Davenport-Schinzel Sequences and their Geometric Applications

Size: px
Start display at page:

Download "Davenport-Schinzel Sequences and their Geometric Applications"

Transcription

1 Advaced Computatioal Geometry Sprig 2004 Daveport-Schizel Sequeces ad their Geometric Applicatios Prof. Joseph Mitchell Scribe: Mohit Gupta 1 Overview I this lecture, we itroduce the cocept of Daveport-Schizel sequeces. We start by defiig them ad givig some results for the bouds o the legth of these sequeces, followed by explorig a few of their geometric applicatios. 2 Defiitio Let, s be positive itegers. A sequece U =< u 1,, u m > of symbols(derived from a alphabet Λ of size ) is a (, s) Daveport-Schizel sequece (a DS(, s)-sequece for short), if it satisfies the followig coditios : 1. For each i < m, we have u i u i There do ot exist s + 2 idices 1 i 1 < i 2 < < i s+2 m such that u i1 = u i3 = u i5 = = a, u i2 = u i4 = u i6 = = b, ad a b. I other words, there is o sub-sequece of two alteratig symbols of legth greater tha or equal to s + 2. We refer to s as the order of the sequece. 2.1 Example < 1, 2, 1, 3, 2, 1, 2, 3, 1, 4, 2, 3, 2, 1 > would be a DS(4, 8) sequece. It does t have ay two cosecutive symbols which are same ad it has o sub-sequece of two alteratig symbols of legth greater tha or equal to 10. 1

2 3 Maximum Legth of a DS(,s) Sequece We will write U = m for the legth of the sequece U. Defie λ s () = max{m U is a DS(,s)-sequece }. Followig are some results for bouds o λ s () for varyig s: 3.1 DS(,1)-Sequeces I such sequeces, each of the symbols ca appear atmost oce. If ay symbols is repeated at idex i ad idex j, the there should be aother symbol betwee u i ad u j ( due to property 1). Let i < k < j. The, sice u i = u j, < u i... u k... u j > form a alteratig sequece of legth 3, prevetig U from beig a order 1 sequece. So, the maximum legth of a order 1 DS-sequece is. λ 1 () =. 3.2 DS(,2)-Sequeces I this subsectio, we prove that λ 2 () = 2 1. We first start with givig a proof by iductio for the claim that λ 2 () 2 1. We the follow it up with a costructio, which establishes that λ 2 () 2 1, thereby provig that λ 2 () = λ 2 () 2 1 Base Case λ 2 (1) = 1. So, the statemet is true for = 1. Iductio Hypothesis Assume the claim to be true for = k 1. So, λ 2 (k 1) 2k 3. Iductio Step Prove the claim for = k : Let U be a DS(2,k)-sequece of maximum possible legth. So, U = λ 2 (k). Let µ a = First idex i U =< u 1, u 2,, u m > where a occurs (u µa = a). Let b be the symbol which maximises µ b, i.e. µ b µ a aɛλ (Λ is the alphabet from which the symbols 2

3 are derived). Lemma: b occurs oly oce i U. Proof: Proof by cotradictio. Let b were to appear twice i U. The two occureces of b ca t be cosecutive, so let there be aother symbol c betwee the two occureces of symbol b. Now, the first occurece of c should be before that of b, as µ b > µ c from the way we have chose b. This gives us a alteratig sub-sequece of legth 4 < c ldotsb...c...b, prevetig U from beig a order 2 DS sequece. Thus, if µ b µ a aɛλ, the b ca appear oly oce i U. Now, if we delete b from U, ad U looks like <...xbx... >, the we have to remove oe of the occureces of x for the remaiig list to be still a DS sequece. If b is ot flaked o both sides by the same symbol, the we ca safely remove it ad the remaiig sequece, which would be a sequece o k 1 symbols, would still be a DS sequece. So λ 2 (k) λ 2 (k 1) + 2 (2k 3) + 2 = 2k 1. Hece, λ 2 () λ 2 () 2 1 Give symbols, a 1, a 2,..., a, we ca costruct a DS(,2)-sequece of legth 2 1. Cosider the sequece U = < a 1, a 2,..., a, a 1, a 2,..., a 1 >.. Now, U = 2 1, ad U satisfies the two properties for beig a DS(,2)-sequece. So, we have costructed a DS(,2)-sequece of legth 2 1. Thus, λ 2 () 2 1. The above two subsectios imply that λ 2 () = DS(,3)-Sequeces Daveport-Schizel showed i 1965 that λ 3 () 2(l() + O(1)). Proof: Let U be the logest possible DS(,3)-sequece. So, U = λ 3 (). So, o a average, each symbol occurs U λ 3() times. Let a be the symbol with fewest occureces i the give U. 3

4 umber of occureces of a λ 3(). Now, remove a from U. This step will iduce some adjacet pairs of same symbols i the remaider of the list. For example, if U =< 1, 2, 3, 2, 4, 5, 3, 5, 6, 3, 6 >, the removal of all the occureces of 3 from the list will give a adjacet pair each of 2, 6 ad 5 i the remaiig list. Lemma: If all the occureces of a symbol a are removed from a DS(,3)-sequece, the remaiig list cosists of at most two adjacet pairs of same symbols, amely those iduced by the removal of first ad last occureces of a from the origial list. Proof: Proof by cotradictio. Assume there is a adjacet pair of same symbols i the remaider of the list, which is ot iduced by either the first, or the last occurece of a. So the, the origial list U would look like <... a...xax...a... >. This sequece has a alteratig sub-sequece of legth 5, cotradictig the fact that U is a order-3 DS sequece. Thus, removig all the occureces of a ad at most 2 other symbols from U gives a valid DS(-1,3)-sequece. So λ 3 () λ 3 ( 1) + λ 3() + 2 λ 3 ()(1 1 ) λ 3( 1) + 2 λ 3() λ 3( 1) λ 3() λ 3( 2) λ 3() λ 3(1) λ 3() O(1) + 2l() λ 3 () 2(l() + O(1)) Note: The tight boud for λ 3 () has bee achieved sice, ad is as follows: λ 3 () = Θ[α()] 4

5 3.4 Higher Order DS-Sequeces Followig table gives the bouds for the maximum legths of higher order DS-sequeces: Table 1: Bouds o λ s () for varyig values of s Order of the sequece(s) Boud o Legth(λ s ()) 3 Θ(α()) 4 Θ(2 α()).. 2s O(2 O(α()s 1) ) Ω(2 Ω(α()s 1) ) 2s + 1 O(α() O(α()s 1) ) 4 Motivatio: Lower Evelopes Let F = {f 1, f 2,..., f } be a collectio of real-valued cotious fuctios defied o a commo iterval I. Suppose that for each i j, the fuctios f i ad f j itersect i at most s poits (as a example, this would be the case with polyomials of degree s). The lower evelope of F is defied as: L(x) = mi(f i (x)), 1 i, x ɛi Let m be the smallest umber of subitervals I 1, I 2,..., I m of I such that for each I k, there exists a idex u k with L(x) = f uk (x) for all x ɛ I k. I other words, m is the umber of (maximal) coected portios of the graphs of the f i s which costitute the graph of L(x). The edpoits of the itervals I k are called the breakpoits or the trasitio poits of the evelope L(x). Assumig that I 1, I 2,..., I m are arraged i this order from left to right, put U(f 1, f 2,..., f ) =< u 1,..., u m > See the followig figure for a illustratio of this lower evelope sequece. 5

6 4.1 Lower Evelopes ad DS Sequeces Lemma U(f 1,..., f ) is a DS(, s)-sequece. Proof: For the first property, ote that, by defiitio, U = U(f 1,..., f ) does ot cotai a pair of adjacet idetical elemets (as the sub-itervals are take to be maximal coected portios). For secod property, suppose that there exist two distict idices a b so that U cotais a alteratig sub-sequece of a ad b of legth s + 2. By defiitio of the lower evelop, this would imply existece of s + 2 sub-itervals of I (I 1, I 2,..., I s+2 ), such that f a (x) < f b (x) for x ɛ (I 1 I 3...) ad f b (x) < f a (x) for x ɛ (I 2 I 4...). Sice f a ad f b are cotious ad their lower evelop forms s + 2 distict maximal coected itervals, there must exist s + 1 distict poits where f a crosses f b. This cotradicts the fact that f a ad f b itersect i at most s poits. So U(f 1,..., f ) is a DS(, s)-sequece. 6

7 5 Geometric Applicatios for DS Sequeces DS sequeces, as illustrated above, fid their applicatios i fidig the complexity of lower evelopes of a collectio of curves. Followig are some of the examples: Evelop of lies: Lies are degree 1 curves, so the lower evelop of lies would cosist of at most λ 1 () = distict maximal itervals, such that each of these itervals is a part of a sigle lie. Hece the complexity of the lower evelop of lies is. This boud may also be applied to fid the complexity of a face i a arragemet of lies. Lower Evelop of parabolas: Cosider parabolas, all of them opeig towards the positive y directio. Sice, a parabola is a degree-2 curve, so the lower evelop of this arragemet of parabolas would cosist of at most λ 2 () = 2 1 distict maximal itervals, such that each of these itervals is a part of a sigle parabola. This kid of arragemet arises i the Fortue Sweep algorithm to fid the vorooi diagram of poits. This boud helps i provig the ruig time of the aforesaid algorithm. Lower Evelop of curve segmets: As is illustrated i the figure, lower evelop of two lie segmets ca have 4 separate(maximal) sub-itervals such that each belogs to oe of the segmets. So, 2 lie segmets ca be said to itersect i 3 differet poits. So, the lower evelop of a arragemet of lie segmets would cosist of at most λ 3 () = Θ[α()] distict maximal itervals, such that each of these itervals is a part of a sigle lie segmet. 7

8 So, although the lower evelop of degree-s curves will correspod to a DS(,s)- sequece, the lower evelop of degree-s curved segmets will correspod to a DS(,s+2)-sequece due to the iductio of two extra trasitio poits (at the eds of the curved segmets). 8

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan

Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan Arkasas Tech Uiversity MATH 94: Calculus II Dr Marcel B Fia 85 Power Series Let {a } =0 be a sequece of umbers The a power series about x = a is a series of the form a (x a) = a 0 + a (x a) + a (x a) +

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

Math 220A Fall 2007 Homework #2. Will Garner A

Math 220A Fall 2007 Homework #2. Will Garner A Math 0A Fall 007 Homewor # Will Garer Pg 3 #: Show that {cis : a o-egative iteger} is dese i T = {z œ : z = }. For which values of q is {cis(q): a o-egative iteger} dese i T? To show that {cis : a o-egative

More information

# fixed points of g. Tree to string. Repeatedly select the leaf with the smallest label, write down the label of its neighbour and remove the leaf.

# fixed points of g. Tree to string. Repeatedly select the leaf with the smallest label, write down the label of its neighbour and remove the leaf. Combiatorics Graph Theory Coutig labelled ad ulabelled graphs There are 2 ( 2) labelled graphs of order. The ulabelled graphs of order correspod to orbits of the actio of S o the set of labelled graphs.

More information

The multiplicative structure of finite field and a construction of LRC

The multiplicative structure of finite field and a construction of LRC IERG6120 Codig for Distributed Storage Systems Lecture 8-06/10/2016 The multiplicative structure of fiite field ad a costructio of LRC Lecturer: Keeth Shum Scribe: Zhouyi Hu Notatios: We use the otatio

More information

The Boolean Ring of Intervals

The Boolean Ring of Intervals MATH 532 Lebesgue Measure Dr. Neal, WKU We ow shall apply the results obtaied about outer measure to the legth measure o the real lie. Throughout, our space X will be the set of real umbers R. Whe ecessary,

More information

Problem Set 2 Solutions

Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Week 5-6: The Binomial Coefficients

Week 5-6: The Binomial Coefficients Wee 5-6: The Biomial Coefficiets March 6, 2018 1 Pascal Formula Theorem 11 (Pascal s Formula For itegers ad such that 1, ( ( ( 1 1 + 1 The umbers ( 2 ( 1 2 ( 2 are triagle umbers, that is, The petago umbers

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero?

If a subset E of R contains no open interval, is it of zero measure? For instance, is the set of irrationals in [0, 1] is of measure zero? 2 Lebesgue Measure I Chapter 1 we defied the cocept of a set of measure zero, ad we have observed that every coutable set is of measure zero. Here are some atural questios: If a subset E of R cotais a

More information

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number MATH 532 Itegrable Fuctios Dr. Neal, WKU We ow shall defie what it meas for a measurable fuctio to be itegrable, show that all itegral properties of simple fuctios still hold, ad the give some coditios

More information

Homework 1 Solutions. The exercises are from Foundations of Mathematical Analysis by Richard Johnsonbaugh and W.E. Pfaffenberger.

Homework 1 Solutions. The exercises are from Foundations of Mathematical Analysis by Richard Johnsonbaugh and W.E. Pfaffenberger. Homewor 1 Solutios Math 171, Sprig 2010 Hery Adams The exercises are from Foudatios of Mathematical Aalysis by Richard Johsobaugh ad W.E. Pfaffeberger. 2.2. Let h : X Y, g : Y Z, ad f : Z W. Prove that

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

Chain conditions. 1. Artinian and noetherian modules. ALGBOOK CHAINS 1.1

Chain conditions. 1. Artinian and noetherian modules. ALGBOOK CHAINS 1.1 CHAINS 1.1 Chai coditios 1. Artiia ad oetheria modules. (1.1) Defiitio. Let A be a rig ad M a A-module. The module M is oetheria if every ascedig chai!!m 1 M 2 of submodules M of M is stable, that is,

More information

Lecture Notes for Analysis Class

Lecture Notes for Analysis Class Lecture Notes for Aalysis Class Topological Spaces A topology for a set X is a collectio T of subsets of X such that: (a) X ad the empty set are i T (b) Uios of elemets of T are i T (c) Fiite itersectios

More information

Real Variables II Homework Set #5

Real Variables II Homework Set #5 Real Variables II Homework Set #5 Name: Due Friday /0 by 4pm (at GOS-4) Istructios: () Attach this page to the frot of your homework assigmet you tur i (or write each problem before your solutio). () Please

More information

Injections, Surjections, and the Pigeonhole Principle

Injections, Surjections, and the Pigeonhole Principle Ijectios, Surjectios, ad the Pigeohole Priciple 1 (10 poits Here we will come up with a sloppy boud o the umber of parethesisestigs (a (5 poits Describe a ijectio from the set of possible ways to est pairs

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

LONG SNAKES IN POWERS OF THE COMPLETE GRAPH WITH AN ODD NUMBER OF VERTICES

LONG SNAKES IN POWERS OF THE COMPLETE GRAPH WITH AN ODD NUMBER OF VERTICES J Lodo Math Soc (2 50, (1994, 465 476 LONG SNAKES IN POWERS OF THE COMPLETE GRAPH WITH AN ODD NUMBER OF VERTICES Jerzy Wojciechowski Abstract I [5] Abbott ad Katchalski ask if there exists a costat c >

More information

1 Convergence in Probability and the Weak Law of Large Numbers

1 Convergence in Probability and the Weak Law of Large Numbers 36-752 Advaced Probability Overview Sprig 2018 8. Covergece Cocepts: i Probability, i L p ad Almost Surely Istructor: Alessadro Rialdo Associated readig: Sec 2.4, 2.5, ad 4.11 of Ash ad Doléas-Dade; Sec

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

CS / MCS 401 Homework 3 grader solutions

CS / MCS 401 Homework 3 grader solutions CS / MCS 401 Homework 3 grader solutios assigmet due July 6, 016 writte by Jāis Lazovskis maximum poits: 33 Some questios from CLRS. Questios marked with a asterisk were ot graded. 1 Use the defiitio of

More information

Lecture 2. The Lovász Local Lemma

Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Infinite Series and Improper Integrals

Infinite Series and Improper Integrals 8 Special Fuctios Ifiite Series ad Improper Itegrals Ifiite series are importat i almost all areas of mathematics ad egieerig I additio to umerous other uses, they are used to defie certai fuctios ad to

More information

Axioms of Measure Theory

Axioms of Measure Theory MATH 532 Axioms of Measure Theory Dr. Neal, WKU I. The Space Throughout the course, we shall let X deote a geeric o-empty set. I geeral, we shall ot assume that ay algebraic structure exists o X so that

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Limit superior and limit inferior c Prof. Philip Pennance 1 -Draft: April 17, 2017

Limit superior and limit inferior c Prof. Philip Pennance 1 -Draft: April 17, 2017 Limit erior ad limit iferior c Prof. Philip Peace -Draft: April 7, 207. Defiitio. The limit erior of a sequece a is the exteded real umber defied by lim a = lim a k k Similarly, the limit iferior of a

More information

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018

Sequences, Mathematical Induction, and Recursion. CSE 2353 Discrete Computational Structures Spring 2018 CSE 353 Discrete Computatioal Structures Sprig 08 Sequeces, Mathematical Iductio, ad Recursio (Chapter 5, Epp) Note: some course slides adopted from publisher-provided material Overview May mathematical

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

Complex Numbers Solutions

Complex Numbers Solutions Complex Numbers Solutios Joseph Zoller February 7, 06 Solutios. (009 AIME I Problem ) There is a complex umber with imagiary part 64 ad a positive iteger such that Fid. [Solutio: 697] 4i + + 4i. 4i 4i

More information

Math 341 Lecture #31 6.5: Power Series

Math 341 Lecture #31 6.5: Power Series Math 341 Lecture #31 6.5: Power Series We ow tur our attetio to a particular kid of series of fuctios, amely, power series, f(x = a x = a 0 + a 1 x + a 2 x 2 + where a R for all N. I terms of a series

More information

Notes on the Combinatorial Nullstellensatz

Notes on the Combinatorial Nullstellensatz Notes o the Combiatorial Nullstellesatz Costructive ad Nocostructive Methods i Combiatorics ad TCS U. Chicago, Sprig 2018 Istructor: Adrew Drucker Scribe: Roberto Ferádez For the followig theorems ad examples

More information

16 Riemann Sums and Integrals

16 Riemann Sums and Integrals 16 Riema Sums ad Itegrals Defiitio: A partitio P of a closed iterval [a, b], (b >a)isasetof 1 distict poits x i (a, b) togetherwitha = x 0 ad b = x, together with the covetio that i>j x i >x j. Defiitio:

More information

Linear chord diagrams with long chords

Linear chord diagrams with long chords Liear chord diagrams with log chords Everett Sulliva Departmet of Mathematics Dartmouth College Haover New Hampshire, U.S.A. everett..sulliva@dartmouth.edu Submitted: Feb 7, 2017; Accepted: Oct 7, 2017;

More information

Solutions. tan 2 θ(tan 2 θ + 1) = cot6 θ,

Solutions. tan 2 θ(tan 2 θ + 1) = cot6 θ, Solutios 99. Let A ad B be two poits o a parabola with vertex V such that V A is perpedicular to V B ad θ is the agle betwee the chord V A ad the axis of the parabola. Prove that V A V B cot3 θ. Commet.

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

1. By using truth tables prove that, for all statements P and Q, the statement

1. By using truth tables prove that, for all statements P and Q, the statement Author: Satiago Salazar Problems I: Mathematical Statemets ad Proofs. By usig truth tables prove that, for all statemets P ad Q, the statemet P Q ad its cotrapositive ot Q (ot P) are equivalet. I example.2.3

More information

Disjoint Systems. Abstract

Disjoint Systems. Abstract Disjoit Systems Noga Alo ad Bey Sudaov Departmet of Mathematics Raymod ad Beverly Sacler Faculty of Exact Scieces Tel Aviv Uiversity, Tel Aviv, Israel Abstract A disjoit system of type (,,, ) is a collectio

More information

On Random Line Segments in the Unit Square

On Random Line Segments in the Unit Square O Radom Lie Segmets i the Uit Square Thomas A. Courtade Departmet of Electrical Egieerig Uiversity of Califoria Los Ageles, Califoria 90095 Email: tacourta@ee.ucla.edu I. INTRODUCTION Let Q = [0, 1] [0,

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ. 2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of o-time jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For

More information

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n Series. Defiitios ad first properties A series is a ifiite sum a + a + a +..., deoted i short by a. The sequece of partial sums of the series a is the sequece s ) defied by s = a k = a +... + a,. k= Defiitio

More information

Singular Continuous Measures by Michael Pejic 5/14/10

Singular Continuous Measures by Michael Pejic 5/14/10 Sigular Cotiuous Measures by Michael Peic 5/4/0 Prelimiaries Give a set X, a σ-algebra o X is a collectio of subsets of X that cotais X ad ad is closed uder complemetatio ad coutable uios hece, coutable

More information

Polynomial identity testing and global minimum cut

Polynomial identity testing and global minimum cut CHAPTER 6 Polyomial idetity testig ad global miimum cut I this lecture we will cosider two further problems that ca be solved usig probabilistic algorithms. I the first half, we will cosider the problem

More information

Lecture 11: Pseudorandom functions

Lecture 11: Pseudorandom functions COM S 6830 Cryptography Oct 1, 2009 Istructor: Rafael Pass 1 Recap Lecture 11: Pseudoradom fuctios Scribe: Stefao Ermo Defiitio 1 (Ge, Ec, Dec) is a sigle message secure ecryptio scheme if for all uppt

More information

Analytic Continuation

Analytic Continuation Aalytic Cotiuatio The stadard example of this is give by Example Let h (z) = 1 + z + z 2 + z 3 +... kow to coverge oly for z < 1. I fact h (z) = 1/ (1 z) for such z. Yet H (z) = 1/ (1 z) is defied for

More information

The Borel hierarchy classifies subsets of the reals by their topological complexity. Another approach is to classify them by size.

The Borel hierarchy classifies subsets of the reals by their topological complexity. Another approach is to classify them by size. Lecture 7: Measure ad Category The Borel hierarchy classifies subsets of the reals by their topological complexity. Aother approach is to classify them by size. Filters ad Ideals The most commo measure

More information

Introduction to Computational Biology Homework 2 Solution

Introduction to Computational Biology Homework 2 Solution Itroductio to Computatioal Biology Homework 2 Solutio Problem 1: Cocave gap pealty fuctio Let γ be a gap pealty fuctio defied over o-egative itegers. The fuctio γ is called sub-additive iff it satisfies

More information

5 3B Numerical Methods for estimating the area of an enclosed region. The Trapezoidal Rule for Approximating the Area Under a Closed Curve

5 3B Numerical Methods for estimating the area of an enclosed region. The Trapezoidal Rule for Approximating the Area Under a Closed Curve 5 3B Numerical Methods for estimatig the area of a eclosed regio The Trapezoidal Rule for Approximatig the Area Uder a Closed Curve The trapezoidal rule requires a closed o a iterval from x = a to x =

More information

Homework 3. = k 1. Let S be a set of n elements, and let a, b, c be distinct elements of S. The number of k-subsets of S is

Homework 3. = k 1. Let S be a set of n elements, and let a, b, c be distinct elements of S. The number of k-subsets of S is Homewor 3 Chapter 5 pp53: 3 40 45 Chapter 6 p85: 4 6 4 30 Use combiatorial reasoig to prove the idetity 3 3 Proof Let S be a set of elemets ad let a b c be distict elemets of S The umber of -subsets of

More information

Lecture XVI - Lifting of paths and homotopies

Lecture XVI - Lifting of paths and homotopies Lecture XVI - Liftig of paths ad homotopies I the last lecture we discussed the liftig problem ad proved that the lift if it exists is uiquely determied by its value at oe poit. I this lecture we shall

More information

On the Linear Complexity of Feedback Registers

On the Linear Complexity of Feedback Registers O the Liear Complexity of Feedback Registers A. H. Cha M. Goresky A. Klapper Northeaster Uiversity Abstract I this paper, we study sequeces geerated by arbitrary feedback registers (ot ecessarily feedback

More information

Math 104: Homework 2 solutions

Math 104: Homework 2 solutions Math 04: Homework solutios. A (0, ): Sice this is a ope iterval, the miimum is udefied, ad sice the set is ot bouded above, the maximum is also udefied. if A 0 ad sup A. B { m + : m, N}: This set does

More information

2.1. The Algebraic and Order Properties of R Definition. A binary operation on a set F is a function B : F F! F.

2.1. The Algebraic and Order Properties of R Definition. A binary operation on a set F is a function B : F F! F. CHAPTER 2 The Real Numbers 2.. The Algebraic ad Order Properties of R Defiitio. A biary operatio o a set F is a fuctio B : F F! F. For the biary operatios of + ad, we replace B(a, b) by a + b ad a b, respectively.

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

Mathematical Foundations -1- Sets and Sequences. Sets and Sequences

Mathematical Foundations -1- Sets and Sequences. Sets and Sequences Mathematical Foudatios -1- Sets ad Sequeces Sets ad Sequeces Methods of proof 2 Sets ad vectors 13 Plaes ad hyperplaes 18 Liearly idepedet vectors, vector spaces 2 Covex combiatios of vectors 21 eighborhoods,

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book.

Read carefully the instructions on the answer book and make sure that the particulars required are entered on each answer book. THE UNIVERSITY OF WARWICK FIRST YEAR EXAMINATION: Jauary 2009 Aalysis I Time Allowed:.5 hours Read carefully the istructios o the aswer book ad make sure that the particulars required are etered o each

More information

Bertrand s Postulate

Bertrand s Postulate Bertrad s Postulate Lola Thompso Ross Program July 3, 2009 Lola Thompso (Ross Program Bertrad s Postulate July 3, 2009 1 / 33 Bertrad s Postulate I ve said it oce ad I ll say it agai: There s always a

More information

Lecture 14: Graph Entropy

Lecture 14: Graph Entropy 15-859: Iformatio Theory ad Applicatios i TCS Sprig 2013 Lecture 14: Graph Etropy March 19, 2013 Lecturer: Mahdi Cheraghchi Scribe: Euiwoog Lee 1 Recap Bergma s boud o the permaet Shearer s Lemma Number

More information

Solutions for the Exam 9 January 2012

Solutions for the Exam 9 January 2012 Mastermath ad LNMB Course: Discrete Optimizatio Solutios for the Exam 9 Jauary 2012 Utrecht Uiversity, Educatorium, 15:15 18:15 The examiatio lasts 3 hours. Gradig will be doe before Jauary 23, 2012. Studets

More information

Simple Polygons of Maximum Perimeter Contained in a Unit Disk

Simple Polygons of Maximum Perimeter Contained in a Unit Disk Discrete Comput Geom (009) 1: 08 15 DOI 10.1007/s005-008-9093-7 Simple Polygos of Maximum Perimeter Cotaied i a Uit Disk Charles Audet Pierre Hase Frédéric Messie Received: 18 September 007 / Revised:

More information

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6 Math 4 Activity (Due by EOC Apr. ) Graph the followig epoetial fuctios by modifyig the graph of f. Fid the rage of each fuctio.. g. g. g 4. g. g 6. g Fid a formula for the epoetial fuctio whose graph is

More information

Section 5.1 The Basics of Counting

Section 5.1 The Basics of Counting 1 Sectio 5.1 The Basics of Coutig Combiatorics, the study of arragemets of objects, is a importat part of discrete mathematics. I this chapter, we will lear basic techiques of coutig which has a lot of

More information

MA131 - Analysis 1. Workbook 3 Sequences II

MA131 - Analysis 1. Workbook 3 Sequences II MA3 - Aalysis Workbook 3 Sequeces II Autum 2004 Cotets 2.8 Coverget Sequeces........................ 2.9 Algebra of Limits......................... 2 2.0 Further Useful Results........................

More information

page Suppose that S 0, 1 1, 2.

page Suppose that S 0, 1 1, 2. page 10 1. Suppose that S 0, 1 1,. a. What is the set of iterior poits of S? The set of iterior poits of S is 0, 1 1,. b. Give that U is the set of iterior poits of S, evaluate U. 0, 1 1, 0, 1 1, S. The

More information

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs CSE 1400 Applied Discrete Mathematics Number Theory ad Proofs Departmet of Computer Scieces College of Egieerig Florida Tech Sprig 01 Problems for Number Theory Backgroud Number theory is the brach of

More information

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction Chapter 2 Periodic poits of toral automorphisms 2.1 Geeral itroductio The automorphisms of the two-dimesioal torus are rich mathematical objects possessig iterestig geometric, algebraic, topological ad

More information

Math 25 Solutions to practice problems

Math 25 Solutions to practice problems Math 5: Advaced Calculus UC Davis, Sprig 0 Math 5 Solutios to practice problems Questio For = 0,,, 3,... ad 0 k defie umbers C k C k =! k!( k)! (for k = 0 ad k = we defie C 0 = C = ). by = ( )... ( k +

More information

M17 MAT25-21 HOMEWORK 5 SOLUTIONS

M17 MAT25-21 HOMEWORK 5 SOLUTIONS M17 MAT5-1 HOMEWORK 5 SOLUTIONS 1. To Had I Cauchy Codesatio Test. Exercise 1: Applicatio of the Cauchy Codesatio Test Use the Cauchy Codesatio Test to prove that 1 diverges. Solutio 1. Give the series

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Induction: Solutions

Induction: Solutions Writig Proofs Misha Lavrov Iductio: Solutios Wester PA ARML Practice March 6, 206. Prove that a 2 2 chessboard with ay oe square removed ca always be covered by shaped tiles. Solutio : We iduct o. For

More information

Alliance Partition Number in Graphs

Alliance Partition Number in Graphs Alliace Partitio Number i Graphs Lida Eroh Departmet of Mathematics Uiversity of Wiscosi Oshkosh, Oshkosh, WI email: eroh@uwoshedu, phoe: (90)44-7343 ad Ralucca Gera Departmet of Applied Mathematics Naval

More information

Math F215: Induction April 7, 2013

Math F215: Induction April 7, 2013 Math F25: Iductio April 7, 203 Iductio is used to prove that a collectio of statemets P(k) depedig o k N are all true. A statemet is simply a mathematical phrase that must be either true or false. Here

More information

Lecture 10: Mathematical Preliminaries

Lecture 10: Mathematical Preliminaries Lecture : Mathematical Prelimiaries Obective: Reviewig mathematical cocepts ad tools that are frequetly used i the aalysis of algorithms. Lecture # Slide # I this

More information

Ma/CS 6b Class 19: Extremal Graph Theory

Ma/CS 6b Class 19: Extremal Graph Theory /9/05 Ma/CS 6b Class 9: Extremal Graph Theory Paul Turá By Adam Sheffer Extremal Graph Theory The subfield of extremal graph theory deals with questios of the form: What is the maximum umber of edges that

More information

lim za n n = z lim a n n.

lim za n n = z lim a n n. Lecture 6 Sequeces ad Series Defiitio 1 By a sequece i a set A, we mea a mappig f : N A. It is customary to deote a sequece f by {s } where, s := f(). A sequece {z } of (complex) umbers is said to be coverget

More information

MATH 112: HOMEWORK 6 SOLUTIONS. Problem 1: Rudin, Chapter 3, Problem s k < s k < 2 + s k+1

MATH 112: HOMEWORK 6 SOLUTIONS. Problem 1: Rudin, Chapter 3, Problem s k < s k < 2 + s k+1 MATH 2: HOMEWORK 6 SOLUTIONS CA PRO JIRADILOK Problem. If s = 2, ad Problem : Rudi, Chapter 3, Problem 3. s + = 2 + s ( =, 2, 3,... ), prove that {s } coverges, ad that s < 2 for =, 2, 3,.... Proof. The

More information

1 Lecture 2: Sequence, Series and power series (8/14/2012)

1 Lecture 2: Sequence, Series and power series (8/14/2012) Summer Jump-Start Program for Aalysis, 202 Sog-Yig Li Lecture 2: Sequece, Series ad power series (8/4/202). More o sequeces Example.. Let {x } ad {y } be two bouded sequeces. Show lim sup (x + y ) lim

More information

Chapter 7 COMBINATIONS AND PERMUTATIONS. where we have the specific formula for the binomial coefficients:

Chapter 7 COMBINATIONS AND PERMUTATIONS. where we have the specific formula for the binomial coefficients: Chapter 7 COMBINATIONS AND PERMUTATIONS We have see i the previous chapter that (a + b) ca be writte as 0 a % a & b%þ% a & b %þ% b where we have the specific formula for the biomial coefficiets: '!!(&)!

More information

Fundamental Theorem of Algebra. Yvonne Lai March 2010

Fundamental Theorem of Algebra. Yvonne Lai March 2010 Fudametal Theorem of Algebra Yvoe Lai March 010 We prove the Fudametal Theorem of Algebra: Fudametal Theorem of Algebra. Let f be a o-costat polyomial with real coefficiets. The f has at least oe complex

More information

Hoggatt and King [lo] defined a complete sequence of natural numbers

Hoggatt and King [lo] defined a complete sequence of natural numbers REPRESENTATIONS OF N AS A SUM OF DISTINCT ELEMENTS FROM SPECIAL SEQUENCES DAVID A. KLARNER, Uiversity of Alberta, Edmoto, Caada 1. INTRODUCTION Let a, I deote a sequece of atural umbers which satisfies

More information

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations Chapter The Solutio of Numerical Algebraic ad Trascedetal Equatios Itroductio I this chapter we shall discuss some umerical methods for solvig algebraic ad trascedetal equatios. The equatio f( is said

More information

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim

f(x) dx as we do. 2x dx x also diverges. Solution: We compute 2x dx lim Math 3, Sectio 2. (25 poits) Why we defie f(x) dx as we do. (a) Show that the improper itegral diverges. Hece the improper itegral x 2 + x 2 + b also diverges. Solutio: We compute x 2 + = lim b x 2 + =

More information

Square-Congruence Modulo n

Square-Congruence Modulo n Square-Cogruece Modulo Abstract This paper is a ivestigatio of a equivalece relatio o the itegers that was itroduced as a exercise i our Discrete Math class. Part I - Itro Defiitio Two itegers are Square-Cogruet

More information

Calculus with Analytic Geometry 2

Calculus with Analytic Geometry 2 Calculus with Aalytic Geometry Fial Eam Study Guide ad Sample Problems Solutios The date for the fial eam is December, 7, 4-6:3p.m. BU Note. The fial eam will cosist of eercises, ad some theoretical questios,

More information

CS 270 Algorithms. Oliver Kullmann. Growth of Functions. Divide-and- Conquer Min-Max- Problem. Tutorial. Reading from CLRS for week 2

CS 270 Algorithms. Oliver Kullmann. Growth of Functions. Divide-and- Conquer Min-Max- Problem. Tutorial. Reading from CLRS for week 2 Geeral remarks Week 2 1 Divide ad First we cosider a importat tool for the aalysis of algorithms: Big-Oh. The we itroduce a importat algorithmic paradigm:. We coclude by presetig ad aalysig two examples.

More information

2.4 Sequences, Sequences of Sets

2.4 Sequences, Sequences of Sets 72 CHAPTER 2. IMPORTANT PROPERTIES OF R 2.4 Sequeces, Sequeces of Sets 2.4.1 Sequeces Defiitio 2.4.1 (sequece Let S R. 1. A sequece i S is a fuctio f : K S where K = { N : 0 for some 0 N}. 2. For each

More information

Lecture Overview. 2 Permutations and Combinations. n(n 1) (n (k 1)) = n(n 1) (n k + 1) =

Lecture Overview. 2 Permutations and Combinations. n(n 1) (n (k 1)) = n(n 1) (n k + 1) = COMPSCI 230: Discrete Mathematics for Computer Sciece April 8, 2019 Lecturer: Debmalya Paigrahi Lecture 22 Scribe: Kevi Su 1 Overview I this lecture, we begi studyig the fudametals of coutig discrete objects.

More information

Math 61CM - Solutions to homework 1

Math 61CM - Solutions to homework 1 Math 61CM - Solutios to homework 1 Cédric De Groote October 1 st, 2018 Problem 1: Use mathematical iductio to check the validity of the formula j 3 = 2 ( + 1) 2 for = 1, 2,.... Note: The priciple of mathematical

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam 4 will cover.-., 0. ad 0.. Note that eve though. was tested i exam, questios from that sectios may also be o this exam. For practice problems o., refer to the last review. This

More information

SOME TRIBONACCI IDENTITIES

SOME TRIBONACCI IDENTITIES Mathematics Today Vol.7(Dec-011) 1-9 ISSN 0976-38 Abstract: SOME TRIBONACCI IDENTITIES Shah Devbhadra V. Sir P.T.Sarvajaik College of Sciece, Athwalies, Surat 395001. e-mail : drdvshah@yahoo.com The sequece

More information

MATH 6101 Fall Problems. Problems 11/9/2008. Series and a Famous Unsolved Problem (2-1)(2 + 1) ( 4) 12-Nov-2008 MATH

MATH 6101 Fall Problems. Problems 11/9/2008. Series and a Famous Unsolved Problem (2-1)(2 + 1) ( 4) 12-Nov-2008 MATH /9/008 MATH 60 Fall 008 Series ad a Famous Usolved Problem = = + + + + ( - )( + ) 3 3 5 5 7 7 9 -Nov-008 MATH 60 ( 4) = + 5 48 -Nov-008 MATH 60 3 /9/008 ( )! = + -Nov-008 MATH 60 4 3 4 5 + + + + + + +

More information