eds, which hits at the fact that geometric limits of quasi-fuchsia groups ca be quite geeral. 8

LECTURE 11: POSTNIKOV AND WHITEHEAD TOWERS

LECTURE 11: POSTNIKOV AND WHITEHEAD TOWERS LECTURE 11: POSTNIKOV AND WHITEHEAD TOWERS I the previous sectio we used the techique of adjoiig cells i order to costruct CW approximatios for arbitrary spaces Here we will see that the same techique

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

Lecture XVI - Lifting of paths and homotopies

Lecture XVI - Lifting of paths and homotopies Lecture XVI - Liftig of paths ad homotopies I the last lecture we discussed the liftig problem ad proved that the lift if it exists is uiquely determied by its value at oe poit. I this lecture we shall

More information

Lecture Notes for Analysis Class

Lecture Notes for Analysis Class Lecture Notes for Aalysis Class Topological Spaces A topology for a set X is a collectio T of subsets of X such that: (a) X ad the empty set are i T (b) Uios of elemets of T are i T (c) Fiite itersectios

More information

Lecture 6: Integration and the Mean Value Theorem. slope =

Lecture 6: Integration and the Mean Value Theorem. slope = Math 8 Istructor: Padraic Bartlett Lecture 6: Itegratio ad the Mea Value Theorem Week 6 Caltech 202 The Mea Value Theorem The Mea Value Theorem abbreviated MVT is the followig result: Theorem. Suppose

More information

PRELIM PROBLEM SOLUTIONS

PRELIM PROBLEM SOLUTIONS PRELIM PROBLEM SOLUTIONS THE GRAD STUDENTS + KEN Cotets. Complex Aalysis Practice Problems 2. 2. Real Aalysis Practice Problems 2. 4 3. Algebra Practice Problems 2. 8. Complex Aalysis Practice Problems

More information

MA131 - Analysis 1. Workbook 3 Sequences II

MA131 - Analysis 1. Workbook 3 Sequences II MA3 - Aalysis Workbook 3 Sequeces II Autum 2004 Cotets 2.8 Coverget Sequeces........................ 2.9 Algebra of Limits......................... 2 2.0 Further Useful Results........................

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

The Boolean Ring of Intervals

The Boolean Ring of Intervals MATH 532 Lebesgue Measure Dr. Neal, WKU We ow shall apply the results obtaied about outer measure to the legth measure o the real lie. Throughout, our space X will be the set of real umbers R. Whe ecessary,

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

Analytic Continuation

Analytic Continuation Aalytic Cotiuatio The stadard example of this is give by Example Let h (z) = 1 + z + z 2 + z 3 +... kow to coverge oly for z < 1. I fact h (z) = 1/ (1 z) for such z. Yet H (z) = 1/ (1 z) is defied for

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Math 220A Fall 2007 Homework #2. Will Garner A

Math 220A Fall 2007 Homework #2. Will Garner A Math 0A Fall 007 Homewor # Will Garer Pg 3 #: Show that {cis : a o-egative iteger} is dese i T = {z œ : z = }. For which values of q is {cis(q): a o-egative iteger} dese i T? To show that {cis : a o-egative

More information

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 5: SINGULARITIES.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 5: SINGULARITIES. ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 5: SINGULARITIES. ANDREW SALCH 1. The Jacobia criterio for osigularity. You have probably oticed by ow that some poits o varieties are smooth i a sese somethig

More information

subcaptionfont+=small,labelformat=parens,labelsep=space,skip=6pt,list=0,hypcap=0 subcaption ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, 2/16/2016

subcaptionfont+=small,labelformat=parens,labelsep=space,skip=6pt,list=0,hypcap=0 subcaption ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, 2/16/2016 subcaptiofot+=small,labelformat=pares,labelsep=space,skip=6pt,list=0,hypcap=0 subcaptio ALGEBRAIC COMBINATORICS LECTURE 8 TUESDAY, /6/06. Self-cojugate Partitios Recall that, give a partitio λ, we may

More information

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4. 4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad

More information

FUCHSIAN GROUPS AND COMPACT HYPERBOLIC SURFACES

FUCHSIAN GROUPS AND COMPACT HYPERBOLIC SURFACES FUCHSIAN GROUPS AND COMPACT HYPERBOLIC SURFACES YVES BENOIST AND HEE OH Abstract. We preset a topological proof of the followig theorem of Beoist-Quit: for a fiitely geerated o-elemetary discrete subgroup

More information

MA131 - Analysis 1. Workbook 2 Sequences I

MA131 - Analysis 1. Workbook 2 Sequences I MA3 - Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................

More information

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t =

Problem Cosider the curve give parametrically as x = si t ad y = + cos t for» t» ß: (a) Describe the path this traverses: Where does it start (whe t = Mathematics Summer Wilso Fial Exam August 8, ANSWERS Problem 1 (a) Fid the solutio to y +x y = e x x that satisfies y() = 5 : This is already i the form we used for a first order liear differetial equatio,

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

Recitation 4: Lagrange Multipliers and Integration

Recitation 4: Lagrange Multipliers and Integration Math 1c TA: Padraic Bartlett Recitatio 4: Lagrage Multipliers ad Itegratio Week 4 Caltech 211 1 Radom Questio Hey! So, this radom questio is pretty tightly tied to today s lecture ad the cocept of cotet

More information

Mathematical Foundations -1- Sets and Sequences. Sets and Sequences

Mathematical Foundations -1- Sets and Sequences. Sets and Sequences Mathematical Foudatios -1- Sets ad Sequeces Sets ad Sequeces Methods of proof 2 Sets ad vectors 13 Plaes ad hyperplaes 18 Liearly idepedet vectors, vector spaces 2 Covex combiatios of vectors 21 eighborhoods,

More information

Lecture 4: Grassmannians, Finite and Affine Morphisms

Lecture 4: Grassmannians, Finite and Affine Morphisms 18.725 Algebraic Geometry I Lecture 4 Lecture 4: Grassmaias, Fiite ad Affie Morphisms Remarks o last time 1. Last time, we proved the Noether ormalizatio lemma: If A is a fiitely geerated k-algebra, the,

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Chapter 1. Complex Numbers. Dr. Pulak Sahoo

Chapter 1. Complex Numbers. Dr. Pulak Sahoo Chapter 1 Complex Numbers BY Dr. Pulak Sahoo Assistat Professor Departmet of Mathematics Uiversity Of Kalyai West Begal, Idia E-mail : sahoopulak1@gmail.com 1 Module-2: Stereographic Projectio 1 Euler

More information

Complex Analysis Spring 2001 Homework I Solution

Complex Analysis Spring 2001 Homework I Solution Complex Aalysis Sprig 2001 Homework I Solutio 1. Coway, Chapter 1, sectio 3, problem 3. Describe the set of poits satisfyig the equatio z a z + a = 2c, where c > 0 ad a R. To begi, we see from the triagle

More information

MA131 - Analysis 1. Workbook 10 Series IV

MA131 - Analysis 1. Workbook 10 Series IV MA131 - Aalysis 1 Workbook 10 Series IV Autum 2004 Cotets 4.19 Rearragemets of Series...................... 1 4.19 Rearragemets of Series If you take ay fiite set of umbers ad rearrage their order, their

More information

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction Chapter 2 Periodic poits of toral automorphisms 2.1 Geeral itroductio The automorphisms of the two-dimesioal torus are rich mathematical objects possessig iterestig geometric, algebraic, topological ad

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

Lecture 6: Integration and the Mean Value Theorem

Lecture 6: Integration and the Mean Value Theorem Math 8 Istructor: Padraic Bartlett Lecture 6: Itegratio ad the Mea Value Theorem Week 6 Caltech - Fall, 2011 1 Radom Questios Questio 1.1. Show that ay positive ratioal umber ca be writte as the sum of

More information

lim za n n = z lim a n n.

lim za n n = z lim a n n. Lecture 6 Sequeces ad Series Defiitio 1 By a sequece i a set A, we mea a mappig f : N A. It is customary to deote a sequece f by {s } where, s := f(). A sequece {z } of (complex) umbers is said to be coverget

More information

Sequences. A Sequence is a list of numbers written in order.

Sequences. A Sequence is a list of numbers written in order. Sequeces A Sequece is a list of umbers writte i order. {a, a 2, a 3,... } The sequece may be ifiite. The th term of the sequece is the th umber o the list. O the list above a = st term, a 2 = 2 d term,

More information

Metric Space Properties

Metric Space Properties Metric Space Properties Math 40 Fial Project Preseted by: Michael Brow, Alex Cordova, ad Alyssa Sachez We have already poited out ad will recogize throughout this book the importace of compact sets. All

More information

We will conclude the chapter with the study a few methods and techniques which are useful

We will conclude the chapter with the study a few methods and techniques which are useful Chapter : Coordiate geometry: I this chapter we will lear about the mai priciples of graphig i a dimesioal (D) Cartesia system of coordiates. We will focus o drawig lies ad the characteristics of the graphs

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

(for homogeneous primes P ) defining global complex algebraic geometry. Definition: (a) A subset V CP n is algebraic if there is a homogeneous

(for homogeneous primes P ) defining global complex algebraic geometry. Definition: (a) A subset V CP n is algebraic if there is a homogeneous Math 6130 Notes. Fall 2002. 4. Projective Varieties ad their Sheaves of Regular Fuctios. These are the geometric objects associated to the graded domais: C[x 0,x 1,..., x ]/P (for homogeeous primes P )

More information

N n (S n ) L n (Z) L 5 (Z),

N n (S n ) L n (Z) L 5 (Z), . Maifold Atlas : Regesburg Surgery Blocksemiar 202 Exotic spheres (Sebastia Goette).. The surgery sequece for spheres. Recall the log exact surgery sequece for spheres from the previous talk, with L +

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

Dirichlet s Theorem on Arithmetic Progressions

Dirichlet s Theorem on Arithmetic Progressions Dirichlet s Theorem o Arithmetic Progressios Athoy Várilly Harvard Uiversity, Cambridge, MA 0238 Itroductio Dirichlet s theorem o arithmetic progressios is a gem of umber theory. A great part of its beauty

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

j=1 dz Res(f, z j ) = 1 d k 1 dz k 1 (z c)k f(z) Res(f, c) = lim z c (k 1)! Res g, c = f(c) g (c)

j=1 dz Res(f, z j ) = 1 d k 1 dz k 1 (z c)k f(z) Res(f, c) = lim z c (k 1)! Res g, c = f(c) g (c) Problem. Compute the itegrals C r d for Z, where C r = ad r >. Recall that C r has the couter-clockwise orietatio. Solutio: We will use the idue Theorem to solve this oe. We could istead use other (perhaps

More information

f n (x) f m (x) < ɛ/3 for all x A. By continuity of f n and f m we can find δ > 0 such that d(x, x 0 ) < δ implies that

f n (x) f m (x) < ɛ/3 for all x A. By continuity of f n and f m we can find δ > 0 such that d(x, x 0 ) < δ implies that Lecture 15 We have see that a sequece of cotiuous fuctios which is uiformly coverget produces a limit fuctio which is also cotiuous. We shall stregthe this result ow. Theorem 1 Let f : X R or (C) be a

More information

The Pointwise Ergodic Theorem and its Applications

The Pointwise Ergodic Theorem and its Applications The Poitwise Ergodic Theorem ad its Applicatios Itroductio Peter Oberly 11/9/2018 Algebra has homomorphisms ad topology has cotiuous maps; i these otes we explore the structure preservig maps for measure

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

Disjoint set (Union-Find)

Disjoint set (Union-Find) CS124 Lecture 7 Fall 2018 Disjoit set (Uio-Fid) For Kruskal s algorithm for the miimum spaig tree problem, we foud that we eeded a data structure for maitaiig a collectio of disjoit sets. That is, we eed

More information

Lecture 2. The Lovász Local Lemma

Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

Chapter 0. Review of set theory. 0.1 Sets

Chapter 0. Review of set theory. 0.1 Sets Chapter 0 Review of set theory Set theory plays a cetral role i the theory of probability. Thus, we will ope this course with a quick review of those otios of set theory which will be used repeatedly.

More information

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations Differece Equatios to Differetial Equatios Sectio. Calculus: Areas Ad Tagets The study of calculus begis with questios about chage. What happes to the velocity of a swigig pedulum as its positio chages?

More information

PAPER : IIT-JAM 2010

PAPER : IIT-JAM 2010 MATHEMATICS-MA (CODE A) Q.-Q.5: Oly oe optio is correct for each questio. Each questio carries (+6) marks for correct aswer ad ( ) marks for icorrect aswer.. Which of the followig coditios does NOT esure

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

Beurling Integers: Part 2

Beurling Integers: Part 2 Beurlig Itegers: Part 2 Isomorphisms Devi Platt July 11, 2015 1 Prime Factorizatio Sequeces I the last article we itroduced the Beurlig geeralized itegers, which ca be represeted as a sequece of real umbers

More information

(ii) Two-permutations of {a, b, c}. Answer. (B) P (3, 3) = 3! (C) 3! = 6, and there are 6 items in (A). ... Answer.

(ii) Two-permutations of {a, b, c}. Answer. (B) P (3, 3) = 3! (C) 3! = 6, and there are 6 items in (A). ... Answer. SOLUTIONS Homewor 5 Due /6/19 Exercise. (a Cosider the set {a, b, c}. For each of the followig, (A list the objects described, (B give a formula that tells you how may you should have listed, ad (C verify

More information

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound

Lecture 27. Capacity of additive Gaussian noise channel and the sphere packing bound Lecture 7 Ageda for the lecture Gaussia chael with average power costraits Capacity of additive Gaussia oise chael ad the sphere packig boud 7. Additive Gaussia oise chael Up to this poit, we have bee

More information

Ma 530 Infinite Series I

Ma 530 Infinite Series I Ma 50 Ifiite Series I Please ote that i additio to the material below this lecture icorporated material from the Visual Calculus web site. The material o sequeces is at Visual Sequeces. (To use this li

More information

FIXED POINTS OF n-valued MULTIMAPS OF THE CIRCLE

FIXED POINTS OF n-valued MULTIMAPS OF THE CIRCLE FIXED POINTS OF -VALUED MULTIMAPS OF THE CIRCLE Robert F. Brow Departmet of Mathematics Uiversity of Califoria Los Ageles, CA 90095-1555 e-mail: rfb@math.ucla.edu November 15, 2005 Abstract A multifuctio

More information

ABOUT CHAOS AND SENSITIVITY IN TOPOLOGICAL DYNAMICS

ABOUT CHAOS AND SENSITIVITY IN TOPOLOGICAL DYNAMICS ABOUT CHAOS AND SENSITIVITY IN TOPOLOGICAL DYNAMICS EDUARD KONTOROVICH Abstract. I this work we uify ad geeralize some results about chaos ad sesitivity. Date: March 1, 005. 1 1. Symbolic Dyamics Defiitio

More information

MA 162B LECTURE NOTES: THURSDAY, JANUARY 15

MA 162B LECTURE NOTES: THURSDAY, JANUARY 15 MA 6B LECTURE NOTES: THURSDAY, JANUARY 5 Examples of Galois Represetatios: Complex Represetatios Regular Represetatio Cosider a complex represetatio ρ : Gal ( Q/Q ) GL d (C) with fiite image If we deote

More information

Solutions to home assignments (sketches)

Solutions to home assignments (sketches) Matematiska Istitutioe Peter Kumli 26th May 2004 TMA401 Fuctioal Aalysis MAN670 Applied Fuctioal Aalysis 4th quarter 2003/2004 All documet cocerig the course ca be foud o the course home page: http://www.math.chalmers.se/math/grudutb/cth/tma401/

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 Fuctioal Law of Large Numbers. Costructio of the Wieer Measure Cotet. 1. Additioal techical results o weak covergece

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 3 Solutions

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 3 Solutions Math 451: Euclidea ad No-Euclidea Geometry MWF 3pm, Gasso 204 Homework 3 Solutios Exercises from 1.4 ad 1.5 of the otes: 4.3, 4.10, 4.12, 4.14, 4.15, 5.3, 5.4, 5.5 Exercise 4.3. Explai why Hp, q) = {x

More information

Chapter 10: Power Series

Chapter 10: Power Series Chapter : Power Series 57 Chapter Overview: Power Series The reaso series are part of a Calculus course is that there are fuctios which caot be itegrated. All power series, though, ca be itegrated because

More information

Notes for Lecture 5. 1 Grover Search. 1.1 The Setting. 1.2 Motivation. Lecture 5 (September 26, 2018)

Notes for Lecture 5. 1 Grover Search. 1.1 The Setting. 1.2 Motivation. Lecture 5 (September 26, 2018) COS 597A: Quatum Cryptography Lecture 5 (September 6, 08) Lecturer: Mark Zhadry Priceto Uiversity Scribe: Fermi Ma Notes for Lecture 5 Today we ll move o from the slightly cotrived applicatios of quatum

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

Real Numbers R ) - LUB(B) may or may not belong to B. (Ex; B= { y: y = 1 x, - Note that A B LUB( A) LUB( B)

Real Numbers R ) - LUB(B) may or may not belong to B. (Ex; B= { y: y = 1 x, - Note that A B LUB( A) LUB( B) Real Numbers The least upper boud - Let B be ay subset of R B is bouded above if there is a k R such that x k for all x B - A real umber, k R is a uique least upper boud of B, ie k = LUB(B), if () k is

More information

2 Banach spaces and Hilbert spaces

2 Banach spaces and Hilbert spaces 2 Baach spaces ad Hilbert spaces Tryig to do aalysis i the ratioal umbers is difficult for example cosider the set {x Q : x 2 2}. This set is o-empty ad bouded above but does ot have a least upper boud

More information

SCORE. Exam 2. MA 114 Exam 2 Fall 2017

SCORE. Exam 2. MA 114 Exam 2 Fall 2017 Exam Name: Sectio ad/or TA: Do ot remove this aswer page you will retur the whole exam. You will be allowed two hours to complete this test. No books or otes may be used. You may use a graphig calculator

More information

Homework 2. Show that if h is a bounded sesquilinear form on the Hilbert spaces X and Y, then h has the representation

Homework 2. Show that if h is a bounded sesquilinear form on the Hilbert spaces X and Y, then h has the representation omework 2 1 Let X ad Y be ilbert spaces over C The a sesquiliear form h o X Y is a mappig h : X Y C such that for all x 1, x 2, x X, y 1, y 2, y Y ad all scalars α, β C we have (a) h(x 1 + x 2, y) h(x

More information

Honors Calculus Homework 13 Solutions, due 12/8/5

Honors Calculus Homework 13 Solutions, due 12/8/5 Hoors Calculus Homework Solutios, due /8/5 Questio Let a regio R i the plae be bouded by the curves y = 5 ad = 5y y. Sketch the regio R. The two curves meet where both equatios hold at oce, so where: y

More information

A REMARK ON A PROBLEM OF KLEE

A REMARK ON A PROBLEM OF KLEE C O L L O Q U I U M M A T H E M A T I C U M VOL. 71 1996 NO. 1 A REMARK ON A PROBLEM OF KLEE BY N. J. K A L T O N (COLUMBIA, MISSOURI) AND N. T. P E C K (URBANA, ILLINOIS) This paper treats a property

More information

CSE 202 Homework 1 Matthias Springer, A Yes, there does always exist a perfect matching without a strong instability.

CSE 202 Homework 1 Matthias Springer, A Yes, there does always exist a perfect matching without a strong instability. CSE 0 Homework 1 Matthias Spriger, A9950078 1 Problem 1 Notatio a b meas that a is matched to b. a < b c meas that b likes c more tha a. Equality idicates a tie. Strog istability Yes, there does always

More information

Lecture 3 : Random variables and their distributions

Lecture 3 : Random variables and their distributions Lecture 3 : Radom variables ad their distributios 3.1 Radom variables Let (Ω, F) ad (S, S) be two measurable spaces. A map X : Ω S is measurable or a radom variable (deoted r.v.) if X 1 (A) {ω : X(ω) A}

More information

End-of-Year Contest. ERHS Math Club. May 5, 2009

End-of-Year Contest. ERHS Math Club. May 5, 2009 Ed-of-Year Cotest ERHS Math Club May 5, 009 Problem 1: There are 9 cois. Oe is fake ad weighs a little less tha the others. Fid the fake coi by weighigs. Solutio: Separate the 9 cois ito 3 groups (A, B,

More information

The Discrete Fourier Transform

The Discrete Fourier Transform The Discrete Fourier Trasform Complex Fourier Series Represetatio Recall that a Fourier series has the form a 0 + a k cos(kt) + k=1 b k si(kt) This represetatio seems a bit awkward, sice it ivolves two

More information

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n Series. Defiitios ad first properties A series is a ifiite sum a + a + a +..., deoted i short by a. The sequece of partial sums of the series a is the sequece s ) defied by s = a k = a +... + a,. k= Defiitio

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

Davenport-Schinzel Sequences and their Geometric Applications

Davenport-Schinzel Sequences and their Geometric Applications Advaced Computatioal Geometry Sprig 2004 Daveport-Schizel Sequeces ad their Geometric Applicatios Prof. Joseph Mitchell Scribe: Mohit Gupta 1 Overview I this lecture, we itroduce the cocept of Daveport-Schizel

More information

Additional Notes on Power Series

Additional Notes on Power Series Additioal Notes o Power Series Mauela Girotti MATH 37-0 Advaced Calculus of oe variable Cotets Quick recall 2 Abel s Theorem 2 3 Differetiatio ad Itegratio of Power series 4 Quick recall We recall here

More information

VISUALIZING THE UNIT BALL OF THE AGY NORM

VISUALIZING THE UNIT BALL OF THE AGY NORM VISUALIZING THE UNIT BALL OF THE AGY NORM ALEX WRIGHT 1. Abstract Avila-Gouëzel-Yoccoz defied a orm o the relative cohomology H 1 (X, Σ) of a traslatio surface (X, ω), i [AGY06, Sectio 2] ad also [AG13,

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan Arkasas Tech Uiversity MATH 94: Calculus II Dr Marcel B Fia 85 Power Series Let {a } =0 be a sequece of umbers The a power series about x = a is a series of the form a (x a) = a 0 + a (x a) + a (x a) +

More information

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx)

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx) Cosider the differetial equatio y '' k y 0 has particular solutios y1 si( kx) ad y cos( kx) I geeral, ay liear combiatio of y1 ad y, cy 1 1 cy where c1, c is also a solutio to the equatio above The reaso

More information

The multiplicative structure of finite field and a construction of LRC

The multiplicative structure of finite field and a construction of LRC IERG6120 Codig for Distributed Storage Systems Lecture 8-06/10/2016 The multiplicative structure of fiite field ad a costructio of LRC Lecturer: Keeth Shum Scribe: Zhouyi Hu Notatios: We use the otatio

More information

Sequences III. Chapter Roots

Sequences III. Chapter Roots Chapter 4 Sequeces III 4. Roots We ca use the results we ve established i the last workbook to fid some iterestig limits for sequeces ivolvig roots. We will eed more techical expertise ad low cuig tha

More information

Lecture 2: April 3, 2013

Lecture 2: April 3, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 2: April 3, 203 Scribe: Shubhedu Trivedi Coi tosses cotiued We retur to the coi tossig example from the last lecture agai: Example. Give,

More information

Measure and Measurable Functions

Measure and Measurable Functions 3 Measure ad Measurable Fuctios 3.1 Measure o a Arbitrary σ-algebra Recall from Chapter 2 that the set M of all Lebesgue measurable sets has the followig properties: R M, E M implies E c M, E M for N implies

More information

SCORE. Exam 2. MA 114 Exam 2 Fall 2016

SCORE. Exam 2. MA 114 Exam 2 Fall 2016 Exam 2 Name: Sectio ad/or TA: Do ot remove this aswer page you will retur the whole exam. You will be allowed two hours to complete this test. No books or otes may be used. You may use a graphig calculator

More information

Rank Modulation with Multiplicity

Rank Modulation with Multiplicity Rak Modulatio with Multiplicity Axiao (Adrew) Jiag Computer Sciece ad Eg. Dept. Texas A&M Uiversity College Statio, TX 778 ajiag@cse.tamu.edu Abstract Rak modulatio is a scheme that uses the relative order

More information

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n =

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n = 60. Ratio ad root tests 60.1. Absolutely coverget series. Defiitio 13. (Absolute covergece) A series a is called absolutely coverget if the series of absolute values a is coverget. The absolute covergece

More information

Notes #3 Sequences Limit Theorems Monotone and Subsequences Bolzano-WeierstraßTheorem Limsup & Liminf of Sequences Cauchy Sequences and Completeness

Notes #3 Sequences Limit Theorems Monotone and Subsequences Bolzano-WeierstraßTheorem Limsup & Liminf of Sequences Cauchy Sequences and Completeness Notes #3 Sequeces Limit Theorems Mootoe ad Subsequeces Bolzao-WeierstraßTheorem Limsup & Limif of Sequeces Cauchy Sequeces ad Completeess This sectio of otes focuses o some of the basics of sequeces of

More information

Math 299 Supplement: Real Analysis Nov 2013

Math 299 Supplement: Real Analysis Nov 2013 Math 299 Supplemet: Real Aalysis Nov 203 Algebra Axioms. I Real Aalysis, we work withi the axiomatic system of real umbers: the set R alog with the additio ad multiplicatio operatios +,, ad the iequality

More information

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover.

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover. Compactess Defiitio 1. A cover or a coverig of a topological space X is a family C of subsets of X whose uio is X. A subcover of a cover C is a subfamily of C which is a cover of X. A ope cover of X is

More information