Double Beta Decay matrix elements, remarks and perspectives

Size: px
Start display at page:

Download "Double Beta Decay matrix elements, remarks and perspectives"

Transcription

1 Double Beta Decay matrix elements, remarks and perspectives Petr Vogel, Caltech NNR05 Workshop CAST/SPring-8 Dec. 4, 2005

2 Thanks to the discoveries of the recent past we know a lot about neutrinos. But, there are still many things we do not know and would like to know: Are neutrinos Majorana particles? What is the pattern of neutrino masses? What is the absolute mass scale? Is CP invariance violated in the lepton sector? Is there a relation between all of this and the baryon excess in the Universe? Double beta decay is a process that can help in answering some of these questions

3 What are the questions that we should ask and try to answer? 1. What is the physics of the fundamental dd -> uuee lepton number violating process? How can we tell? 2. How to relate the 0νββ decay rate to the fundamental parameters? In other words, how can we evaluate the nuclear matrix elements? And how uncertain their values are? 3. What is the relation of the deduced fundamental parameters and the neutrino mixing matrix? Or, in other words, what is the relation between the 0νββ decay rate and the absolute neutrino mass.

4 Assume that indeed 1/τ ββ ~ <m ββ > 2. What is the relation between this quantity and the absolute neutrino mass? <m ββ > = Σ U ei2 m i. This quatity depends on the oscillation parameters, on the unknown phases of U ei, and on the unknown absolute neutrino mass. The dependence on the Majorana phases can be eliminated by considering the maximum and minimum values of <m ββ >. Only the dependence on the absolute mass remains.

5 minimum mass, not observable from observational cosmology, M = m 1 +m 2 +m 3 from β decay <m ββ > vs. the absolute mass scale blue shading: normal hierarchy, m 2 31 > 0. red shading: inverted hierarchy m 2 31 < 0 shading:best fit parameters, lines 95% CL errors. Thanks to A. Piepke

6 <m ββ > (ev) The degenerate mass region can be explored by ways independent on the Majorana nature of neutrinos Planck +SDSS sensitivity Katrin sensitivity

7 Nuclear matrix elements A provocative question: Do we know at all how large the matrix elements really are? Or, in other words, why there is so much variation among the published results? from Bahcall et al hep-ph/ , spread of published values of squared nuclear matrix element for 76 Ge This suggests an uncertainty of as much as a factor of 5. Is it really so bad?

8 Remark (still provocative): If the uncertainty in the M.E. is as large as a factor of 3 (or more), i.e., an order of magnitude (or more) in halflife, perhaps we need not perform sophisticated calculations at all. Remember the classification of ordinary β-decays: allowed β decays have log(ft) = and we need to know just spins and parities of the corresponding states. However, with such uncertainty our predictions would be much less useful for planning and interpreting 0νββ decay experiments.

9 In contrast, Rodin et al, nucl-th/ suggest that the uncertainty is much less, perhaps only ~ 30% (within QRPA and its generalizations, naturally). So, who is right? Slowly and smoothly decreasing (except 96 Zr) with A

10 Two examples of alternative calculations. Notice that these are 2-3 times larger, essentially (but not quite) constant with A.

11 Where are the differences of these two examples coming from? The bulk of the differences is understood, but there is no consensus which approach is correct (or at least more correct). The main effect (by a factor of ~2) comes from taking into account (for Rodin et al.) and not taking into account (Civitarese and Suhonen) the short-range repulsion O -> fof. Another effect comes (by ~30%) from including (or not) the induced pseudoscalar coupling. It would be helpful (to put it mildly) if we can agree here and now how to treat these effects.

12 More on nuclear matrix elements The most important operator is Σ h(r ij )[σ i σ j (g V /g A ) 2 ]τ + τ + where the sum is over all nucleon pairs, and r ij is the distance between the nucleons. h(r) is the `neutrino potential, the Fourier transform of the neutrino propagator h(r)~e -1.5Er /r. (Often Rh(r) is used to make the m.e. dimensionless, with R being the nuclear radius; see previous plots.) Tests show that it is OK to treat this two-body operator in closure; the result depends only weakly on the assumed average nuclear excitation energy. It is customary to expand the operators in terms of multipole states of the intermediate odd-odd nucleus. As a consequence of the high momentum of the virtual neutrino many multipoles contribute significantly, unlike for the case of the 2ν decay where only 1 + contributes.

13 Many multipoles contribute in each case. Most of them, with the exception of 1 +, have the same sign. This is from Rodin et al, other calculations get a similar pattern.

14 76 Ge 100 Mo Note the reduction caused by s.r.c and higher order effects Figure by F. Simkovic

15 from Civitarese & Suhonen, Phys. Lett. B626,80(2005), (same Figs. in Nucl.Phys. A761,313(2005)

16 Here the contribution of the 1+ multipole, and of all other ones is plotted against the parameter g pp that signifies the strength of the neutron-proton interaction. The nominal value is g pp =1.0. The dots denote the adjusted value that reproduces the 2ν decay rate in each nucleus. Note the steep slope of the 1 + curve and the relatively gentle slope of the dashed lines. This suggests that adjusting properly the contribution of the 1 + is important.

17 Nuclear matrix elements for the 2ν decay deduced from measured halflives. Note the pronounced shell dependence. 1/T 1/2 = G(E,Z) (M GT 2ν ) 2 easily calculable phase space factor Geoch QuickTime and a TIFF (LZW) decompressor are needed to see this picture. NEMO-2 Cuoricino Geoch

18 The 2ν matrix element contains products of the β - (right leg) and EC (left leg) amplitudes, weighed by the energy denominators. Single state dominance is often invoked. Energies, and squares of the amplitudes (but not signs) of the 1 + states could be determined by charge exchange reactions, testing the SSD idea. However, for contribution of the 1 + multipole to 0ν m.e. the energy denominator represents a wrong weight. It looks more like the closure m.e.

19 QRPA calculation for 100 Mo. The closure m.e. and M 2ν are not proportional to each other. But M closure and M 0ν (1+) essentially are. M closure M 2ν (x3.5) m.e. M 0ν (1 + ) adjusted g pp g pp

20 QRPA calculation for 76 Ge. The closure m.e. and M 2ν are not really proportional to each other. But M closure and M 0ν (1+) essentially are. M closure m.e. M 0ν (1+) adjusted g pp M 2ν (x7.5) g pp

21 Everybody agrees that within QRPA, the most popular method of evaluating the 0νββ matrix elements, the crucial parameter is g pp the strength of the particleparticle (neutron-proton) interaction. (There are other, implicit, parameters within QRPA that affect the results as well, more on them later) Consequently, the choice of g pp is important. Since the 1 + channel is the most sensitive one to the variation of g pp it is almost obvious that it should be used for the adjustment. The contribution of all other multipoles to 0νββ m.e. is less sensitive to the exact value of g pp, Hopefully that contribution is correctly reproduced by QRPA. There is no agreement on the proper way of g pp adjustment. Rodin et al. use the M 2ν matrix element.

22 Rodin et al. Phys. Rev. C68, (2003), and Rodin et al. nucl-th/ have shown that their method of adjustment results in very little sensitivity to: a) how many s.p. states are included? b) which parametrization of the G-matrix is used? c) whether the g A is quenched? d) whether one of the generalization of QRPA is used? It is likely that a substantial part of the spread in the QRPA results is caused by different choices a) - d) without corresponding renormalization. There is a heated debate currently whether this is indeed the answer to the problem. The other cause of the spread, already stressed, is the inclusion (or not) of the s.r.c. and induced currents.

23 The outliers predict wrong 2ν halflife. The matrix elements of SM and Rodin et al. are quite close. Bobyk ν wrong 20x SM 96 Caurier QRPA Rodin 2003 Tomoda 86 proj.m.f. 2ν wrong 6x

24 Comparison of M 0ν of Rodin et al. (RQRPA) and Nowacki et al. (SM, private comm., preliminary 2004) and older published (Caurier et al. 1996) Nucleus RQRPA SM 76 Ge Se Zr Mo Cd Te (1.0) 136 Xe (0.6) Except for 100 Mo the agreement between these very different calculations is reasonably good. Note that the SM calculations include the reduction caused by the s.r.c. and induced currents.

25 F.Nowacki, preliminary, private comm. 2004

26 0νββ half-lives for <m ββ > = 50 mev based on the matrix elements of Rodin et al. 76 Ge ( ) x y 82 Se ( ) x y 100 Mo ( ) x y 130 Te ( ) x y 136 Xe ( ) x Y (no 2ν observed yet) Note: Calculated matrix elements decrease with increasing A, but the phase-space factors usually increase, particularly the Coulomb factor, hence relatively little variation of T 1/2 with A. Note: The sensitivity to <m ββ > scales as 1/(T 1/2 ) 1/2

27 Summary and/or Conclusions Study of 0νββ decay entered a new era. No longer is the aim just to push the sensitivity higher and the background lower, but to explore specific regions of the <m ββ > values. In agreement with the `phased program the plan is to explore the `degenerate region (0.1-1 ev) first, with ~100 kg sources, and prepare the study of `inverted hierarchy ( eV) region with ~ ton sources that should follow later. In this context it is important to keep in mind the questions I discussed: a) Relation of <m ββ > and the absolute mass (rather clear already, becoming less uncertain with better oscillation results). b) Mechanism of the decay (exploring LFV, models of LNV, running of LHC to explore the ~TeV mass particles). c) Nuclear matrix elements (exploring better, and agreeing on, the reasons for the spread of calculated values, and deciding on the optimum way of performing the calculations, while pursuing vigorously also the application of the shell model).

Anatomy of double-beta-decay nuclear matrix elements Petr Vogel, Caltech

Anatomy of double-beta-decay nuclear matrix elements Petr Vogel, Caltech Anatomy of double-beta-decay nuclear matrix elements Petr Vogel, Caltech Carolina International Symposium on Neutrino Physics May 15-17, 2008, Columbia, SC The status of the present knowledge of the neutrino

More information

Neutrinoless double beta decay. Introduction, what its observation would prove, and its nuclear matrix elements.

Neutrinoless double beta decay. Introduction, what its observation would prove, and its nuclear matrix elements. Neutrinoless double beta decay. Introduction, what its observation would prove, and its nuclear matrix elements. Petr Vogel Caltech ECT,Trento, 7/31/2009 ββ decay can exist in two modes. The two-neutrino

More information

Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d)

Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d) Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d) Dependence on the distance between neutrons (or protons)

More information

Lecture VI: Neutrino propagator and neutrino potential

Lecture VI: Neutrino propagator and neutrino potential Lecture VI: Neutrino propagator and neutrino potential Petr Vogel, Caltech NLDBD school, November 1, 217 For the case we are considering, i.e. with the exchange of light Majorana neutrinos, the double

More information

Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements.

Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements. Overview of theory of neutrino mass and of the 0νββ nuclear matrix elements. Petr Vogel, Caltech INT workshop on neutrino mass measurements Seattle, Feb.8, 2010 The mixing angles and Δm 2 ij are quite

More information

arxiv:nucl-th/ v1 23 Apr 1999

arxiv:nucl-th/ v1 23 Apr 1999 Nuclear Physics of Double Beta Decay Petr Vogel 1 Caltech, Physics Dept. 161-33, Pasadena, CA 91125, USA Abstract arxiv:nucl-th/9904065v1 23 Apr 1999 Study of the neutrinoless ββ decay allows us to put

More information

RECENT RESULTS IN DOUBLE BETA DECAY

RECENT RESULTS IN DOUBLE BETA DECAY RECENT RESULTS IN DOUBLE BETA DECAY Francesco Iachello Yale University Neutrino Oscillation Workshop Otranto, September 8, 2014 CLASSIFICATION OF DOUBLE BETA DECAY (DBD) β - β - modes (i) Two-neutrino

More information

Neutrinoless Double Beta Decay within the Interacting Shell Model

Neutrinoless Double Beta Decay within the Interacting Shell Model Neutrinoless Double Beta Decay within the Interacting Shell Model Institute for Nuclear Physics, Technical University Darmstadt (TUD) ExtreMe Matter Institute (EMMI), GSI EFN 2010, El Escorial, 27-29 September

More information

Double Beta Decay Committee to Assess the Science Proposed for a Deep Underground Science and Engineering Laboratory (DUSEL) December 14-15, 2010

Double Beta Decay Committee to Assess the Science Proposed for a Deep Underground Science and Engineering Laboratory (DUSEL) December 14-15, 2010 Committee to Assess the Science Proposed for a Deep Underground Science and Engineering Laboratory (DUSEL) December 14-15, 2010 Steve Elliott Steve Elliott Neutrinos Matrix Elements The Need for Multiple

More information

MEDEX 2017 Prague, Czech Republic May 30 - June 2, 2017 Neutrino mass, double beta decay and nuclear structure Fedor Šimkovic

MEDEX 2017 Prague, Czech Republic May 30 - June 2, 2017 Neutrino mass, double beta decay and nuclear structure Fedor Šimkovic MEDEX 2017 Prague, Czech Republic May 30 - June 2, 2017 Neutrino mass, double beta decay and nuclear structure Fedor Šimkovic 5/30/2017 Fedor Simkovic 1 OUTLINE Introduction -oscillations and -masses The

More information

arxiv:nucl-th/ v1 16 Dec 2004

arxiv:nucl-th/ v1 16 Dec 2004 Nuclear matrix elements of ββ decay from β-decay data Jouni Suhonen 1 Department of Physics, University of Jyväskylä, P.O.Box 35, FIN-40014, Jyväskylä, Finland arxiv:nucl-th/0412064v1 16 Dec 2004 Abstract

More information

Neutrinoless ββ Decays and Nuclear Structure

Neutrinoless ββ Decays and Nuclear Structure Neutrinoless ββ Decays and Nuclear Structure ALFREDO POVES Departamento de Física Teórica and IFT, UAM-CSIC Universidad Autónoma de Madrid (Spain) Frontiers in Nuclear and Hadronic Physics Galileo Galilei

More information

Two Neutrino Double Beta (2νββ) Decays into Excited States

Two Neutrino Double Beta (2νββ) Decays into Excited States Two Neutrino Double Beta (2νββ) Decays into Excited States International School of Subnuclear Physics 54 th Course: The new physics frontiers in the LHC-2 era Erice, 17/06/2016 Björn Lehnert TU-Dresden,

More information

with realistic NN forces

with realistic NN forces 2νββ decay of deformed nuclei with realistic NN forces Vadim Rodin Amand Faessler, Mohamed Saleh Yousef, Fedor Šimkovic NOW 28, Conca Specchiulla, 9/9/28 Introduction Nuclear νββ-decay ( ν=ν) e - Light

More information

Matrix elements for processes that could compete in double beta decay

Matrix elements for processes that could compete in double beta decay Matrix elements for processes that could compete in double beta decay Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Ø Support from NSF grant PHY-106817

More information

Description of 0νββ and 2νββ decay using interacting boson model with isospin restoration. Jenni Kotila

Description of 0νββ and 2νββ decay using interacting boson model with isospin restoration. Jenni Kotila Description of 0νββ and 2νββ decay using interacting boson model with isospin restoration Jenni Kotila FIDIPRO-HIP workshop on Nuclear Isospin Properties Helsinki Institute of Physics, Helsinki 16-17.10.2014

More information

D. Frekers, Univ. Münster, TRIUMF-Vancouver ββ-decay matrix elements & charge-exchange reactions (some surprises in nuclear physics??

D. Frekers, Univ. Münster, TRIUMF-Vancouver ββ-decay matrix elements & charge-exchange reactions (some surprises in nuclear physics?? D. Frekers, Univ. Münster, TRIUMF-Vancouver ββ-decay matrix elements & charge-exchange reactions (some surprises in nuclear physics??) KVI: (d, 2 He) reactions GT + RCNP: (3He,t) reactions GT - (TRIUMF:

More information

To Be or Not To Be: Majorana Neutrinos, Grand Unification, and the Existence of the Universe

To Be or Not To Be: Majorana Neutrinos, Grand Unification, and the Existence of the Universe To Be or Not To Be: Majorana Neutrinos, Grand Unification, and the Existence of the Universe Assistant Professor, University of Washington Aug. 3, 2015 The Neutrino Meitner and Hahn (1911): 210 Bi ( Radium

More information

Neutrinoless Double Beta Decay for Particle Physicists

Neutrinoless Double Beta Decay for Particle Physicists Neutrinoless Double Beta Decay for Particle Physicists GK PhD Presentation Björn Lehnert Institut für Kern- und Teilchenphysik Berlin, 04/10/2011 About this talk Double beta decay: Particle physics implications

More information

Shell model calculations for neutrinoless double beta decay

Shell model calculations for neutrinoless double beta decay Journal of Physics: Conference Series OPEN ACCESS Shell model calculations for neutrinoless double beta decay To cite this article: Sabin Stoica 2015 J. Phys.: Conf. Ser. 580 012031 View the article online

More information

Different modes of double beta decay Fedor Šimkovic

Different modes of double beta decay Fedor Šimkovic e Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics Erice-Sicily: September 16-24, 2017 Different modes of double beta decay Fedor Šimkovic 9/23/2017 Fedor Simkovic 1 OUTLINE Introduction

More information

Nuclear Structure and Double Beta Decay

Nuclear Structure and Double Beta Decay 2 nd South Africa-JINR Symposium Models and Methods in Few- and Many-Body Systems Dubna, September 8-10, 2010 Nuclear Structure and Double Beta Decay Fedor Šimkovic JINR Dubna, Russia Comenius University,

More information

Lecture #4 a) Comments on effective ββ decay operators b) The role of measured orbit occupancies c) The ββ decay with heavy particle exchange d)

Lecture #4 a) Comments on effective ββ decay operators b) The role of measured orbit occupancies c) The ββ decay with heavy particle exchange d) Lecture #4 a) Comments on effective ββ decay operators b) The role of measured orbit occupancies c) The ββ decay with heavy particle exchange d) Neutrino magnetic moment and Majorana vs. Dirac neutrinos

More information

Sensitivity and Discovery Prospects for 0νββ-decay

Sensitivity and Discovery Prospects for 0νββ-decay Sensitivity and Discovery Prospects for 0νββ-decay Introduction, ν properties, 0νββ Sensitivity and Discovery Considerations Next-generation Experimental Challenges Nuclear Matrix Elements and

More information

The Majorana Neutrinoless Double-Beta Decay Experiment

The Majorana Neutrinoless Double-Beta Decay Experiment The Majorana Neutrinoless Double-Beta Decay Experiment A proposed detector to search for neutrinoless double-beta decay Reyco Henning Lawrence Berkeley National Laboratory for the Majorana Collaboration

More information

arxiv: v1 [physics.ins-det] 1 Feb 2016

arxiv: v1 [physics.ins-det] 1 Feb 2016 arxiv:1602.00364v1 [physics.ins-det] 1 Feb 2016 Solar neutrino interactions with liquid scintillators used for double beta-decay experiments 1. Introduction Hiroyasu Ejiri 1 and Kai Zuber 2 1. Research

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London Nuclear Particle Astrophysics Seminar Yale 03/06/2014 Neutrinos Oscillations Absolute Mass Neutrinoless Double Beta Decay Neutrinos in Cosmology

More information

Double Beta Decay: Physics, Recollections, and Future. Boris Kayser CISNP May 16, 2008

Double Beta Decay: Physics, Recollections, and Future. Boris Kayser CISNP May 16, 2008 Double Beta Decay: Physics, Recollections, and Future Boris Kayser CISNP May 16, 2008 1 Are Neutrinos Majorana Particles? (Does ν = ν?) 2 What Is the Question? For each mass eigenstate ν i, does or ν i

More information

The NEMO experiment. Present and Future. Ruben Saakyan UCL 28 January 2004 IOP meeting on double beta decay Sussex

The NEMO experiment. Present and Future. Ruben Saakyan UCL 28 January 2004 IOP meeting on double beta decay Sussex The NEMO experiment. Present and Future. Ruben Saakyan UCL 28 January 2004 IOP meeting on double beta decay Sussex Neutrino Ettore Majorana Observatory 50 physicists and engineers 13 Laboratories/Universities

More information

D. Frekers. Charge-exchange reactions GT-transitions, bb-decay b b. and things beyond. n n 13 N 15 O 17F. 7Be. pep. hep

D. Frekers. Charge-exchange reactions GT-transitions, bb-decay b b. and things beyond. n n 13 N 15 O 17F. 7Be. pep. hep Flux @ 1 AU [cm-1 s-1 MeV-1)] for lines [cm -1 s-1 ] D. Frekers n n Charge-exchange reactions GT-transitions, bb-decay b b and things beyond 10 1 10 10 10 8 10 6 10 4 10 pp 13 N 15 O 17F 7Be pep 0.1 0.

More information

D. Frekers. Novel approaches to the nuclear physics of bb-decay: INT chargex reactions, mass-measurements,m-capture

D. Frekers. Novel approaches to the nuclear physics of bb-decay: INT chargex reactions, mass-measurements,m-capture D. Frekers Novel approaches to the nuclear physics of bb-decay: chargex reactions, mass-measurements,m-capture b n n INT- 2018 b GT? Gentle Touch: q tr = 0 l = 0 dσ dσ 5 10 0 hω excitation σ n n Where

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London BLV 2017 Case Western Reserve U. 15-18 May 2017 Origin of neutrino masses beyond the Standard Model Two possibilities to define neutrino mass

More information

Neutrino Nuclear Responses for ββ ν & Charge Exchange Reactions. Hiro Ejiri RCNP Osaka & CTU Praha

Neutrino Nuclear Responses for ββ ν & Charge Exchange Reactions. Hiro Ejiri RCNP Osaka & CTU Praha Neutrino Nuclear Responses for ββ ν & Charge Exchange Reactions Hiro Ejiri RCNP Osaka & CTU Praha Nuclear responses (matrix elements) for ββ ν and charge exchange reactions H. Ejiri, Phys. Report 338 (2000)

More information

Parity violation. no left-handed ν$ are produced

Parity violation. no left-handed ν$ are produced Parity violation Wu experiment: b decay of polarized nuclei of Cobalt: Co (spin 5) decays to Ni (spin 4), electron and anti-neutrino (spin ½) Parity changes the helicity (H). Ø P-conservation assumes a

More information

arxiv: v1 [nucl-th] 15 Aug 2018

arxiv: v1 [nucl-th] 15 Aug 2018 0νββ nuclear matrix elements, neutrino potentials and SU(4) symmetry Fedor Šimkovic BLTP, JINR, 141980 Dubna, Moscow region, Russia and Comenius University, Mlynská dolina F1, SK 842 48 Bratislava, Slovakia

More information

Henry Primakoff Lecture: Neutrinoless Double-Beta Decay

Henry Primakoff Lecture: Neutrinoless Double-Beta Decay Henry Primakoff Lecture: Neutrinoless Double-Beta Decay CENPA Center for Experimental Nuclear Physics and Astrophysics University of Washington Renewed Impetus for 0νββ The recent discoveries of atmospheric,

More information

Is the Neutrino its Own Antiparticle?

Is the Neutrino its Own Antiparticle? Is the Neutrino its Own Antiparticle? PHYS 294A Jan 24, 2013 Outline What s a neutrino? The case for Majorana neutrinos Probing the nature of the neutrino with neutrinoless double-beta decay 2 What s a

More information

K. Zuber, TU Dresden DESY, 9/10 September In search of neutrinoless double beta decay

K. Zuber, TU Dresden DESY, 9/10 September In search of neutrinoless double beta decay K. Zuber, TU Dresden DESY, 9/10 September 2008 In search of neutrinoless double beta decay Contents General Introduction Neutrino physics and DBD Experimental considerations GERDA COBRA SNO+ Outlook and

More information

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Neutrinos and Cosmos Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Outline A Little Historical Perspective Interpretation of Data & Seven Questions Matter Anti-Matter Asymmetry

More information

Kinematic searches. Relativity. Uncertainty. Best candidate: Using molecular tritium, daughter will be Kai Zuber 25

Kinematic searches. Relativity. Uncertainty. Best candidate: Using molecular tritium, daughter will be Kai Zuber 25 Kinematic searches Relativity Uncertainty Best candidate: Using molecular tritium, daughter will be 12.06.2014 Kai Zuber 25 Tritium beta decay Half-life :12.3 years Matrix element: 5.55 Endpoint energy:

More information

Double-beta decay and BSM physics: shell model nuclear matrix elements for competing mechanisms

Double-beta decay and BSM physics: shell model nuclear matrix elements for competing mechanisms Double-beta decay and BSM physics: shell model nuclear matrix elements for competing mechanisms Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Ø Support

More information

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge Allen Caldwell Max-Planck-Institut für Physik What we know Mass Scale NORMAL INVERTED m 12 2 known m 13 2 known Mixing

More information

Double beta decay to the first 2 + state within a boson expansion formalism with a projected spherical single particle basis

Double beta decay to the first 2 + state within a boson expansion formalism with a projected spherical single particle basis Physics Letters B 647 (007) 65 70 www.elsevier.com/locate/physletb Double beta decay to the first + state within a boson expansion formalism with a projected spherical single particle basis A.A. Raduta

More information

Is the Neutrino its Own Antiparticle?

Is the Neutrino its Own Antiparticle? Is the Neutrino its Own Antiparticle? CENPA REU Summer Seminar Series University of Washington, Seattle, WA July 22, 2013 Outline What s a neutrino? The case for Majorana neutrinos Probing the nature of

More information

Status of neutrino mass-mixing parameters and implications for single and double beta decay searches

Status of neutrino mass-mixing parameters and implications for single and double beta decay searches Padova, 24 febbraio 2007 Status of neutrino mass-mixing parameters and implications for single and double beta decay searches Gianluigi Fogli Dipartimento di Fisica dell Università di Bari & Sezione INFN

More information

Summary of the Workshop on: Nuclear matrix elements for neutrinoless double beta decay

Summary of the Workshop on: Nuclear matrix elements for neutrinoless double beta decay IPPP/05/56 DCPT/05/114 Summary of the Workshop on: Nuclear matrix elements for neutrinoless double beta decay Institute for Particle Physics Phenomenology University of Durham, UK 23.-24. 5. 2005 Editor:

More information

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar

QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates. N. Paar Strong, Weak and Electromagnetic Interactions to probe Spin-Isospin Excitations ECT*, Trento, 28 September - 2 October 2009 QRPA Calculations of Charge Exchange Reactions and Weak Interaction Rates N.

More information

Excited State Transitions in Double Beta Decay: A brief Review

Excited State Transitions in Double Beta Decay: A brief Review Excited State Transitions in Double Beta Decay: A brief Review Fifteenth International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS15) Dresden 26/08/2014 Björn Lehnert Institut für

More information

Neutrino interactions and cross sections

Neutrino interactions and cross sections Neutrino interactions and cross sections ν scattering on a free nucleon ν electron scattering ν scattering on light nuclei at low energies ν quasielastic scattering ν pion production ν deep inelastic scattering

More information

Electron Capture branching ratio measurements at TITAN-TRIUMF

Electron Capture branching ratio measurements at TITAN-TRIUMF Electron Capture branching ratio measurements at TITAN-TRIUMF T. Brunner, D. Frekers, A. Lapierre, R. Krücken, I. Tanihata, and J. Dillingfor the TITAN collaboration Canada s National Laboratory for Nuclear

More information

Sensitivity of CP Majorana phases using the synergy between cosmological and neutrinoless double beta decay data at high precision era of measures

Sensitivity of CP Majorana phases using the synergy between cosmological and neutrinoless double beta decay data at high precision era of measures Sensitivity of CP Majorana phases using the synergy between cosmological and neutrinoless double beta decay data at high precision era of measures Alexander A. Quiroga Departamento de Física, Pontifícia

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

How can we search for double beta decay? Carter Hall University of Maryland

How can we search for double beta decay? Carter Hall University of Maryland How can we search for double beta decay? Carter Hall University of Maryland 1 Neutrinoless Double Beta Decay (ββ0ν) Forbidden if neutrino mass is Dirac only N(Z,A) N(Z+2,A)e - e - e L - 2n W-W- ν R +εν

More information

Anatomy of the 0νββ nuclear matrix elements

Anatomy of the 0νββ nuclear matrix elements PHYSICAL REVIEW C 77, 553 8) Anatomy of the νββ nuclear matrix elements Fedor Šimkovic, 1,* Amand Faessler, 1 Vadim Rodin, 1 Petr Vogel, and onathan Engel 3 1 Institute für Theoretische Physik der Universität

More information

Search for Lepton Number Violation at LHCb

Search for Lepton Number Violation at LHCb Search for Lepton Number Violation at LHCb Update for Majorana Neutrino Search with Like-Sign Di-Muons: B π + μ μ decay P R E L I M I N A R Y, presented for the first time Bartłomiej Rachwał (IFJ PAN Kraków)

More information

Theoretical study of forbidden unique and non-unique beta decays of medium-heavy nuclei. Nael Soukouti

Theoretical study of forbidden unique and non-unique beta decays of medium-heavy nuclei. Nael Soukouti Theoretical study of forbidden unique and non-unique beta decays of medium-heavy nuclei Nael Soukouti Thesis Presented For The Degree of Master s In Theoretical Nuclear Physics Department Of Physics Finland

More information

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Wesley Ketchum and Abe Reddy EWI Group, UW REU 2006 Outline Neutrino Physics Background Double Beta Decay and the Majorana

More information

arxiv: v1 [nucl-th] 2 Jan 2013

arxiv: v1 [nucl-th] 2 Jan 2013 Novel shell-model analysis of the 136 Xe double beta decay nuclear matrix elements M. Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA B.A. Brown National Superconducting

More information

K. Zuber, Techn. Univ. Dresden Cocoyoc, Status of double beta decay searches

K. Zuber, Techn. Univ. Dresden Cocoyoc, Status of double beta decay searches K. Zuber, Techn. Univ. Dresden Status of double beta decay searches How to explain everything about double beta in 45 mins Cocoyoc, 6.1.2009 Contents General introduction Experimental considerations GERDA

More information

The Nature and Magnitude of Neutrino Mass

The Nature and Magnitude of Neutrino Mass The Nature and Magnitude of Neutrino Mass Kaushik Roy Stony Brook University September 14 2015 Outline What we know Our current knowledge regarding neutrino masses. What we do not know Open questions related

More information

Neutrinos in Nuclear Physics

Neutrinos in Nuclear Physics Neutrinos in Nuclear Physics R. D. McKeown Jefferson Lab, Newport News, VA, USA Department of Physics, College of William and Mary, Williamsburg, VA, USA DOI: http://dx.doi.org/10.3204/desy-proc-2014-04/305

More information

Double-beta decay matrix elements and charge exchange reactions

Double-beta decay matrix elements and charge exchange reactions Double-beta decay matrix elements and charge exchange reactions M. Sasano, Spin-Isospin Laboratory, RIKEN Nishina Center K. Yako, Center for Nuclear Physics, University of Tokyo E Double beta decay Double

More information

Neutrino Physics After the Revolution. Boris Kayser PASI 2006 October 26, 2006

Neutrino Physics After the Revolution. Boris Kayser PASI 2006 October 26, 2006 Neutrino Physics After the Revolution Boris Kayser PASI 2006 October 26, 2006 1 What We Have Learned 2 The (Mass) 2 Spectrum ν 3 ν 2 ν 1 } Δm 2 sol (Mass) 2 Δm 2 atm or Δm 2 atm ν ν 2 } Δm 2 sol 1 ν 3

More information

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Fine structure of nuclear spin-dipole excitations in covariant density functional theory 1 o3iø(œ April 12 16, 2012, Huzhou, China Fine structure of nuclear spin-dipole excitations in covariant density functional theory ùíî (Haozhao Liang) ŒÆÔnÆ 2012 c 4 13 F ÜŠöµ Š # Ç!Nguyen Van Giai Ç!ë+

More information

Erice, September, 2017,

Erice, September, 2017, Erice, September, 2017, Double beta (bb) decay neutrinoless double beta (0nbb) decay NME the specialties of 96 Zr/ 96 Nb for b and bb decay Mass measurements using the JYFLTRAP ion trap Results and the

More information

Double Beta Present Activities in Europe

Double Beta Present Activities in Europe APPEAL Workshop 19-21 February 2007, Japan Double Beta Present Activities in Europe Xavier Sarazin Laboratoire de l Accélérateur Linéaire Orsay France Germanium detector Bolometers CdZnTe semiconductors

More information

Double beta decay a problem of particle, nuclear and atomic physics

Double beta decay a problem of particle, nuclear and atomic physics Workshop on Fundamental symmetries: from nuclei and neutrinos to the universe Trento, Italy, June 25-29, 2007 Double beta decay a problem of particle, nuclear and atomic physics Fedor Šimkovic Comenius

More information

FIRST RESULT FROM KamLAND-Zen Double Beta Decay with 136 Xe

FIRST RESULT FROM KamLAND-Zen Double Beta Decay with 136 Xe FIRST RESULT FROM KamLAND-Zen Double Beta Decay with Xe A. GANDO for the KamLAND-Zen Collaboration Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan We present the first result

More information

THE NEUTRINOS. Boris Kayser & Stephen Parke Fermi National Accelerator Laboratory

THE NEUTRINOS. Boris Kayser & Stephen Parke Fermi National Accelerator Laboratory June 9, 2009 THE NEUTRINOS Boris Kayser & Stephen Parke Fermi National Accelerator Laboratory Recent, irrefutable evidence establishes that the ubiquitous neutrinos have tiny masses. Neutrino mass is physics

More information

K. Zuber, TU Dresden INT, Double beta decay experiments

K. Zuber, TU Dresden INT, Double beta decay experiments , TU Dresden INT, 3.6. 2015 Double beta decay experiments Double beta decay (A,Z) (A,Z+2) +2 e - + 2ν e (A,Z) (A,Z+2) + 2 e - - 2νββ 0νββ Unique process to measure character of neutrino The smaller the

More information

Nuclear matrix elements for neutrino-less double beta decay

Nuclear matrix elements for neutrino-less double beta decay LAUNCH 09 (Heidelberg, 9-12 November 2009) Learning from Astroparticle, Underground, Neutrino Physics and Cosmology Nuclear matrix elements for neutrino-less double beta decay Fedor Šimkovic JINR Dubna,

More information

Introduction to Modern Physics Problems from previous Exams 3

Introduction to Modern Physics Problems from previous Exams 3 Introduction to Modern Physics Problems from previous Exams 3 2007 An electron of mass 9 10 31 kg moves along the x axis at a velocity.9c. a. Calculate the rest energy of the electron. b. Calculate its

More information

Status and Perspectives of the COBRA-Experiment

Status and Perspectives of the COBRA-Experiment Status and Perspectives of the COBRA-Experiment Jan Tebrügge for the COBRA Collaboration Status and Perspectives of the COBRA-Experiment Jan Tebrügge beta decays for thedouble COBRA Collaboration CdZnTe

More information

Neutrinoless Double Beta Decay. Phys 135c Spring 2007 Michael Mendenhall

Neutrinoless Double Beta Decay. Phys 135c Spring 2007 Michael Mendenhall Neutrinoless Double Beta Decay Phys 135c Spring 2007 Michael Mendenhall Theory Overview neutrino Lagrangian ν c iγ 2 γ 0 ν T L ν = M D [ν R ν L + ν c LνR] c }{{} + M L [ν c Lν L + ν L νl] c + M R [ν c

More information

Finding an Upper Bound on Neutrinos Mass

Finding an Upper Bound on Neutrinos Mass Finding an Upper Bound on Neutrinos Mass Cindy Lin Department of Physics, Drexel University, Philadelphia, PA 19104 August 4, 2013 1 Introduction 1.1 Oscillation - Neutrinos have mass! The electron neutrino

More information

arxiv: v1 [nucl-th] 6 Apr 2018

arxiv: v1 [nucl-th] 6 Apr 2018 Neutrinoless ββ decay mediated by the exchange of light and heavy neutrinos: The role of nuclear structure correlations arxiv:184.15v1 [nucl-th] 6 Apr 18 J. Menéndez Center for Nuclear Study, The University

More information

a step forward exploring the inverted hierarchy region of the neutrino mass

a step forward exploring the inverted hierarchy region of the neutrino mass a step forward exploring the inverted hierarchy region of the neutrino mass Maria Martinez (U. La Sapienza, Rome) on behalf of the CUPID-0 collaboration 28th Rencontres de Blois, May 29 - June 03 (2016)

More information

Considerations for future neutrinoless double beta decay experiments

Considerations for future neutrinoless double beta decay experiments Considerations for future neutrinoless double beta decay experiments Table 4: IHE characteristics for the different candidates. For each isotope we quote the type of scintillating crystal, the total mass

More information

Nicholas I Chott PHYS 730 Fall 2011

Nicholas I Chott PHYS 730 Fall 2011 Nicholas I Chott PHYS 730 Fall 2011 The Standard Model What is Beta-Decay? Beta decay leads to ν discovery Early History of the Double Beta Decay Why is 0νββ Important? ββ-decay 2νββ vs. 0νββ Conclusion

More information

Double Beta Decay and Neutrino Mass

Double Beta Decay and Neutrino Mass Double Beta Decay and Neutrino Mass Jenni Kotila Nuclear, Particle, and Astrophysics seminar Yale, May 7 2015 Contents Motivation Phase Space Factors Nuclear Matrix Elements Quenching of g A Half-Life

More information

Mass hierarchy determination in reactor antineutrino experiments at intermediate distances. Promises and challenges. Petr Vogel, Caltech

Mass hierarchy determination in reactor antineutrino experiments at intermediate distances. Promises and challenges. Petr Vogel, Caltech Mass hierarchy determination in reactor antineutrino experiments at intermediate distances. Promises and challenges. Petr Vogel, Caltech Mass hierarchy ν e FLAVOR FLAVOR ν µ ν τ ν 3 ν 2 ν 1 m 2 21 MASS

More information

Lecture 11 Krane Enge Cohen Williams. Beta decay` Ch 9 Ch 11 Ch /4

Lecture 11 Krane Enge Cohen Williams. Beta decay` Ch 9 Ch 11 Ch /4 Lecture 11 Krane Enge Cohen Williams Isospin 11.3 6.7 6.3 8.10 Beta decay` Ch 9 Ch 11 Ch 11 5.3/4 Problems Lecture 11 1 Discuss the experimental evidence for the existence of the neutrino. 2 The nuclide

More information

What If U e3 2 < 10 4? Neutrino Factories and Other Matters

What If U e3 2 < 10 4? Neutrino Factories and Other Matters What If U e3 < 0 4? Neutrino Factories and Other Matters André de Gouvêa University DUSEL Theory Workshop Ohio State University, April 4 6, 008 April 5, 008 tiny U e3 : now what? Outline. What are We Aiming

More information

JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS J. Phys. G: Nucl. Part. Phys. 30 (2004) R183 R215 PII: S (04)62456-X

JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS J. Phys. G: Nucl. Part. Phys. 30 (2004) R183 R215 PII: S (04)62456-X INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS G: NUCLEAR AND PARTICLE PHYSICS J. Phys. G: Nucl. Part. Phys. 30 (2004) R183 R215 PII: S0954-3899(04)62456-X TOPICAL REVIEW Double-beta decay Steven R

More information

Finding Neutrinos Mass Upper Bound

Finding Neutrinos Mass Upper Bound Finding Neutrinos Mass Upper Bound Cindy Lin Department of Physics, Drexel University, Philadelphia, PA 19104 June 7, 2013 1 Introduction 1.1 Oscillation - Neutrinos have mass! The electron neutrino is

More information

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Fall 2015 1 Course Overview Lecture 1: Introduction, Decay Rates and Cross Sections Lecture 2: The Dirac Equation and Spin

More information

arxiv: v2 [hep-ph] 6 Aug 2009

arxiv: v2 [hep-ph] 6 Aug 2009 Probing particle and nuclear physics models of neutrinoless double beta decay with different nuclei G.L. Fogli, 1,2 E. Lisi, 2 and A.M. Rotunno 1,2 1 Dipartimento Interateneo di Fisica Michelangelo Merlin,

More information

How could Penning-Trap Mass Spectrometry. be useful to. Neutrino Physics? Sergey Eliseev Max-Planck-Institute for Nuclear Physics Heidelberg

How could Penning-Trap Mass Spectrometry. be useful to. Neutrino Physics? Sergey Eliseev Max-Planck-Institute for Nuclear Physics Heidelberg How could Penning-Trap Mass Spectrometry be useful to Neutrino Physics? Sergey Eliseev Max-Planck-Institute for Nuclear Physics Heidelberg MEDEX, Prague, May 31, 2017 OUTLINE Basics of Penning-Trap Mass

More information

DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS. Parity PHYS NUCLEAR AND PARTICLE PHYSICS

DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS. Parity PHYS NUCLEAR AND PARTICLE PHYSICS PHYS 30121 NUCLEAR AND PARTICLE PHYSICS DISCRETE SYMMETRIES IN NUCLEAR AND PARTICLE PHYSICS Discrete symmetries are ones that do not depend on any continuous parameter. The classic example is reflection

More information

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst.

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst. MINOS Result The ND analysis predicts: 49.1±7.0(stat.)±2.7(syst.) events in the Far Detector 54 observed, 0.7σ excess 26 MINOS Result The ND analysis predicts: 49.1±7.0(stat.)±2.7(syst.) events in the

More information

Dark matter and IceCube neutrinos

Dark matter and IceCube neutrinos IL NUOVO CIMENTO 38 C (2015) 31 DOI 10.1393/ncc/i2015-15031-4 Colloquia: IFAE 2014 Dark matter and IceCube neutrinos R. Biondi Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi di L Aquila,

More information

D. Frekers. Putting together the pieces of the puzzle in bb-decay n. TRIUMF May Gentle Touch: q tr = 0 l = 0.

D. Frekers. Putting together the pieces of the puzzle in bb-decay n. TRIUMF May Gentle Touch: q tr = 0 l = 0. D. Frekers Putting together the pieces of the puzzle in bb-decay n b TRIUMF May-2016 n b GT? Gentle Touch: q tr = 0 l = 0 dσ dσ 5 10 0 hω excitation σ n n The pieces of the puzzle Chargex-reactions ( 3

More information

Allowed beta decay May 18, 2017

Allowed beta decay May 18, 2017 Allowed beta decay May 18, 2017 The study of nuclear beta decay provides information both about the nature of the weak interaction and about the structure of nuclear wave functions. Outline Basic concepts

More information

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540 Central density Consider nuclear charge density Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) Central density (A/Z* charge density) about the same for nuclei heavier than 16 O, corresponding

More information

QUANTUM CHAOS IN NUCLEAR PHYSICS

QUANTUM CHAOS IN NUCLEAR PHYSICS QUANTUM CHAOS IN NUCLEAR PHYSICS Investigation of quantum chaos in nuclear physics is strongly hampered by the absence of even the definition of quantum chaos, not to mention the numerical criterion of

More information

Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti

Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino mailto://giunti@to.infn.it Neutrino Unbound:

More information

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad. Neutrinos Riazuddin National Centre for Physics Quaid-i-Azam University Campus Islamabad. Neutrino was the first particle postulated by a theoretician: W. Pauli in 1930 to save conservation of energy and

More information

HALF-LIVES OF THIRTEEN DOUBLE β -DECAY CANDIDATES WITH TWO NEUTRINOS

HALF-LIVES OF THIRTEEN DOUBLE β -DECAY CANDIDATES WITH TWO NEUTRINOS HALF-LIVES OF THIRTEEN DOUBLE β -DECAY CANDIDATES WITH TWO NEUTRINOS YUEJIAO REN 1, ZHONGZHOU REN 1,2,3,4,a 1 Department of Physics, Nanjing University, Nanjing 210093, China 2 Center of Theoretical Nuclear

More information

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 709 718 c International Academic Publishers Vol. 43, No. 4, April 15, 005 Spin Cut-off Parameter of Nuclear Level Density and Effective Moment of Inertia

More information

Nuclides with excess neutrons need to convert a neutron to a proton to move closer to the line of stability.

Nuclides with excess neutrons need to convert a neutron to a proton to move closer to the line of stability. Radioactive Decay Mechanisms (cont.) Beta (β) Decay: Radioactive decay process in which the charge of the nucleus is changed without any change in the number of nucleons. There are three types of beta

More information