D. Frekers, Univ. Münster, TRIUMF-Vancouver ββ-decay matrix elements & charge-exchange reactions (some surprises in nuclear physics??

Size: px
Start display at page:

Download "D. Frekers, Univ. Münster, TRIUMF-Vancouver ββ-decay matrix elements & charge-exchange reactions (some surprises in nuclear physics??"

Transcription

1 D. Frekers, Univ. Münster, TRIUMF-Vancouver ββ-decay matrix elements & charge-exchange reactions (some surprises in nuclear physics??) KVI: (d, 2 He) reactions GT + RCNP: (3He,t) reactions GT - (TRIUMF: EC rates with ion-traps)

2 OUTLINE 1) some basics about ν s and nuclear ββ matrix elements 2) understanding the nuclear physics of 2vββ -decay charge-exchange reactions (d, 2 He) and ( 3 He,t) 48 Ca 64 Zn 76 Ge 82 Se 96 Zr 100 Mo 116 Cd 128/130 Te 136 Xe 150 Nd CANDLES COBRA GERDA NEMO NEMO MOON/NEMO COBRA CUORE EXO, KamLAND-ZEN SNO+ 3) possibilities towards the nuclear physics of 0vββ-decay. 4) wish list and issues for theorists to deal with

3 β β decay (even-even) 0 + (Z,N) neutron-rich 2νβ β decay: 0νβ β decay: EC β β never body (Z+1,N-1) ph-spc Γ= ( ) 3-body (odd-odd) allowed β NME 0 + (even-even) (Z+2,N-2) 3 2 Γ= 2 ( ph-spc ) mueimi NME 2 2 any degree i= 1 eν 2

4 Quick reminder of neutrino mass problem i Φ i Φ U = V e e diag( 1, 2, 1) 2 iδ Ve1 Ve2 Ve3 c12c13 c13s12 s13e iδ iδ Vαi = Vμ1 Vμ2 Vμ3 = c23s12 c12s13s23e c12c23 s12s13s23e c13s23 V i i 1 V 2 V δ δ τ τ τ3 s12s23 c13c23s13e c12s23 c23s12s13e c13c23 known quantities: 3 i= 1 2 ei Γ NME U m Θ = 0.6 ± 0.1 π 6 12 Θ = 0.7 ± 0.2 π 4 23 Θ < atm ev (0.05eV) Δ m = m m sol ev (0.009eV) Δ m = m m i 2 2 extra Majorana phases

5 Neutrino mass scenarios: 1) degenerate: m ν m 1 m 2 m 3 m ν e 0.2eV best of all cases 2 2) normal hierarchy: 2 1 2( i Φ2 Φ1) 2( i δ Φ1) mν Δ m ( 0.5) e sol + e + < e Δm m m sol ν 3 = zero!! for: m 1 m 2 3m π 3m Θ 1 13 = 0 ( Φ2 Φ 1) = = 1 Δm 2 sol 2 3) inverted hierarchy: m ν m 1 m 2 m 3 e 2 2 2( i 2 1) Δ atm 3 + m m e Φ Φ ν if inverted hierarchy were determined (by LHC or spectral distortion of SN-neutrinos) THEN: mν Δmatm e or the neutrino is a Dirac particle 2

6 NME 2νβ β decay q-transfer like ordinary β-decay (q ~ 0.01 fm -1 ~ 2 MeV/c) only allowed decays possible

7 2 2 C GF g ν A ( 2ν ) 2 Γ = cos( DGT Q ( ) 7 C ) M ( ) f( ) β β Θ F 8π 2 = G 2ν (Q,Z)!! M 4 ( 2ν ) DGT 2 Q 11 Z 2 favorable: 1. High Q-value 2. High Z exp 10 3 MeV 1 N Z -2 Unfavorable: 1. high neutron excess (because of Pauli-Blocking) p n

8 A layman s sketch of thepauli-blocking remember: GT requires Δħω=0!! Extreme case: (p,n) completely open (n,p) completely blocked Soft surface case: (p,n) still largely open (n,p) still largely blocked yet probabilities could be finite but tiny

9 M ( 2ν ) DGT = (f) + + (i) 0g.s. σkτk 1m 1m σkτ 0 k k k g.s. 1 (f) + m 2 Q ββ(0 g.s. ) + E(1 m) E0 = m m ( + ) ( -) m M GT M GT E m To note: 1. two sequential & allowed β -decays of Gamov-Teller type 2. first- oder higher order forbidden decays negligible 3. Fermi transitions don t contribute (because different isospin-multiplet) accessible thru charge- exchange reactions in (n,p) and (p,n) direction ( e.g. (d, 2 He) or ( 3 He,t) )

10 NME 0νβ β decay neutrino enters as virtual particle, q~0.5fm -1 (~ 100 MeV/c) degree of forbiddeness weakened

11 !! 0ν 0ν 4 (Q,Z) ( β β ) A 2 ( ) g 0ν V ( 0ν) DGT DF g A Γ = G g M M m 2 ν e 2 Q 5 Z 4 10!! To note: 1. first- or higher order forbidden transitions important theory indepnt. of (A,Z) (except for magic nuclei) Mass of Majorana-ν! 2. Fermi transitions important 3. Pauli-blocking largely lifted 4. high Q-value, high Z important NOT accessible thru charge-exchange reactions

12 Neutrinoless Double Beta Decay Nuclear Matrix Elements V.Rodin, A. Faessler, F. Šimkovic, P. Vogel, PRC 68 (2003) ;

13 Back to 2νββ decay and charge-exchange reactions

14 - (n,p), 300

15 - (n,p),

16 The message after many years of expmlt studies of 2νββ!! -NME 1. In all cases the low-energy part of the GT-excitation makes up most of the NME. 2. The GT giant resonance has little to no effect on the NME (Pauli-blocked from the 2 nd leg). 3. A large difference of the nuclear shape between mother and grand-daughter leads to a suppression of the NME (case: 76 Ge). 4. There are some very special and simple cases ( 96 Zr, 100 Mo) 5. What is the effect of a 2n-pair in 128,130 Te? 6. What is wrong with 136 Xe why is it so stable?

17 76 Ge the most important ββ-decaying nucleus

18 0.54

19 an anticorrelation of strength (very similar to 48 Ca) some B(GT) in the bckgnd!!!!!!! An effect of the difference of deformation?? 76Se: oblate (β 2 ~ 0.2) 76Ge: moderately oblate/ prolate (β 2 ~ 0.1)

20 about 60!! individual levels up to 5 MeV!!!

21 triplet of states: 0.044, 0.082, 0.12 MeV Correlate states within the expmtl resolution

22 0.14 Correlated states make up 55% of 2νββ-ME DGT =0.09 MeV-1 M DGT Adding correlation with undifferentiated bckgnd makes up ~100% of 2νββ-ME DGT = MeV-1 T 1/2 = ( ) x yr M DGT

23 taken from F. Simkovic et al. (cf also P. Sarriguren et al., PRC67,44313 (2003)) Intrinsic deformation seems to affect the 2νββ-ME, however, it is the difference of deformation between mother and daughter and not their absolute values which counts. Exp lly the deformation seems to manifest itself in a state-by-state mismatch, rather than an overall reduction of B(GT) s.

24 96 Zr the most neutron-rich Zr-isotope N-Z=16

25 (d, 2 He) ( 3 He,t) Ex (MeV) B(GT + ) = 0.3 B(GT - ) = 0.15 T Fascination: With this 1 level only: (2 νββ ) = (2.4 ± 0.3) 10 years calc. 19 1/ 2 T (2 νββ = (2.2 ± 0.4) 10 years (NEMO3-result) exp. 19 1/ 2

26 100 Mo Important for ββ-decay solar neutrino detector (Q=-168 kev) SN-neutrino detector SN-neutrino temperature

27 entire low-energy GT - strength is concentrated in ONE singlestateonly, theg.s. GOOD!!! for SN-ν temp ure meas nt B(GT) =0.32 logft (EC) = 4.54 In perfect agreement with Ejiri et al. (1998): B(GT) = 0.33

28 64 Zn(εε, εβ+) 76 Ge(β β ) 82 Se(β β ) 96 Zr(β β ) 100 Mo(β β ) reduced spreading of GT strength

29 What about 128 Te 130 Te 136 Xe

30

31 128Te 130Te (slightly more fragmented)

32 128Te 130Te (slightly more fragmented) also predicted by

33 136Xe

34 How big is the matrix element? ν T yr ( ) M 2 ν 3 DGT 5 10 scenario-1 all positive sign > m ( ) 3 GT + ( ) m GT B 10 B unlikely scenario-2 sign(clst-1) = - sign (clst-2) likely

35 Chargex reactions are a powerful tool to determine the 2νββ NME (d, 2 He) (t, 3 He) GT + leg & ( 3 He,t) GT- leg high resolution is essential. The difference between the intrinsic deformation of mother and daughter nucleus seems to cause state-by-state mismatch of B(GT) s How big is the effect on the 0νββ NME?? In all cases the low energy part of the GT distribution seems to be most relevant for the 2ν decay even Single-State-Dominance for 96 Zr und 100 Mo Wouldthisbetrueforthe0νββ decay as well? Radioactive beam facilites and ion traps can provide nice tools for getting access to 0ν-ββ decay matrix elements What is the importance of Nordheim states?? they are strongly excited in CEX and μ-x

36 My personal wish list and unresolved issues: 1. Need a more modern reaction theory and appropriate reaction code 2. Need updated NN t-matrix fits (we use Love and Franey 81) and have them implemented into a reaction theory code 3. Need theories, which can predict 0νββ matrix elements and which can be tied to experimental data/observables along the way (presently, g.s. β-decay and EC-decay rates are utterly wrong!!) 4. Need to understand more quantitavely the physics, which cause certain matrix element to have a different sign eff g A 5. Need to address more agressively the GT-quenching issue ( ) (experimentally and theoretically)

37 eff g A The -problem or the quenching of the Ikeda sumrule ( ) ( + ) = 3( ) S β S β N Z can this be attacked?? Recall: ( ) 1 ( eff ) 4 eff A A A T ~ g g 0.7g 1/2

38 Reasons for GT quenching nuclear structure but then quenching should depend on the underlying nuclear structure non-nucleonic degrees of freedom quenching should not strongly depend on the underlying nuclear structure (but rather on nucl. density)

39

40

41

42 76Ge

43 96Zr

44 100Mo

45 g A - quenching as a fctn. of nucl. density (long & short range effect due to 2B-currents) un-quenching of g A un-quenching of g A as a function of momentum transfer

46 To prove the theory, need: 1) a heavy target consisting of neutrons only 2) a diluted nuclear density!! maybepossiblewith: 1) 132 Sn or even better 132+x Sn 2) check nuclear density by exciting pygmy resonances 3) perform (p,n) type reaction to excite GT giant resonance. 3(N-Z) = 96+3x. What is the quenching???

47 In the next round get the 0νββ NME s & who knows? may be Nature is indeed kind

D. Frekers. Charge-exchange reactions GT-transitions, bb-decay b b. and things beyond. n n 13 N 15 O 17F. 7Be. pep. hep

D. Frekers. Charge-exchange reactions GT-transitions, bb-decay b b. and things beyond. n n 13 N 15 O 17F. 7Be. pep. hep Flux @ 1 AU [cm-1 s-1 MeV-1)] for lines [cm -1 s-1 ] D. Frekers n n Charge-exchange reactions GT-transitions, bb-decay b b and things beyond 10 1 10 10 10 8 10 6 10 4 10 pp 13 N 15 O 17F 7Be pep 0.1 0.

More information

D. Frekers. Putting together the pieces of the puzzle in bb-decay n. TRIUMF May Gentle Touch: q tr = 0 l = 0.

D. Frekers. Putting together the pieces of the puzzle in bb-decay n. TRIUMF May Gentle Touch: q tr = 0 l = 0. D. Frekers Putting together the pieces of the puzzle in bb-decay n b TRIUMF May-2016 n b GT? Gentle Touch: q tr = 0 l = 0 dσ dσ 5 10 0 hω excitation σ n n The pieces of the puzzle Chargex-reactions ( 3

More information

D. Frekers. Novel approaches to the nuclear physics of bb-decay: INT chargex reactions, mass-measurements,m-capture

D. Frekers. Novel approaches to the nuclear physics of bb-decay: INT chargex reactions, mass-measurements,m-capture D. Frekers Novel approaches to the nuclear physics of bb-decay: chargex reactions, mass-measurements,m-capture b n n INT- 2018 b GT? Gentle Touch: q tr = 0 l = 0 dσ dσ 5 10 0 hω excitation σ n n Where

More information

Neutrino Nuclear Responses for ββ ν & Charge Exchange Reactions. Hiro Ejiri RCNP Osaka & CTU Praha

Neutrino Nuclear Responses for ββ ν & Charge Exchange Reactions. Hiro Ejiri RCNP Osaka & CTU Praha Neutrino Nuclear Responses for ββ ν & Charge Exchange Reactions Hiro Ejiri RCNP Osaka & CTU Praha Nuclear responses (matrix elements) for ββ ν and charge exchange reactions H. Ejiri, Phys. Report 338 (2000)

More information

Electron Capture branching ratio measurements at TITAN-TRIUMF

Electron Capture branching ratio measurements at TITAN-TRIUMF Electron Capture branching ratio measurements at TITAN-TRIUMF T. Brunner, D. Frekers, A. Lapierre, R. Krücken, I. Tanihata, and J. Dillingfor the TITAN collaboration Canada s National Laboratory for Nuclear

More information

Double-beta decay matrix elements and charge exchange reactions

Double-beta decay matrix elements and charge exchange reactions Double-beta decay matrix elements and charge exchange reactions M. Sasano, Spin-Isospin Laboratory, RIKEN Nishina Center K. Yako, Center for Nuclear Physics, University of Tokyo E Double beta decay Double

More information

K. Zuber, TU Dresden INT, Double beta decay experiments

K. Zuber, TU Dresden INT, Double beta decay experiments , TU Dresden INT, 3.6. 2015 Double beta decay experiments Double beta decay (A,Z) (A,Z+2) +2 e - + 2ν e (A,Z) (A,Z+2) + 2 e - - 2νββ 0νββ Unique process to measure character of neutrino The smaller the

More information

Kinematic searches. Relativity. Uncertainty. Best candidate: Using molecular tritium, daughter will be Kai Zuber 25

Kinematic searches. Relativity. Uncertainty. Best candidate: Using molecular tritium, daughter will be Kai Zuber 25 Kinematic searches Relativity Uncertainty Best candidate: Using molecular tritium, daughter will be 12.06.2014 Kai Zuber 25 Tritium beta decay Half-life :12.3 years Matrix element: 5.55 Endpoint energy:

More information

Matrix elements for processes that could compete in double beta decay

Matrix elements for processes that could compete in double beta decay Matrix elements for processes that could compete in double beta decay Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Ø Support from NSF grant PHY-106817

More information

Erice, September, 2017,

Erice, September, 2017, Erice, September, 2017, Double beta (bb) decay neutrinoless double beta (0nbb) decay NME the specialties of 96 Zr/ 96 Nb for b and bb decay Mass measurements using the JYFLTRAP ion trap Results and the

More information

with realistic NN forces

with realistic NN forces 2νββ decay of deformed nuclei with realistic NN forces Vadim Rodin Amand Faessler, Mohamed Saleh Yousef, Fedor Šimkovic NOW 28, Conca Specchiulla, 9/9/28 Introduction Nuclear νββ-decay ( ν=ν) e - Light

More information

Description of 0νββ and 2νββ decay using interacting boson model with isospin restoration. Jenni Kotila

Description of 0νββ and 2νββ decay using interacting boson model with isospin restoration. Jenni Kotila Description of 0νββ and 2νββ decay using interacting boson model with isospin restoration Jenni Kotila FIDIPRO-HIP workshop on Nuclear Isospin Properties Helsinki Institute of Physics, Helsinki 16-17.10.2014

More information

Double Beta Decay matrix elements, remarks and perspectives

Double Beta Decay matrix elements, remarks and perspectives Double Beta Decay matrix elements, remarks and perspectives Petr Vogel, Caltech NNR05 Workshop CAST/SPring-8 Dec. 4, 2005 Thanks to the discoveries of the recent past we know a lot about neutrinos. But,

More information

Neutrino Nuclear Responses and Medium Energy Photons

Neutrino Nuclear Responses and Medium Energy Photons Neutrino Nuclear Responses and Medium Energy Photons Hiro Ejiri RCNP Osaka & CTU Praha Thanks Chary for invitation Saskatchewan 4-10 1. Neutrino studies in nuclei & neutrino nuclear responses 2. Neutrino/weak

More information

arxiv: v1 [physics.ins-det] 1 Feb 2016

arxiv: v1 [physics.ins-det] 1 Feb 2016 arxiv:1602.00364v1 [physics.ins-det] 1 Feb 2016 Solar neutrino interactions with liquid scintillators used for double beta-decay experiments 1. Introduction Hiroyasu Ejiri 1 and Kai Zuber 2 1. Research

More information

K. Zuber, Techn. Univ. Dresden Dresden, 17. Feb Double beta decay searches

K. Zuber, Techn. Univ. Dresden Dresden, 17. Feb Double beta decay searches K. Zuber, Techn. Univ. Dresden Dresden, 17. Feb. 2009 Double beta decay searches How to explain everything about double beta in 45 mins Cocoyoc, 6.1.2009 Contents General Introduction Experimental considerations

More information

Neutrinoless ββ Decays and Nuclear Structure

Neutrinoless ββ Decays and Nuclear Structure Neutrinoless ββ Decays and Nuclear Structure ALFREDO POVES Departamento de Física Teórica and IFT, UAM-CSIC Universidad Autónoma de Madrid (Spain) Frontiers in Nuclear and Hadronic Physics Galileo Galilei

More information

Neutrinoless Double Beta Decay within the Interacting Shell Model

Neutrinoless Double Beta Decay within the Interacting Shell Model Neutrinoless Double Beta Decay within the Interacting Shell Model Institute for Nuclear Physics, Technical University Darmstadt (TUD) ExtreMe Matter Institute (EMMI), GSI EFN 2010, El Escorial, 27-29 September

More information

Neutrino Nuclear Responses For Double Beta Decays And Supernova Neutrinos

Neutrino Nuclear Responses For Double Beta Decays And Supernova Neutrinos Neutrino Nuclear Responses For Double Beta Decays And Supernova Neutrinos Hidetoshi Akimune Konan University INPC016 Collaborators Hidetoshi Akimune Konan University Hiro Ejiri RCNP, Osaka Dieter Frekers

More information

Charge Exchange and Weak Strength for Astrophysics

Charge Exchange and Weak Strength for Astrophysics Charge Exchange and Weak Strength for Astrophysics Sam Austin STANfest-July 16 2004 Charge Exchange and Weak Strength for Astrophysics Interesting phenomena Electron capture strength (GT) (Langanke talk)

More information

Lecture VI: Neutrino propagator and neutrino potential

Lecture VI: Neutrino propagator and neutrino potential Lecture VI: Neutrino propagator and neutrino potential Petr Vogel, Caltech NLDBD school, November 1, 217 For the case we are considering, i.e. with the exchange of light Majorana neutrinos, the double

More information

Neutrinoless Double Beta Decay for Particle Physicists

Neutrinoless Double Beta Decay for Particle Physicists Neutrinoless Double Beta Decay for Particle Physicists GK PhD Presentation Björn Lehnert Institut für Kern- und Teilchenphysik Berlin, 04/10/2011 About this talk Double beta decay: Particle physics implications

More information

RECENT RESULTS IN DOUBLE BETA DECAY

RECENT RESULTS IN DOUBLE BETA DECAY RECENT RESULTS IN DOUBLE BETA DECAY Francesco Iachello Yale University Neutrino Oscillation Workshop Otranto, September 8, 2014 CLASSIFICATION OF DOUBLE BETA DECAY (DBD) β - β - modes (i) Two-neutrino

More information

Neutrinoless Double Beta Decay. Phys 135c Spring 2007 Michael Mendenhall

Neutrinoless Double Beta Decay. Phys 135c Spring 2007 Michael Mendenhall Neutrinoless Double Beta Decay Phys 135c Spring 2007 Michael Mendenhall Theory Overview neutrino Lagrangian ν c iγ 2 γ 0 ν T L ν = M D [ν R ν L + ν c LνR] c }{{} + M L [ν c Lν L + ν L νl] c + M R [ν c

More information

-> to worldwide experiments searching for neutrinoless double beta decay

-> to worldwide experiments searching for neutrinoless double beta decay From Baksan to -> A.Smolnikov International Session-Conference of RAS "Physics of fundamental interactions dedicated to 50th anniversary of Baksan Neutrino Observatory, Nalchik, Russia, June 6-8, 2017

More information

MEDEX 2017 Prague, Czech Republic May 30 - June 2, 2017 Neutrino mass, double beta decay and nuclear structure Fedor Šimkovic

MEDEX 2017 Prague, Czech Republic May 30 - June 2, 2017 Neutrino mass, double beta decay and nuclear structure Fedor Šimkovic MEDEX 2017 Prague, Czech Republic May 30 - June 2, 2017 Neutrino mass, double beta decay and nuclear structure Fedor Šimkovic 5/30/2017 Fedor Simkovic 1 OUTLINE Introduction -oscillations and -masses The

More information

Various aspects and results on beta decay, DBD, COBRA and LFV

Various aspects and results on beta decay, DBD, COBRA and LFV Fakultät Mathematik und Naturwissenschaften, Institut für Kern- und Teilchenphysik Various aspects and results on beta decay, DBD, COBRA and LFV 31.5. 2017, MEDEX 2017 Institut für Kern- und Teilchenphysik

More information

Two Neutrino Double Beta (2νββ) Decays into Excited States

Two Neutrino Double Beta (2νββ) Decays into Excited States Two Neutrino Double Beta (2νββ) Decays into Excited States International School of Subnuclear Physics 54 th Course: The new physics frontiers in the LHC-2 era Erice, 17/06/2016 Björn Lehnert TU-Dresden,

More information

How could Penning-Trap Mass Spectrometry. be useful to. Neutrino Physics? Sergey Eliseev Max-Planck-Institute for Nuclear Physics Heidelberg

How could Penning-Trap Mass Spectrometry. be useful to. Neutrino Physics? Sergey Eliseev Max-Planck-Institute for Nuclear Physics Heidelberg How could Penning-Trap Mass Spectrometry be useful to Neutrino Physics? Sergey Eliseev Max-Planck-Institute for Nuclear Physics Heidelberg MEDEX, Prague, May 31, 2017 OUTLINE Basics of Penning-Trap Mass

More information

Double beta decay Newest results and perspectives (personal questions)

Double beta decay Newest results and perspectives (personal questions) , Aug. 13, 2013 Double beta decay Newest results and perspectives (personal questions) INT Workshop, Nuclei and fundamental symmetries Contents - Why double beta decay? - The physics - General issues -

More information

K. Zuber, Techn. Univ. Dresden Cocoyoc, Status of double beta decay searches

K. Zuber, Techn. Univ. Dresden Cocoyoc, Status of double beta decay searches K. Zuber, Techn. Univ. Dresden Status of double beta decay searches How to explain everything about double beta in 45 mins Cocoyoc, 6.1.2009 Contents General introduction Experimental considerations GERDA

More information

Double Beta Decay and Neutrino Mass

Double Beta Decay and Neutrino Mass Double Beta Decay and Neutrino Mass Jenni Kotila Nuclear, Particle, and Astrophysics seminar Yale, May 7 2015 Contents Motivation Phase Space Factors Nuclear Matrix Elements Quenching of g A Half-Life

More information

DOUBLE BETA DECAY TO THE EXCITED STATES: REVIEW A.S. BARABASH ITEP, MOSCOW

DOUBLE BETA DECAY TO THE EXCITED STATES: REVIEW A.S. BARABASH ITEP, MOSCOW DOUBLE BETA DECAY TO THE EXCITED STATES: REVIEW A.S. BARABASH ITEP, MOSCOW MEDEX'17, Prague, Czech Republic, May 29- June 02, 2017 OUTLINE Introduction 2 - (2) -decay to the excited ststates 2 - (0) decay

More information

Summary of the Workshop on: Nuclear matrix elements for neutrinoless double beta decay

Summary of the Workshop on: Nuclear matrix elements for neutrinoless double beta decay IPPP/05/56 DCPT/05/114 Summary of the Workshop on: Nuclear matrix elements for neutrinoless double beta decay Institute for Particle Physics Phenomenology University of Durham, UK 23.-24. 5. 2005 Editor:

More information

Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d)

Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d) Lecture #3 a) Nuclear structure - nuclear shell model b) Nuclear structure -quasiparticle random phase approximation c) Exactly solvable model d) Dependence on the distance between neutrons (or protons)

More information

Particle Physics: Neutrinos part II

Particle Physics: Neutrinos part II Particle Physics: Neutrinos part II José I. Crespo-Anadón Week 9: April 1, 2017 Columbia University Science Honors Program Course Policies Attendance Up to four absences Send email notifications of all

More information

High-resolution study of Gamow- Teller transitions in pf-shell nuclei. Tatsuya ADACHI

High-resolution study of Gamow- Teller transitions in pf-shell nuclei. Tatsuya ADACHI High-resolution study of Gamow- Teller transitions in pf-shell nuclei Tatsuya ADACHI Type II supernova Electron Capture (EC) & β decay Neutrino induced reaction A Z-1X N+1 daughter EC β A ZX N parent (A,Z)

More information

Lecture 11 Krane Enge Cohen Williams. Beta decay` Ch 9 Ch 11 Ch /4

Lecture 11 Krane Enge Cohen Williams. Beta decay` Ch 9 Ch 11 Ch /4 Lecture 11 Krane Enge Cohen Williams Isospin 11.3 6.7 6.3 8.10 Beta decay` Ch 9 Ch 11 Ch 11 5.3/4 Problems Lecture 11 1 Discuss the experimental evidence for the existence of the neutrino. 2 The nuclide

More information

QRPA calculations of stellar weak-interaction rates

QRPA calculations of stellar weak-interaction rates QRPA calculations of stellar weak-interaction rates P. Sarriguren Instituto de Estructura de la Materia CSIC, Madrid, Spain Zakopane Conference on Nuclear Physics: Extremes of Nuclear Landscape. August

More information

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline complex

More information

Double Beta Decay Committee to Assess the Science Proposed for a Deep Underground Science and Engineering Laboratory (DUSEL) December 14-15, 2010

Double Beta Decay Committee to Assess the Science Proposed for a Deep Underground Science and Engineering Laboratory (DUSEL) December 14-15, 2010 Committee to Assess the Science Proposed for a Deep Underground Science and Engineering Laboratory (DUSEL) December 14-15, 2010 Steve Elliott Steve Elliott Neutrinos Matrix Elements The Need for Multiple

More information

Henry Primakoff Lecture: Neutrinoless Double-Beta Decay

Henry Primakoff Lecture: Neutrinoless Double-Beta Decay Henry Primakoff Lecture: Neutrinoless Double-Beta Decay CENPA Center for Experimental Nuclear Physics and Astrophysics University of Washington Renewed Impetus for 0νββ The recent discoveries of atmospheric,

More information

Excited State Transitions in Double Beta Decay: A brief Review

Excited State Transitions in Double Beta Decay: A brief Review Excited State Transitions in Double Beta Decay: A brief Review Fifteenth International Symposium on Capture Gamma-Ray Spectroscopy and Related Topics (CGS15) Dresden 26/08/2014 Björn Lehnert Institut für

More information

Neutrinoless Double-Beta Decay

Neutrinoless Double-Beta Decay Neutrinoless Double-Beta Decay Michal Tarka Stony Brook University ELBA XIV, 27 June 2016 Outline Neutrinoless double-beta decay (0νββ) Historical background & Motivation Neutrino masses Overview of (2νββ

More information

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber

Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Design, Construction, Operation, and Simulation of a Radioactivity Assay Chamber Wesley Ketchum and Abe Reddy EWI Group, UW REU 2006 Outline Neutrino Physics Background Double Beta Decay and the Majorana

More information

Double Charge-Exchange Reactions and Double Beta- Decay. N. Auerbach, Tel Aviv University and Michigan State University

Double Charge-Exchange Reactions and Double Beta- Decay. N. Auerbach, Tel Aviv University and Michigan State University Double Charge-Exchange Reactions and Double Beta- Decay N. Auerbach, Tel Aviv University and Michigan State University D.C. Zheng, L. Zamick and NA, Annals of Physics 197, 343 (1990). Nuclear Structure

More information

Anatomy of double-beta-decay nuclear matrix elements Petr Vogel, Caltech

Anatomy of double-beta-decay nuclear matrix elements Petr Vogel, Caltech Anatomy of double-beta-decay nuclear matrix elements Petr Vogel, Caltech Carolina International Symposium on Neutrino Physics May 15-17, 2008, Columbia, SC The status of the present knowledge of the neutrino

More information

Charge exchange reactions and photo-nuclear reactions

Charge exchange reactions and photo-nuclear reactions Charge exchange reactions and photo-nuclear reactions σ( 7 Li, 7 Be) and σ(γ,n) S. Nakayama (Univ of Tokushima) Determination of σ(γ,n) from CE reactions (CE reaction = Charge Exchange reaction) Application

More information

High-resolution Study of Gamow-Teller Transitions

High-resolution Study of Gamow-Teller Transitions High-resolution Study of Gamow-Teller Transitions Yoshitaka Fujita, Osaka Univ. @CNS-SS, 04.Aug.17-20 Nucleus : 3 active interactions out of 4 Strong, Weak, EM Comparison of Analogous Transitions High

More information

Particle-, Nuclear- and Atomic-Physics Aspects of Rare Weak Decays of Nuclei

Particle-, Nuclear- and Atomic-Physics Aspects of Rare Weak Decays of Nuclei Particle-, Nuclear- and Atomic-Physics Aspects of Rare Weak Decays of Nuclei Jouni Suhonen Department of Physics University of Jyväskylä NCNP2011 - XII th NordicConference onnuclear Physics, Stockholm,

More information

Sensitivity and Discovery Prospects for 0νββ-decay

Sensitivity and Discovery Prospects for 0νββ-decay Sensitivity and Discovery Prospects for 0νββ-decay Introduction, ν properties, 0νββ Sensitivity and Discovery Considerations Next-generation Experimental Challenges Nuclear Matrix Elements and

More information

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach

Shape coexistence and beta decay in proton-rich A~70 nuclei within beyond-mean-field approach Shape coexistence and beta decay in proton-rich A~ nuclei within beyond-mean-field approach A. PETROVICI Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania Outline

More information

Neutrino Masses and Mixing

Neutrino Masses and Mixing Neutrino Masses and Mixing < Why so different??? (Harrison, Perkins, Scott 1999) The Mass Puzzle Seesaw mechanism L R m m D m 2 D M m D M m D L R M Heavy Majorana Neutrino Connection with high mass scales

More information

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik

GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge. Allen Caldwell Max-Planck-Institut für Physik GERDA: The GERmanium Detector Array for the search for neutrinoless decays of 76 Ge Allen Caldwell Max-Planck-Institut für Physik What we know Mass Scale NORMAL INVERTED m 12 2 known m 13 2 known Mixing

More information

Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti

Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti Neutrino Mass: Overview of ββ 0ν, Cosmology and Direct Measurements Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino mailto://giunti@to.infn.it Neutrino Unbound:

More information

Neutrinoless double beta decay. Introduction, what its observation would prove, and its nuclear matrix elements.

Neutrinoless double beta decay. Introduction, what its observation would prove, and its nuclear matrix elements. Neutrinoless double beta decay. Introduction, what its observation would prove, and its nuclear matrix elements. Petr Vogel Caltech ECT,Trento, 7/31/2009 ββ decay can exist in two modes. The two-neutrino

More information

K. Zuber, Techn. Univ. Dresden Erlangen, 4. June Status and perspectives of the COBRA double beta decay experiment

K. Zuber, Techn. Univ. Dresden Erlangen, 4. June Status and perspectives of the COBRA double beta decay experiment K. Zuber, Techn. Univ. Dresden Erlangen, 4. June 2009 Status and perspectives of the COBRA double beta decay experiment Contents General Introduction Experimental considerations COBRA Summary and Outlook

More information

arxiv:nucl-th/ v1 16 Dec 2004

arxiv:nucl-th/ v1 16 Dec 2004 Nuclear matrix elements of ββ decay from β-decay data Jouni Suhonen 1 Department of Physics, University of Jyväskylä, P.O.Box 35, FIN-40014, Jyväskylä, Finland arxiv:nucl-th/0412064v1 16 Dec 2004 Abstract

More information

c E If photon Mass particle 8-1

c E If photon Mass particle 8-1 Nuclear Force, Structure and Models Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear Structure) Characterization

More information

The Majorana Neutrinoless Double-Beta Decay Experiment

The Majorana Neutrinoless Double-Beta Decay Experiment The Majorana Neutrinoless Double-Beta Decay Experiment A proposed detector to search for neutrinoless double-beta decay Reyco Henning Lawrence Berkeley National Laboratory for the Majorana Collaboration

More information

K. Zuber, TU Dresden DESY, 9/10 September In search of neutrinoless double beta decay

K. Zuber, TU Dresden DESY, 9/10 September In search of neutrinoless double beta decay K. Zuber, TU Dresden DESY, 9/10 September 2008 In search of neutrinoless double beta decay Contents General Introduction Neutrino physics and DBD Experimental considerations GERDA COBRA SNO+ Outlook and

More information

Neutrinoless Double Beta Decay. Abstract

Neutrinoless Double Beta Decay. Abstract Neutrinoless Double Beta Decay Joshua Berger Abstract I give a review of the theory and some of the experiments pertaining to neutrinoless double beta decay (0νββ). In certain atoms, it is favorable to

More information

Weak decays from coupled cluster computations

Weak decays from coupled cluster computations Weak decays from coupled cluster computations Gaute Hagen Oak Ridge National Laboratory Topical Collaboration meeting on DBD + fundamental symmetries INT, June 20, 2017 @ ORNL / UTK: G. R. Jansen, T. Morris,

More information

New half-live results on very long-living nuclei

New half-live results on very long-living nuclei Fakultät Mathematik und Naturwissenschaften, Institut für Kern- und Teilchenphysik New half-live results on very long-living nuclei 13.9. 2016, INPC 2016 Adelaide Institut für Kern- und Teilchenphysik

More information

To Be or Not To Be: Majorana Neutrinos, Grand Unification, and the Existence of the Universe

To Be or Not To Be: Majorana Neutrinos, Grand Unification, and the Existence of the Universe To Be or Not To Be: Majorana Neutrinos, Grand Unification, and the Existence of the Universe Assistant Professor, University of Washington Aug. 3, 2015 The Neutrino Meitner and Hahn (1911): 210 Bi ( Radium

More information

The Effect of Cancellation in Neutrinoless Double Beta Decay

The Effect of Cancellation in Neutrinoless Double Beta Decay The Effect of Cancellation in Neutrinoless Double Beta Decay Manimala Mitra IPPP, Durham University July 24, 204 SUSY 204, Manchester arxiv:30.628, Manimala Mitra, Silvia Pascoli, Steven Wong Manimala

More information

Pauli. Davis Fermi. Majorana. Dirac. Koshiba. Reines. Pontecorvo. Goeppert-Mayer. Steve Elliott

Pauli. Davis Fermi. Majorana. Dirac. Koshiba. Reines. Pontecorvo. Goeppert-Mayer. Steve Elliott Davis Fermi Pauli Dirac Majorana Pontecorvo Reines Koshiba Goeppert-Mayer Experimental Double Beta Decay Outline Experimental issues Upcoming experiments Conclusion Example Decay Scheme 2-76 As 0+ 76 Ge

More information

New half-live results on very long-living nuclei

New half-live results on very long-living nuclei Fakultät Mathematik und Naturwissenschaften, Institut für Kern- und Teilchenphysik New half-live results on very long-living nuclei 29.9. 2016, NNR 2016 Osaka Institut für Kern- und Teilchenphysik Contents

More information

Spin-Parity Decomposition of Spin Dipole Resonances and Tensor Interaction Effects. Tomotsugu Wakasa. Department of Physics, Kyushu University

Spin-Parity Decomposition of Spin Dipole Resonances and Tensor Interaction Effects. Tomotsugu Wakasa. Department of Physics, Kyushu University Spin-Parity Decomposition of Spin Dipole Resonances and Tensor Interaction Effects Tomotsugu Wakasa Department of Physics, Kyushu University Outline Residual interaction effects of spin-isospin responses

More information

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

Fine structure of nuclear spin-dipole excitations in covariant density functional theory 1 o3iø(œ April 12 16, 2012, Huzhou, China Fine structure of nuclear spin-dipole excitations in covariant density functional theory ùíî (Haozhao Liang) ŒÆÔnÆ 2012 c 4 13 F ÜŠöµ Š # Ç!Nguyen Van Giai Ç!ë+

More information

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València Neutrino Physics II Neutrino Phenomenology Arcadi Santamaria IFIC/Univ. València TAE 2014, Benasque, September 19, 2014 Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos

More information

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst.

MINOS Result. The ND analysis predicts: events in the Far Detector 54 observed, 0.7σ excess. 49.1±7.0(stat.)±2.7(syst. MINOS Result The ND analysis predicts: 49.1±7.0(stat.)±2.7(syst.) events in the Far Detector 54 observed, 0.7σ excess 26 MINOS Result The ND analysis predicts: 49.1±7.0(stat.)±2.7(syst.) events in the

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London BLV 2017 Case Western Reserve U. 15-18 May 2017 Origin of neutrino masses beyond the Standard Model Two possibilities to define neutrino mass

More information

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23, What We Know, and What We Would Like To Find Out Boris Kayser Minnesota October 23, 2008 1 In the last decade, observations of neutrino oscillation have established that Neutrinos have nonzero masses and

More information

Neutron Activation of 76Ge

Neutron Activation of 76Ge Neutron Activation of 76Ge Georg Meierhofer people involved: P. Grabmayr J. Jochum Kepler Center for Astro and Particle Physics University Tübingen P. Kudejova L. Canella J. Jolie IKP, Universität zu Köln

More information

Double beta decay to the first 2 + state within a boson expansion formalism with a projected spherical single particle basis

Double beta decay to the first 2 + state within a boson expansion formalism with a projected spherical single particle basis Physics Letters B 647 (007) 65 70 www.elsevier.com/locate/physletb Double beta decay to the first + state within a boson expansion formalism with a projected spherical single particle basis A.A. Raduta

More information

arxiv: v1 [nucl-th] 2 Jan 2013

arxiv: v1 [nucl-th] 2 Jan 2013 Novel shell-model analysis of the 136 Xe double beta decay nuclear matrix elements M. Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA B.A. Brown National Superconducting

More information

Beyond mean-field study on collective vibrations and beta-decay

Beyond mean-field study on collective vibrations and beta-decay Advanced many-body and statistical methods in mesoscopic systems III September 4 th 8 th, 2017, Busteni, Romania Beyond mean-field study on collective vibrations and beta-decay Yifei Niu Collaborators:

More information

Neutrinos in Nuclear Physics

Neutrinos in Nuclear Physics Neutrinos in Nuclear Physics R. D. McKeown Jefferson Lab, Newport News, VA, USA Department of Physics, College of William and Mary, Williamsburg, VA, USA DOI: http://dx.doi.org/10.3204/desy-proc-2014-04/305

More information

Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics

Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics Nuclear Reactions with light ion and photon beams; Contributions to Neutrino Astrophysics 1. Incompressibility and Giant Resonances (ISGMR, ISGDR) 2. Charge exchange reactions 3. Photon Beams for (g,g

More information

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry: RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear and Radiochemistry: Chapter 10 (Nuclear Models) Modern Nuclear Chemistry: Chapter 5 (Nuclear Forces) and Chapter 6 (Nuclear

More information

Beta Decay Studies in nuclear structure

Beta Decay Studies in nuclear structure Beta Decay Studies in nuclear structure Escuela de doctorado de Física Nuclear Santiago 1 de Marzo de 2007 Introducción Cómo hacer una medida Un ejemplo Berta Rubio IFIC (CSIC-Univ. Valencia) B. Rubio.

More information

NEMO-3 latest results

NEMO-3 latest results NEMO-3 latest results Thibaud Le Noblet LAPP On behalf of the NEMO collaboration GdR neutrino 29-30 mai 2017 - APC Outline Neutrinoless double beta decay Tracker-calorimeter technique NEMO-3 detector Latest

More information

Double-beta decay and BSM physics: shell model nuclear matrix elements for competing mechanisms

Double-beta decay and BSM physics: shell model nuclear matrix elements for competing mechanisms Double-beta decay and BSM physics: shell model nuclear matrix elements for competing mechanisms Mihai Horoi Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA Ø Support

More information

Particle Physics: Neutrinos part II

Particle Physics: Neutrinos part II Particle Physics: Neutrinos part II José I. Crespo-Anadón Week 9: November 18, 2017 Columbia University Science Honors Program 3 evidences for 3 neutrinos 2 3 neutrinos: 3 charged leptons Neutrinos are

More information

Future Reactor Expts. The Challenge. DoubleChooz. In France. Stanley Wojcicki. Far Detector m ~50 events/day

Future Reactor Expts. The Challenge. DoubleChooz. In France. Stanley Wojcicki. Far Detector m ~50 events/day Future Reactor Expts The Challenge ND FD Near Detector - 410 m ~400 events/day Far Detector - 1050 m ~50 events/day DoubleChooz In France 64 Future Reactor Expts The Challenge Daya Bay ND FD Near Detector

More information

Shell-model description for beta decays of pfg-shell nuclei

Shell-model description for beta decays of pfg-shell nuclei Shell-model description for beta decays of pfg-shell nuclei Workshop on New Era of Nuclear Physics in the Cosmos the r-process nucleosynthesis Sep. 25-26, 2008 @RIKEN M. Honma (Univ. of Aizu) T. Otsuka

More information

How can we search for double beta decay? Carter Hall University of Maryland

How can we search for double beta decay? Carter Hall University of Maryland How can we search for double beta decay? Carter Hall University of Maryland 1 Neutrinoless Double Beta Decay (ββ0ν) Forbidden if neutrino mass is Dirac only N(Z,A) N(Z+2,A)e - e - e L - 2n W-W- ν R +εν

More information

Inelastic Neutron Scattering Studies: Relevance to Neutrinoless Double-β Decay. Steven W. Yates

Inelastic Neutron Scattering Studies: Relevance to Neutrinoless Double-β Decay. Steven W. Yates Inelastic Neutron Scattering Studies: Relevance to Neutrinoless Double-β Decay Steven W. Yates TRIUMF Double-β Decay Workshop 13 May 2016 Questions What experimental data should theory reproduce so we

More information

Different modes of double beta decay Fedor Šimkovic

Different modes of double beta decay Fedor Šimkovic e Neutrinos in Cosmology, in Astro-, Particle- and Nuclear Physics Erice-Sicily: September 16-24, 2017 Different modes of double beta decay Fedor Šimkovic 9/23/2017 Fedor Simkovic 1 OUTLINE Introduction

More information

Standard Model and ion traps: symmetries galore. Jason Clark Exotic Beam Summer School July 28 August 1, 2014

Standard Model and ion traps: symmetries galore. Jason Clark Exotic Beam Summer School July 28 August 1, 2014 Standard Model and ion traps: symmetries galore Jason Clark Exotic Beam Summer School July 8 August 1, 014 Lecture outline Overview of the Standard Model (SM) Nature of the weak interaction and β decay

More information

Finding an Upper Bound on Neutrinos Mass

Finding an Upper Bound on Neutrinos Mass Finding an Upper Bound on Neutrinos Mass Cindy Lin Department of Physics, Drexel University, Philadelphia, PA 19104 August 4, 2013 1 Introduction 1.1 Oscillation - Neutrinos have mass! The electron neutrino

More information

Self-consistent study of spin-isospin resonances and its application in astrophysics

Self-consistent study of spin-isospin resonances and its application in astrophysics Tensor Interaction in Nuclear and Hadron Physics November 1 3, Beihang University, Beijing, China Self-consistent study of spin-isospin resonances and its application in astrophysics Haozhao Liang School

More information

Combining and comparing neutrinoless double beta decay experiments using. using different nuclei

Combining and comparing neutrinoless double beta decay experiments using. using different nuclei Combining and comparing neutrinoless double beta decay experiments using different nuclei Department of Theoretical Physics, KTH Royal Institute of Technology January 2013 Based on: different nuclei arxiv:1212.4484

More information

Status of neutrino mass-mixing parameters and implications for single and double beta decay searches

Status of neutrino mass-mixing parameters and implications for single and double beta decay searches Padova, 24 febbraio 2007 Status of neutrino mass-mixing parameters and implications for single and double beta decay searches Gianluigi Fogli Dipartimento di Fisica dell Università di Bari & Sezione INFN

More information

K. Zuber, University of Sussex TU Dresden, 15. Oct Double beta decay

K. Zuber, University of Sussex TU Dresden, 15. Oct Double beta decay K. Zuber, University of Sussex TU Dresden, 15. Oct. 2007 Double beta decay Contents General Introduction Neutrino oscillations and DBD Experimental considerations GERDA COBRA SNO+ Outlook and summary Beta

More information

Finding Neutrinos Mass Upper Bound

Finding Neutrinos Mass Upper Bound Finding Neutrinos Mass Upper Bound Cindy Lin Department of Physics, Drexel University, Philadelphia, PA 19104 June 7, 2013 1 Introduction 1.1 Oscillation - Neutrinos have mass! The electron neutrino is

More information

Chapter VI: Beta decay

Chapter VI: Beta decay Chapter VI: Beta decay 1 Summary 1. General principles 2. Energy release in decay 3. Fermi theory of decay 4. Selections rules 5. Electron capture decay 6. Other decays 2 General principles (1) The decay

More information

NEUTRINO PROPERTIES PROBED BY LEPTON NUMBER VIOLATING PROCESSES AT LOW AND HIGH ENERGIES *

NEUTRINO PROPERTIES PROBED BY LEPTON NUMBER VIOLATING PROCESSES AT LOW AND HIGH ENERGIES * NEUTRINO PROPERTIES PROBED BY LEPTON NUMBER VIOLATING PROCESSES AT LOW AND HIGH ENERGIES * S. STOICA Horia Hulubei Fondation, P.O.Box MG-1, RO-07715 Bucharest-Magurele, Romania, E-mail: sabin.stoica@unescochair-hhf.ro

More information

Status and Perspectives of the COBRA-Experiment

Status and Perspectives of the COBRA-Experiment Status and Perspectives of the COBRA-Experiment Jan Tebrügge for the COBRA Collaboration Status and Perspectives of the COBRA-Experiment Jan Tebrügge beta decays for thedouble COBRA Collaboration CdZnTe

More information