Feynman s struggle and Dyson s surprise revelation

Size: px
Start display at page:

Download "Feynman s struggle and Dyson s surprise revelation"

Transcription

1 Feynman s struggle and Dyson s surprise revelation Inconspicuous but fundamental revisions to the foundations of quantum electrodynamics through the development of an appropriate means of representation Feynman ca Dyson 1949 Adrian Wüthrich, University of Bern HQ3, 1 July 2010, Berlin

2 1 Introduction: genesis, modern application and interpretation of Feynman diagrams 2 Feynman s struggle for a physical interpretation of the Dirac equation Feynman s programme Quivering electron Positrons and interaction Abandoning the microscopic model 3 Dyson s systematization and theoretical update Renormalization Removal of divergences through appropriate representation

3 Genesis, modern application and interpretation of Feynman diagrams

4 e e + e + e

5 e e + e + e

6 e e + e + e

7 Feynman rules Peskin and Schroeder 1995, pp

8 Received view Not a representation of a physical process

9 Received view Not a representation of a physical process Invention of a system of abbreviations

10 Received view Not a representation of a physical process Invention of a system of abbreviations No modifications to the physical content Brown (1996): Illustration and Inference; Schweber (1994): QED; Dyson (1965): Nobel Prize

11 Light-by-light scattering Compton scattering Electron scattering off a potential Euler 1936 Heitler 1944 Koba & Takeda 1949 Karplus 1950 Peskin & Schroeder 1995 Peskin & Schroeder 1995

12 Feynman s struggle for a physical interpretation of the Dirac equation

13 Los Alamos badge photos from Welton 2007

14 Feynman s programme I am engaged now in a general program of study I want to understand (not just in a mathematical way) the ideas in all branches of theor. physics. As you know I am now struggling with the Dirac Eqn. Feynman to Welton 1947

15 Of course, the hope is that a slight modification of one of the pictures will straighten out some of the present troubles. Feynman to Welton 1947

16 Zitterbewegung

17 The one dimensional Dirac Eqn. ψ 1 t + ψ 3 z = iµψ 1 ψ 3 t + ψ 1 z = +iµψ 3 Hψ = φψ + α(p A)ψ βµψ No details of the manuscript page may be shown online until copyright clearance F = i(hf FH) + F t ẋ = α (Breit 1928, Schrödinger 1930, Dirac 1933, 1935)

18 No details of the manuscript page may be shown online until copyright clearance New Variables

19 New Variables P ψ L b = Mǫ No details of the manuscript page may be shown online until copyright clearance 0 ψ R a = Nǫ

20 New Variables P ψ L b = Mǫ No details of the manuscript page may be shown online until copyright clearance 0 ψ R a = Nǫ Solve by path counting ψ L (P) = iǫ + (iǫ) 3 MN + (iǫ) 5 M2 2! N 2 2!...

21 New Variables P ψ L b = Mǫ No details of the manuscript page may be shown online until copyright clearance 0 ψ R a = Nǫ Solve by path counting ψ L (P) = iǫ + (iǫ) 3 MN + (iǫ) 5 M2 2! Green s function N 2 2!...

22 Positrons and interaction

23 No details of the manuscript page may be shown online until copyright clearance

24 No details of the manuscript page may be shown online until copyright clearance any completely closed loop cancels

25 No details of the manuscript page may be shown online until copyright clearance

26 No details of the manuscript page may be shown online until copyright clearance this stinks

27 Abandoning the microscopic model

28 Wheeler and Feynman 1949 Space-Time Approach to QED (Feynman 1949)

29 Dyson s systematization and theoretical update

30 Freeman Dyson at Princeton, From

31 The S Matrix in QED (Dyson 1949)

32

33

34

35

36 S F S F = Z 2 S F1(e 1 ) D F D F = Z 3 D F1(e 1 ) γ µ Γ µ = Z 1 1 Γ µ1 (e 1 ) Renormalization

37 Removal of divergences through appropriate representation The surprising feature of the S matrix theory, as outlined in this paper, is its success in avoiding difficulties. Starting from the methods of Tomonaga, Schwinger and Feynman, and using no new ideas or techniques, one arrives at an S matrix from which the well-known divergences seem to have conspired to eliminate themselves. This automatic disappearance of divergences is an empirical fact, which must be given due weight in considering the future prospects of electrodynamics. The S Matrix in QED (Dyson 1949, p. 1754)

38 Acknowledgements: Gerd Graßhoff, Tilman Sauer Reference: Adrian Wüthrich (Sept. 2010): The Genesis of Feynman Diagrams. Archimedes Series, Dordrecht: Springer

History and Philosophy of Feynman Diagrams

History and Philosophy of Feynman Diagrams QED & Quantum Vaccum, Low Energy Frontier, 01002 (2012) DOI :10.1051/iesc/2012qed01002 Owned by the authors, published by EDP Sciences, 2012 History and Philosophy of Feynman Diagrams Adrian Wüthrich Center

More information

Adrian Wüthrich. Statement. and. Readings

Adrian Wüthrich. Statement. and. Readings Adrian Wüthrich Statement and Readings The exigencies of war or the stink of a theoretical problem? Feynman's abandonment of the model of the quivering electron Adrian Wüthrich Technische Universität,

More information

THE GENESIS OF FEYNMAN DIAGRAMS

THE GENESIS OF FEYNMAN DIAGRAMS THE GENESIS OF FEYNMAN DIAGRAMS Archimedes NEW STUDIES IN THE HISTORY AND PHILOSOPHY OF SCIENCE AND TECHNOLOGY VOLUME 26 EDITOR JED Z. BUCHWALD, Dreyfuss Professor of History, California Institute of Technology,

More information

Against the Impossible Picture: Feynman's Heuristics in his Search for a Divergence-free Quantum Electrodynamics

Against the Impossible Picture: Feynman's Heuristics in his Search for a Divergence-free Quantum Electrodynamics Physics and Philosophy Issn: 1863-7388 Id: 019 Article Against the Impossible Picture: Feynman's Heuristics in his Search for a Divergence-free Quantum Electrodynamics Adrian Wüthrich (Institute for Philosophy,

More information

TENTATIVE SYLLABUS INTRODUCTION

TENTATIVE SYLLABUS INTRODUCTION Physics 615: Overview of QFT Fall 2010 TENTATIVE SYLLABUS This is a tentative schedule of what we will cover in the course. It is subject to change, often without notice. These will occur in response to

More information

BETHE - SALPETER EQUATION THE ORIGINS Edwin E. Salpeter October 2008

BETHE - SALPETER EQUATION THE ORIGINS Edwin E. Salpeter October 2008 1. INTRODUCTION BETHE - SALPETER EQUATION THE ORIGINS Edwin E. Salpeter October 2008 The Bethe-Salpeter equation was first given at an American Physical Society meeting at the beginning of 1951 (Bethe-Salpeter

More information

4. The Standard Model

4. The Standard Model 4. The Standard Model Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 4. The Standard Model 1 In this section... Standard Model particle content Klein-Gordon equation Antimatter Interaction

More information

Chapter 7 -- Radiative Corrections: some formal developments. A quotation from Peskin & Schroeder, Chapter 7:

Chapter 7 -- Radiative Corrections: some formal developments. A quotation from Peskin & Schroeder, Chapter 7: Chapter 7 -- Radiative Corrections: some formal developments A quotation from Peskin & Schroeder, Chapter 7: 7.1. Field-strength renormalization 7.2. The LSZ reduction formula 7.3. The optical theorem

More information

Einstein s Theory Relativistic 0 < v < c. No Absolute Time. Quantization, Zero point energy position & momentum obey Heisenberg uncertainity rule

Einstein s Theory Relativistic 0 < v < c. No Absolute Time. Quantization, Zero point energy position & momentum obey Heisenberg uncertainity rule Lecture: March 27, 2019 Classical Mechanics Particle is described by position & velocity Quantum Mechanics Particle is described by wave function Probabilistic description Newton s equation non-relativistic

More information

Quantum Field Theory 2 nd Edition

Quantum Field Theory 2 nd Edition Quantum Field Theory 2 nd Edition FRANZ MANDL and GRAHAM SHAW School of Physics & Astromony, The University of Manchester, Manchester, UK WILEY A John Wiley and Sons, Ltd., Publication Contents Preface

More information

Interpreting Feynman Diagrams as Visual Models

Interpreting Feynman Diagrams as Visual Models Interpreting Feynman Diagrams as Visual Models Author(s): Adrian Wüthrich Source: Spontaneous Generations: A Journal for the History and Philosophy of Science, Vol. 6, No. 1 (2012) 172-181. Published by:

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

_ int (x) = e ψ (x) γμ ψ(x) Aμ(x)

_ int (x) = e ψ (x) γμ ψ(x) Aμ(x) QED; and the Standard Model We have calculated cross sections in lowest order perturbation theory. Terminology: Born approximation; tree diagrams. At this order of approximation QED (and the standard model)

More information

The Quantum Negative Energy Problem Revisited MENDEL SACHS

The Quantum Negative Energy Problem Revisited MENDEL SACHS Annales Fondation Louis de Broglie, Volume 30, no 3-4, 2005 381 The Quantum Negative Energy Problem Revisited MENDEL SACHS Department of Physics, University at Buffalo, State University of New York 1 Introduction

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 9 8.34 Relativistic Quantum Field Theory II Fall 8.34 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall Lecture 9.3: REMOVING ULTRAVIOLET DIVERGENCES Let us consider

More information

YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED ELECTROMAGNETIC FIELD. Algirdas Antano Maknickas 1. September 3, 2014

YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED ELECTROMAGNETIC FIELD. Algirdas Antano Maknickas 1. September 3, 2014 YANG-MILLS GAUGE INVARIANT THEORY FOR SPACE CURVED ELECTROMAGNETIC FIELD Algirdas Antano Maknickas Institute of Mechanical Sciences, Vilnius Gediminas Technical University September 3, 04 Abstract. It

More information

Lecture 11 Perturbative calculation

Lecture 11 Perturbative calculation M.Krawczyk, AFZ Particles and Universe 11 1 Particles and Universe Lecture 11 Perturbative calculation Maria Krawczyk, Aleksander F. Żarnecki Faculty of Physics UW I.Theory of elementary particles description

More information

Beta functions in quantum electrodynamics

Beta functions in quantum electrodynamics Beta functions in quantum electrodynamics based on S-66 Let s calculate the beta function in QED: the dictionary: Note! following the usual procedure: we find: or equivalently: For a theory with N Dirac

More information

"g-factor and the Helical Solenoid Electron Model"

g-factor and the Helical Solenoid Electron Model "g-factor and the Helical Solenoid Electron Model" Oliver Consa oliver.consa@gmail.com Department of Physics and Nuclear Engineering (UPC) Spain, February 2017 Abstract A new model of the electron with

More information

CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS

CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS CALCULATING TRANSITION AMPLITUDES FROM FEYNMAN DIAGRAMS LOGAN T. MEREDITH 1. Introduction When one thinks of quantum field theory, one s mind is undoubtedly drawn to Feynman diagrams. The naïve view these

More information

Introduc)on to the famous Feynman diagrams and how to use them. Rosi Reed

Introduc)on to the famous Feynman diagrams and how to use them. Rosi Reed Introduc)on to the famous Feynman diagrams and how to use them Rosi Reed First Diagram Diagrams introduced at the the Pocono Conference in early April, 1948 An hours drive from here! Discussion over the

More information

Ultraviolet Divergences

Ultraviolet Divergences Ultraviolet Divergences In higher-order perturbation theory we encounter Feynman graphs with closed loops, associated with unconstrained momenta. For every such momentum k µ, we have to integrate over

More information

LAMB SHIFT & VACUUM POLARIZATION CORRECTIONS TO THE ENERGY LEVELS OF HYDROGEN ATOM

LAMB SHIFT & VACUUM POLARIZATION CORRECTIONS TO THE ENERGY LEVELS OF HYDROGEN ATOM LAMB SHIFT & VACUUM POLARIZATION CORRECTIONS TO THE ENERGY LEVELS OF HYDROGEN ATOM Student, Aws Abdo The hydrogen atom is the only system with exact solutions of the nonrelativistic Schrödinger equation

More information

arxiv:hep-th/ v2 5 Jun 2000

arxiv:hep-th/ v2 5 Jun 2000 Regularization of QED by a generalized t Hooft and Veltman method Marijan Ribarič and Luka Šušteršič Jožef Stefan Institute, p.p.3000, 1001 Ljubljana, Slovenia arxiv:hep-th/9909207v2 5 Jun 2000 Abstract

More information

The path integral for photons

The path integral for photons The path integral for photons based on S-57 We will discuss the path integral for photons and the photon propagator more carefully using the Lorentz gauge: as in the case of scalar field we Fourier-transform

More information

Relativistic corrections of energy terms

Relativistic corrections of energy terms Lectures 2-3 Hydrogen atom. Relativistic corrections of energy terms: relativistic mass correction, Darwin term, and spin-orbit term. Fine structure. Lamb shift. Hyperfine structure. Energy levels of the

More information

REVIEW REVIEW. Quantum Field Theory II

REVIEW REVIEW. Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

A COURSE IN FIELD THEORY

A COURSE IN FIELD THEORY A COURSE IN FIELD THEORY Pierre van Baal Instituut-Lorentz for Theoretical Physics, University of Leiden, P.O.Box 9506, 2300 RA Leiden, The Netherlands. Fall, 1998 Corrected version January 2001 Copyright

More information

I N T R O D U C T I O N T O

I N T R O D U C T I O N T O A. La Rosa Lecture Notes SU-hysics H 411/511 ECE 598 I N T R O D U C T I O N T O Q U A N T U M M E C H A N I C S How does light "really" decides which path to follow? An elementary Quantum Dynamics point

More information

Review of scalar field theory. Srednicki 5, 9, 10

Review of scalar field theory. Srednicki 5, 9, 10 Review of scalar field theory Srednicki 5, 9, 10 2 The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate

More information

THEORY AND PRACTICES FOR ENERGY EDUCATION, TRAINING, REGULATION AND STANDARDS Basic Laws and Principles of Quantum Electromagnetism C.N.

THEORY AND PRACTICES FOR ENERGY EDUCATION, TRAINING, REGULATION AND STANDARDS Basic Laws and Principles of Quantum Electromagnetism C.N. BASIC LAWS AND PRINCIPLES OF QUANTUM ELECTROMAGNETISM C. N. Booth Department of Physics and Astronomy, University of Sheffield, UK Keywords: antiparticle, boson, Dirac equation, fermion, Feynman diagram,

More information

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications Kolloquium Universität Innsbruck October 13, 2009 The renormalization group: from the foundations to modern applications Peter Kopietz, Universität Frankfurt 1.) Historical introduction: what is the RG?

More information

APPLIED OPTICS. Lecture-1: EVOLUTION of our UNDERSTANDING of LIGHT. Is it a stream of particles?

APPLIED OPTICS. Lecture-1: EVOLUTION of our UNDERSTANDING of LIGHT. Is it a stream of particles? A. La Rosa Lecture Notes APPLIED OPTICS Lecture-1: EVOLUTION of our UNDERSTANDING of LIGHT What is light? Is it a wave? Is it a stream of particles? A. Light as a particle NEWTON (164 177) was the most

More information

RESEARCH PROJECT: Investigation of Relativistic Longitudinal Gauge Fields. and their Interactions. Abstract

RESEARCH PROJECT: Investigation of Relativistic Longitudinal Gauge Fields. and their Interactions. Abstract RESEARCH PROJECT: Investigation of Relativistic Longitudinal Gauge Fields and their Interactions By: Dale Alan Woodside, Ph.D. Department of Physics, Macquarie University Sydney, New South Wales 2109,

More information

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons;

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons; Chapter 9 : Radiative Corrections 9.1 Second order corrections of QED 9. Photon self energy 9.3 Electron self energy 9.4 External line renormalization 9.5 Vertex modification 9.6 Applications 9.7 Infrared

More information

Fine Structure Constant, Electron Anomalous Magnetic Moment, and Quantum Electrodynamics

Fine Structure Constant, Electron Anomalous Magnetic Moment, and Quantum Electrodynamics Fine Structure Constant, Electron Anomalous Magnetic Moment, and Quantum Electrodynamics Toichiro Kinoshita Laboratory for Elementary-Particle Physics, Cornell University based on the work carried out

More information

The Quantum Theory of Fields. Volume I Foundations Steven Weinberg

The Quantum Theory of Fields. Volume I Foundations Steven Weinberg The Quantum Theory of Fields Volume I Foundations Steven Weinberg PREFACE NOTATION x x xxv 1 HISTORICAL INTRODUCTION 1 1.1 Relativistic Wave Mechanics 3 De Broglie waves q Schrödinger-Klein-Gordon wave

More information

L = 1 2 µφ µ φ m2 2 φ2 λ 0

L = 1 2 µφ µ φ m2 2 φ2 λ 0 Physics 6 Homework solutions Renormalization Consider scalar φ 4 theory, with one real scalar field and Lagrangian L = µφ µ φ m φ λ 4 φ4. () We have seen many times that the lowest-order matrix element

More information

Law of Conservation of Energy & Pie Charts Practice. ENERGY- Something that can change the condition of your system; -is measured in Joules(J)

Law of Conservation of Energy & Pie Charts Practice. ENERGY- Something that can change the condition of your system; -is measured in Joules(J) Law of Conservation of Energy & Pie Charts Practice ENERGY- Something that can change the condition of your system; -is measured in Joules(J) Law of Conservation of Energy First proposed by Mayer & Joule

More information

Fundamental Particles and Forces

Fundamental Particles and Forces Fundamental Particles and Forces A Look at the Standard Model and Interesting Theories André Gras PHYS 3305 SMU 1 Overview Introduction to Fundamental Particles and Forces Brief History of Discovery The

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Chapter 35 PARTICLE PHYSICS, QED, SUPERSTRINGS & SPECIAL RELATIVITY. A. Quantum Field Theories and QED

Chapter 35 PARTICLE PHYSICS, QED, SUPERSTRINGS & SPECIAL RELATIVITY. A. Quantum Field Theories and QED Chapter 35 PARTICLE PHYSICS, QED, SUPERSTRINGS & SPECIAL RELATIVITY A. Quantum Field Theories and QED During the mid 1920 s, French physicist Louis de Broglie and Austrian physicist Erwin Schrödinger,

More information

arxiv:physics/ v1 [physics.hist-ph] 10 Aug 2006

arxiv:physics/ v1 [physics.hist-ph] 10 Aug 2006 arxiv:physics/0608108v1 [physics.hist-ph] 10 Aug 2006 The self-energy of the electron: a quintessential problem in the development of QED Abstract Jo Bovy Centre for Logic and Philosophy of Science, Ghent

More information

Effective Theories are Dimensional Analysis

Effective Theories are Dimensional Analysis Effective Theories are Dimensional Analysis Sourendu Gupta SERC Main School 2014, BITS Pilani Goa, India Effective Field Theories December, 2014 Outline Outline The need for renormalization Three simple

More information

Part III. Interacting Field Theory. Quantum Electrodynamics (QED)

Part III. Interacting Field Theory. Quantum Electrodynamics (QED) November-02-12 8:36 PM Part III Interacting Field Theory Quantum Electrodynamics (QED) M. Gericke Physics 7560, Relativistic QM 183 III.A Introduction December-08-12 9:10 PM At this point, we have the

More information

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York

QUANTUM FIELD THEORY. A Modern Introduction MICHIO KAKU. Department of Physics City College of the City University of New York QUANTUM FIELD THEORY A Modern Introduction MICHIO KAKU Department of Physics City College of the City University of New York New York Oxford OXFORD UNIVERSITY PRESS 1993 Contents Quantum Fields and Renormalization

More information

Physics 622 Relativistic Quantum Field Theory Course Syllabus

Physics 622 Relativistic Quantum Field Theory Course Syllabus Physics 622 Relativistic Quantum Field Theory Course Syllabus Instructor Office Swain West 226 Phone Number 855 0243 Open Door Policy Steven Gottlieb, Distinguished Professor I don t want to constrain

More information

A General Expression for Symmetry Factors of Feynman Diagrams. Abstract

A General Expression for Symmetry Factors of Feynman Diagrams. Abstract A General Expression for Symmetry Factors of Feynman Diagrams C.D. Palmer a and M.E. Carrington b,c a Department of Mathematics, Brandon University, Brandon, Manitoba, R7A 6A9 Canada b Department of Physics,

More information

A path integral approach to the Langevin equation

A path integral approach to the Langevin equation A path integral approach to the Langevin equation - Ashok Das Reference: A path integral approach to the Langevin equation, A. Das, S. Panda and J. R. L. Santos, arxiv:1411.0256 (to be published in Int.

More information

The Dirac Equation and the Superluminal Electron Model

The Dirac Equation and the Superluminal Electron Model The Dirac Equation and the Superluminal Electron Model By Richard Gauthier, Ph.D. The Dirac equation (198) is one of the most successful equations of quantum mechanics, the theory of matter and energy

More information

Once upon a time there was no laser

Once upon a time there was no laser Modern Trends in Basic and Applied Laser Spectroscopy Lund 6-7 April, 2010 Once upon a time there was no laser How Science changed the course of World History How World History changed the course of Science

More information

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006 Anomaly Kenichi KONISHI University of Pisa College de France, 14 February 2006 Abstract Symmetry and quantization U A (1) anomaly and π 0 decay Origin of anomalies Chiral and nonabelian anomaly Anomally

More information

Theory of Elementary Particles homework VIII (June 04)

Theory of Elementary Particles homework VIII (June 04) Theory of Elementary Particles homework VIII June 4) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report like II-1, II-3, IV- ).

More information

Helium fine structure Ingvar Lindgren (mod )

Helium fine structure Ingvar Lindgren (mod ) Helium fine structure Ingvar Lindgren 2004.09.20 (mod. 2005.01.23) The leading contributions to the helium fine structure beyond the first-order relativistic contribution were first derived by Araki [1]

More information

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model

Energy Level Energy Level Diagrams for Diagrams for Simple Hydrogen Model Quantum Mechanics and Atomic Physics Lecture 20: Real Hydrogen Atom /Identical particles http://www.physics.rutgers.edu/ugrad/361 physics edu/ugrad/361 Prof. Sean Oh Last time Hydrogen atom: electron in

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

COUP D ETAT: THE MARGINALIZATION OF THE STATE IN QUANTUM FIELD THEORY

COUP D ETAT: THE MARGINALIZATION OF THE STATE IN QUANTUM FIELD THEORY COUP D ETAT: THE MARGINALIZATION OF THE STATE IN QUANTUM FIELD THEORY Alexander Blum 1st May 2014 Incomplete draft - do not circulate Learning quantum field theory (QFT) for the first time, after first

More information

Summary Sec. 1.3: The interacting Green s function Feynman diagrams

Summary Sec. 1.3: The interacting Green s function Feynman diagrams Summary Sec. 1.3: The interacting Green s function Feynman diagrams From Sec. 1.2.1: Remember the most important properties of the one-particle Green s function for non-interacting electrons: G 0 αβ(r,

More information

Electron-positron production in kinematic conditions of PrimEx

Electron-positron production in kinematic conditions of PrimEx Electron-positron production in kinematic conditions of PrimEx Alexandr Korchin Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine 1 We consider photoproduction of e + e pairs on a nucleus

More information

QUANTUM ELECTRODYNAMICS AND RENORMALIZATION THEORY IN THE INFINITE MOMENTUM FRAME*

QUANTUM ELECTRODYNAMICS AND RENORMALIZATION THEORY IN THE INFINITE MOMENTUM FRAME* SLAC-PUB-1100 (TH) and (EXP) August 1972 QUANTUM ELECTRODYNAMICS AND RENORMALIZATION THEORY IN THE INFINITE MOMENTUM FRAME* Stanley J. Brodsky and Ralph Roskies I- Stanford Linear Accelerator Center, Stanford

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

221B Lecture Notes Quantum ElectroDynamics

221B Lecture Notes Quantum ElectroDynamics 221B Lecture Notes Quantum ElectroDynamics 1 Putting Everything Together Now we are in the position to discuss a truly relativistic, quantum formulation of electrodynamics. We have discussed all individual

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nuclear and Particle Physics (5110) March 23, 2009 From Nuclear to Particle Physics 3/23/2009 1 Nuclear Physics Particle Physics Two fields divided by a common set of tools Theory: fundamental

More information

Quantum Electrodynamics

Quantum Electrodynamics Quantum Electrodynamics von Walter Greiner, Joachim Reinhardt Neuausgabe Quantum Electrodynamics Greiner / Reinhardt schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Thematische Gliederung:

More information

Particle Physics: Introduction to the Standard Model

Particle Physics: Introduction to the Standard Model Particle Physics: Introduction to the Standard Model Quantum Electrodynamics (I) Frédéric Machefert frederic@cern.ch Laboratoire de l accélérateur linéaire (CNRS) Cours de l École Normale Supérieure 24,

More information

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5)

be stationary under variations in A, we obtain Maxwell s equations in the form ν J ν = 0. (7.5) Chapter 7 A Synopsis of QED We will here sketch the outlines of quantum electrodynamics, the theory of electrons and photons, and indicate how a calculation of an important physical quantity can be carried

More information

Physics Quantum Field Theory I. Section 1: Course Logistics and Introduction

Physics Quantum Field Theory I. Section 1: Course Logistics and Introduction Physics 8.323 Quantum Field Theory I Section 1: Course Logistics and February 2012 c 2012 W. Taylor 8.323 Section 1: Logistics + intro 1 / 1 Course info: http://web.mit.edu/8.323/www Lecturer: Washington

More information

Relativistic Strong Field Ionization and Compton Harmonics Generation

Relativistic Strong Field Ionization and Compton Harmonics Generation Relativistic Strong Field Ionization and Compton Harmonics Generation Farhad Faisal Fakultaet fuer Physik Universitiaet Bielefeld Germany Collaborators: G. Schlegel, U. Schwengelbeck, Sujata Bhattacharyya,

More information

On particle production by classical backgrounds

On particle production by classical backgrounds On particle production by classical backgrounds arxiv:hep-th/0103251v2 30 Mar 2001 Hrvoje Nikolić Theoretical Physics Division, Rudjer Bošković Institute, P.O.B. 180, HR-10002 Zagreb, Croatia hrvoje@faust.irb.hr

More information

Lecture-05 Perturbation Theory and Feynman Diagrams

Lecture-05 Perturbation Theory and Feynman Diagrams Lecture-5 Perturbation Theory and Feynman Diagrams U. Robkob, Physics-MUSC SCPY639/428 September 3, 218 From the previous lecture We end up at an expression of the 2-to-2 particle scattering S-matrix S

More information

The Dirac Equation. Topic 3 Spinors, Fermion Fields, Dirac Fields Lecture 13

The Dirac Equation. Topic 3 Spinors, Fermion Fields, Dirac Fields Lecture 13 The Dirac Equation Dirac s discovery of a relativistic wave equation for the electron was published in 1928 soon after the concept of intrisic spin angular momentum was proposed by Goudsmit and Uhlenbeck

More information

Effective Field Theory in Cosmology

Effective Field Theory in Cosmology C.P. Burgess Effective Field Theory in Cosmology Clues for cosmology from fundamental physics Outline Motivation and Overview Effective field theories throughout physics Decoupling and naturalness issues

More information

Richard P. Feynman The Nobel Prize in Physics Nobel Lecture. The Development of the Space-Time View of Quantum Electrodynamics

Richard P. Feynman The Nobel Prize in Physics Nobel Lecture. The Development of the Space-Time View of Quantum Electrodynamics Richard P. Feynman The Nobel Prize in Physics 1965 Nobel Lecture Nobel Lecture, December 11, 1965 The Development of the Space-Time View of Quantum Electrodynamics We have a habit in writing articles published

More information

Importance of Geometry

Importance of Geometry Mobolaji Williams Motifs in Physics March 9, 2017 Importance of Geometry These notes are part of a series concerning Motifs in Physics in which we highlight recurrent concepts, techniques, and ways of

More information

Quantum Quenches in Extended Systems

Quantum Quenches in Extended Systems Quantum Quenches in Extended Systems Spyros Sotiriadis 1 Pasquale Calabrese 2 John Cardy 1,3 1 Oxford University, Rudolf Peierls Centre for Theoretical Physics, Oxford, UK 2 Dipartimento di Fisica Enrico

More information

Lecture notes Particle Physics II. Quantum Chromo Dynamics. 6. Asymptotic Freedom. Michiel Botje Nikhef, Science Park, Amsterdam

Lecture notes Particle Physics II. Quantum Chromo Dynamics. 6. Asymptotic Freedom. Michiel Botje Nikhef, Science Park, Amsterdam Lecture notes Particle Physics II Quantum Chromo Dynamics 6. Asymptotic Freedom Michiel Botje Nikhef, Science Park, Amsterdam December, 03 Charge screening in QED In QED, a charged particle like the electron

More information

Feynman Diagrams. e + e µ + µ scattering

Feynman Diagrams. e + e µ + µ scattering Feynman Diagrams Pictorial representations of amplitudes of particle reactions, i.e scatterings or decays. Greatly reduce the computation involved in calculating rate or cross section of a physical process,

More information

Relativistic Waves and Quantum Fields

Relativistic Waves and Quantum Fields Relativistic Waves and Quantum Fields (SPA7018U & SPA7018P) Gabriele Travaglini December 10, 2014 1 Lorentz group Lectures 1 3. Galileo s principle of Relativity. Einstein s principle. Events. Invariant

More information

The Wave Structure of the Electric Field Michael Harney

The Wave Structure of the Electric Field Michael Harney The Wave Structure of the Electric Field Michael Harney Maxwell's equations describe the interactions of the electromagnetic field at a macroscopic level. In the 1920s, Louis DeBroglie demonstrated that

More information

The Electron Is a Charged Photon

The Electron Is a Charged Photon The Electron Is a Charged Photon Richard Gauthier, richgauthier@gmail.com Santa Rosa Junior College, USA http://www.superluminalquantum.org Abstract: A charged photon and its light-speed helical trajectory

More information

g-factor and the Helical Solenoid Electron Model

g-factor and the Helical Solenoid Electron Model g-factor and the Helical Solenoid Electron Model Oliver Consa oliver.consa@gmail Department of Physics and Nuclear Engineering (UPC) Spain, February 2017 Abstract A new model of the electron with Helical

More information

HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY

HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY HIGHER ORDER THERMAL CORRECTIONS TO PHOTON SELF ENERGY Mahnaz Q. Haseeb Physics Department COMSATS Institute of Information Technology Islamabad Outline Relevance Finite Temperature Effects One Loop Corrections

More information

Lecture 3 (Part 1) Physics 4213/5213

Lecture 3 (Part 1) Physics 4213/5213 September 8, 2000 1 FUNDAMENTAL QED FEYNMAN DIAGRAM Lecture 3 (Part 1) Physics 4213/5213 1 Fundamental QED Feynman Diagram The most fundamental process in QED, is give by the definition of how the field

More information

QED processes in intense laser fields

QED processes in intense laser fields QED processes in intense laser fields Anton Ilderton Dept. Physics, Umeå, Sweden 22 September, QFEXT 2011, Benasque Phys.Rev.Lett. 106 (2011) 020404. Phys. Lett. B692 (2010) 250. With C. Harvey, F. Hebenstreit,

More information

A guide to. Feynman diagrams in the many-body problem

A guide to. Feynman diagrams in the many-body problem A guide to. Feynman diagrams in the many-body problem Richard D. Mattuck SECOND EDITION PAGE Preface to second edition v Preface to first edition. vi i 0. The Many-Body Problem for Everybody 1 0.0 What

More information

Euclidean path integral formalism: from quantum mechanics to quantum field theory

Euclidean path integral formalism: from quantum mechanics to quantum field theory : from quantum mechanics to quantum field theory Dr. Philippe de Forcrand Tutor: Dr. Marco Panero ETH Zürich 30th March, 2009 Introduction Real time Euclidean time Vacuum s expectation values Euclidean

More information

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora

Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Hadron Physics & Quantum Chromodynamics Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Hadron Physics & QCD Part 1: First Encounter With Hadrons: Introduction to Mesons & Baryons, The Quark

More information

Ringel-Hall Algebras II

Ringel-Hall Algebras II October 21, 2009 1 The Category The Hopf Algebra 2 3 Properties of the category A The Category The Hopf Algebra This recap is my attempt to distill the precise conditions required in the exposition by

More information

WHITE NOISE APPROACH TO FEYNMAN INTEGRALS. Takeyuki Hida

WHITE NOISE APPROACH TO FEYNMAN INTEGRALS. Takeyuki Hida J. Korean Math. Soc. 38 (21), No. 2, pp. 275 281 WHITE NOISE APPROACH TO FEYNMAN INTEGRALS Takeyuki Hida Abstract. The trajectory of a classical dynamics is detrmined by the least action principle. As

More information

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016

3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 2016 3P1a Quantum Field Theory: Example Sheet 1 Michaelmas 016 Corrections and suggestions should be emailed to B.C.Allanach@damtp.cam.ac.uk. Starred questions may be handed in to your supervisor for feedback

More information

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations

Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Electromagnetic Wave Propagation Lecture 1: Maxwell s equations Daniel Sjöberg Department of Electrical and Information Technology September 3, 2013 Outline 1 Maxwell s equations 2 Vector analysis 3 Boundary

More information

A More or Less Well Behaved Quantum Gravity. Lagrangean in Dimension 4?

A More or Less Well Behaved Quantum Gravity. Lagrangean in Dimension 4? Adv. Studies Theor. Phys., Vol. 7, 2013, no. 2, 57-63 HIKARI Ltd, www.m-hikari.com A More or Less Well Behaved Quantum Gravity Lagrangean in Dimension 4? E.B. Torbrand Dhrif Allevagen 41, 18639 Vallentuna,

More information

Path Integrals. Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz Jena

Path Integrals. Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz Jena Path Integrals Andreas Wipf Theoretisch-Physikalisches-Institut Friedrich-Schiller-Universität, Max Wien Platz 1 07743 Jena 5. Auflage WS 2008/09 1. Auflage, SS 1991 (ETH-Zürich) I ask readers to report

More information

The Building Blocks of Nature

The Building Blocks of Nature The Building Blocks of Nature PCES 4.61 Schematic picture of constituents of an atom, & rough length scales. The size quoted for the nucleus here (10-14 m) is too large- a single nucleon has size 10-15

More information

Electron Stability Approach to Finite Quantum Electrodynamics

Electron Stability Approach to Finite Quantum Electrodynamics Electron Stability Approach to Finite Quantum Electrodynamics Dean Chlouber (Dated: September 4, 017) This paper analyses electron stability and applies the resulting stability principle to resolve divergence

More information