Some Results Based on Generalized Mittag-Leffler Function

Size: px
Start display at page:

Download "Some Results Based on Generalized Mittag-Leffler Function"

Transcription

1 Int. Journal of Math. Analysis, Vol. 6, 2012, no. 11, Some Results Based on Generalized Mittag-Leffler Function Pratik V. Shah Department of Mathematics C. K. Pithawalla College of Engineering & Technology Surat, India R. K. Jana, Amit D. Patel and I. A. Salehbhai Department of Mathematics S. V. National Institute of Technology, Surat, India (Corresponding Author) Abstract An attempt is made to obtain the result based on Generalized Mittag- Leffler function and its significance in distribution theory. Mathematics Subject Classification: 33E12, 44A10, 62E99 Keywords: Generalized Mittag-Leffler function, Laplace Transform, Statistical Distribution theory 1. Introduction In 1903, the Swedish mathematician Gosta Mittag-Leffler introduced the function E α (z), defined by E α (z) Γ(αn +1) (α C, R (α) > 0) (1) where, Γ (z) is the familiar Gamma function. The Mittag-Leffler function defined by equation (1) reduces immediately to the exponential function e z

2 504 Pratik V. Shah, R. K. Jana, Amit D. Patel and I. A. Salehbhai E 1 (z) when α1. For 0 <α<1, it interpolates between the pure exponential e z and a geometric function 1 ( z < 1). Its importance 1 z has been realized during the last two decades due to its involvement in the problems of Applied Sciences such as Physics, Chemistry, Biology and Engineering. Mittag-Leffler function occurs naturally in the solution of fractional order differential or integral equations [3]. In 1905, a generalization of E α (z) was studied by Wiman [6] who defined the function E (z) as follows: E (z) Γ(αn + β) The function E (z) is now known as Wiman function. (α, β C, R (α) > 0,R (β) > 0) (2) In 1971, Prabhakar [4] introduced the function E γ (z) defined by, E γ (z) (γ) n Γ(αn + β) n! Where, (λ) n is the Pochammer symbol defined by (λ) n Γ(λ + n) Γ(λ) (α, β, γ C, R (α) > 0,R (β) > 0,R (γ) > 0) { 1(n 0; λ 0) λ (λ +1)... (λ + n 1) (n N;λ C) N being the set of positive integers. In the sequel to this study, Shukla and Prajapati [5] investigated the function E γ,q (z) defined by E γ,q (z) (γ) qn Γ(αn + β) (α, β, γ C, R (α) > 0,R (β) > 0,R (γ) > 0,q (0, 1) N) The function E γ,q (z) converges absolutely for all z Cifq< R (α) + 1 (an entire function of order R (α) 1 and for z < 1ifqR (α) + 1). It is easily seen that equation (4) is an obvious generalization of equation (1), equation (2), equation (3) and the exponential function e z as follows: E 1,1 1,1 (z) e z, E 1,1 α,1 (z) E α (z), E 1,1 (z) E (z), E γ,1 α,1 (z) E γ (z) Some definitions related to this paper are given below: Distribution Function [2]: Let X be a random variable and let x 1,x 2,... be the values which it assumes; in most of what follows the x j will be integers. The aggregate of all sample points on which X assumes the fixed value x j forms the event X x j ; its n! (3) (4)

3 Generalized Mittag-Leffler function 505 probability is defined by P {X x j }. The function P {X x j } f (x j ) j 1, 2,... is called the (probability) distribution of the random variable. Clearly,f (x j ) 0, f (xj )1. The distribution function F (x) ofx is defined by F (x) P {X x} f (x j ), (5) x j x The last sum extending over all those x j which do not exceed x. F (x) is a non-decreasing function which tends to zero as x and to one as x. Thus the distribution function can be calculated from its probability distribution and vice versa. Bernoulli Number [7]: The Bernoulli polynomials, denoted by B n (x), are defined by the expansion te xt e t 1 t n n! B n (x), ( t < 2π) (6) The function on the left hand side of above equation is called the generating function of B n (x). When x 0, equation (6) reduces to t t n B e t 1 n! n (0) where B n (0) are called Bernoulli numbers, denoted by B n. The Bernoulli polynomials can be expressed explicitly in terms of the Bernoulli numbers as B n (x) n k0 n! k!(n k)! B kx n k (7) The Bernoulli numbers can be calculated recursively using the initial values, B 0 1, and B 1 1, and the recurrence relation given by, 2 B n ( ( ) 1 B ) n 1 k n B 1 j+n k B j k (n 2) k2 j2 The first several Bernoulli numbers so obtained are given by B 0 1,B 1 1 2,B 2 1 6,B ,B ,B ,B ,B ,... B 2n+1 0 (n 1, 2, 3,...) Substituting these into equation (7) we obtain several Bernoulli polynomial as B 0 (x) 1, B 1 (x) x 1 2, B 2 (x) x 2 x+ 1 6, B 3 (x) x x2 + 1 x,... 2

4 506 Pratik V. Shah, R. K. Jana, Amit D. Patel and I. A. Salehbhai Digamma Function [1]: The digamma function is closely associated with the derivative of the gamma function and sometimes called logarithmic derivative function, which is defined by, ψ (x) d {ln Γ (x)} Γ (x) x 0, 1, 2,,... dx Γ(x) where, Γ (x) is the usual gamma function [1] given by, Γ(x) 0 e t t x 1 dt ;Re(x) > 0 (8) 2. Extended Bernoulli Number By Mittag-Leffler Function Let, E α (z) s (z) (9) Γ(αn +1) From equation (9), it is clear that [s (z)] z0 1. On differentiating equation (9) with respect to z, we get E α (z), which we denoted as E α (z) s 1 (z). Now for the choice of α 1, we have [s 1 (z)] z0 1. Similarly, repeating the above process we have, [s 2 (z)] z0 1 [s 3 (z)] z0 1 and so on. Hence, we can obtain extension of Bernoulli s Number for real α as, [ ] S n dn z (10) d E α (z) 1 z0 Substitute n 0 in equation (10), we get [ ] z S 0 E α (z) 1 z0 [ ] 1 E α (z) z0 Now, if we restrict the choice of α to 1, then we get, [ ] 1 S 0 1B E 0 1 (z) Similarly, substituting n 1, 2, 3,... in equation (10) and restricting α to 1, we have, z0 S 1 d [ ] z dz E α (z) 1 z0 E α (z) ze α (z) 2 { (E α (z)) 2 + E α (z) E α (z) E α (z) } z0

5 Generalized Mittag-Leffler function 507 S B 1, S B 2, S 3 0B 3, S B 4,... Therefore, for the choice of α 1, extended Bernoulli Number is reduced to Bernoulli Number. 3. Mittag-Leffler function in Statistical Distribution Theorem 1. If G y (y) 1 E γ α,1 ( y α ) then, f (y) y α 1 E γ α,α ( y α );0<α 1,y >0 (11) Proof: Since G y (y) 1 E γ α,1 ( y α ) On simplifying the right hand side of equation (11), we get, G y (y) 1 k0 (γ) k ( 1) k y αk Γ(αk +1) k! G y (y) k1 Γ(γ + k) ( 1) k+1 y αk 1 Γ(γ) Γ(αk +1) k! Now differentiating both the sides with respect to y, yields the density function f (y) as: f (y) d dy [G y (y)] Special Case: k0 ( 1) k+1 Γ(γ + k) k! Γ(γ)Γ(αk +1) αkyαk 1 k1 ( 1) k Γ(γ + k +1) (αk + α) y(αk+α) 1 (k + 1)! Γ(γ)Γ((αk + α)+1) [replacing kbyk+ 1] y α 1 E γ α,α ( yα ) Hence, f (y) y α 1 E γ α,α ( yα ). On substituting γ 1 in equation (11), which reduces to [3] If G y (y) 1 E α ( y α ) then, f (y) y α 1 E α,α ( y α );0<α 1,y >0

6 508 Pratik V. Shah, R. K. Jana, Amit D. Patel and I. A. Salehbhai References 1. L. C. Andrews, Special Functions of Mathematics for Engineers, 2 nd Ed. McGraw Hill, New York, W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I, 3 rd Ed., John Wiley & Sons Inc., New York, H. J. Haubold, A. M. Mathai and R. K. Saxena, Mittag-Leffler Functions and Their Applications. arxiv: v2 [math.ca] 4 Oct T. R. Prabhakar, A singular integral equation with a generalized Mittag- Leffler function in the Kernel, Yokohama Math. J., 19, 7-15, A. K. Shukla and J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336, , A. Wiman, Uber de fundamental satz in der theorie der funktionene α (x), Acta Math. 29, , S. Zhang and J. Jin, Computations of Special Functions, John Wiley & Sons Inc., New York, Received: September, 2011

India

India italian journal of pure and applied mathematics n. 36 216 (819 826) 819 ANALYTIC SOLUTION FOR RLC CIRCUIT OF NON-INTGR ORDR Jignesh P. Chauhan Department of Applied Mathematics & Humanities S.V. National

More information

Properties of the Mittag-Leffler relaxation function

Properties of the Mittag-Leffler relaxation function Journal of Mathematical Chemistry Vol. 38, No. 4, November 25 25) DOI: 1.17/s191-5-699-z Properties of the Mittag-Leffler relaxation function Mário N. Berberan-Santos Centro de Química-Física Molecular,

More information

Certain Generating Functions Involving Generalized Mittag-Leffler Function

Certain Generating Functions Involving Generalized Mittag-Leffler Function International Journal of Mathematical Analysis Vol. 12, 2018, no. 6, 269-276 HIKARI Ltd, www.m-hiari.com https://doi.org/10.12988/ijma.2018.8431 Certain Generating Functions Involving Generalized Mittag-Leffler

More information

arxiv:math/ v1 [math.ca] 23 Jun 2002

arxiv:math/ v1 [math.ca] 23 Jun 2002 ON FRACTIONAL KINETIC EQUATIONS arxiv:math/0206240v1 [math.ca] 23 Jun 2002 R.K. SAXENA Department of Mathematics and Statistics, Jai Narain Vyas University Jodhpur 342001, INDIA A.M. MATHAI Department

More information

On Discrete Distributions Generated through Mittag-Leffler Function and their Properties

On Discrete Distributions Generated through Mittag-Leffler Function and their Properties On Discrete Distributions Generated through Mittag-Leffler Function and their Properties Mariamma Antony Department of Statistics Little Flower College, Guruvayur Kerala, India Abstract The Poisson distribution

More information

Background and Definitions...2. Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and Functions...

Background and Definitions...2. Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and Functions... Legendre Polynomials and Functions Reading Problems Outline Background and Definitions...2 Definitions...3 Theory...4 Legendre s Equation, Functions and Polynomials...4 Legendre s Associated Equation and

More information

The k-fractional Logistic Equation with k-caputo Derivative

The k-fractional Logistic Equation with k-caputo Derivative Pure Mathematical Sciences, Vol. 4, 205, no., 9-5 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/0.2988/pms.205.488 The -Fractional Logistic Equation with -Caputo Derivative Rubén A. Cerutti Faculty of

More information

NEW GENERAL FRACTIONAL-ORDER RHEOLOGICAL MODELS WITH KERNELS OF MITTAG-LEFFLER FUNCTIONS

NEW GENERAL FRACTIONAL-ORDER RHEOLOGICAL MODELS WITH KERNELS OF MITTAG-LEFFLER FUNCTIONS Romanian Reports in Physics 69, 118 217 NEW GENERAL FRACTIONAL-ORDER RHEOLOGICAL MODELS WITH KERNELS OF MITTAG-LEFFLER FUNCTIONS XIAO-JUN YANG 1,2 1 State Key Laboratory for Geomechanics and Deep Underground

More information

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers Martin Nicholson In this brief note, we show how to apply Kummer s and other quadratic transformation formulas for

More information

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required.

Candidates are expected to have available a calculator. Only division by (x + a) or (x a) will be required. Revision Checklist Unit C2: Core Mathematics 2 Unit description Algebra and functions; coordinate geometry in the (x, y) plane; sequences and series; trigonometry; exponentials and logarithms; differentiation;

More information

Fractional part integral representation for derivatives of a function related to lnγ(x+1)

Fractional part integral representation for derivatives of a function related to lnγ(x+1) arxiv:.4257v2 [math-ph] 23 Aug 2 Fractional part integral representation for derivatives of a function related to lnγ(x+) For x > let Mark W. Coffey Department of Physics Colorado School of Mines Golden,

More information

JACOBI TYPE AND GEGENBAUER TYPE GENERALIZATION OF CERTAIN POLYNOMIALS. Mumtaz Ahmad Khan and Mohammad Asif. 1. Introduction

JACOBI TYPE AND GEGENBAUER TYPE GENERALIZATION OF CERTAIN POLYNOMIALS. Mumtaz Ahmad Khan and Mohammad Asif. 1. Introduction MATEMATIQKI VESNIK 64 (0) 47 58 June 0 originalni nauqni rad research paper JACOBI TYPE AND GEGENBAUER TYPE GENERALIZATION OF CERTAIN POLYNOMIALS Mumtaz Ahmad Khan and Mohammad Asif Abstract. This paper

More information

arxiv: v2 [math.ca] 12 Sep 2013

arxiv: v2 [math.ca] 12 Sep 2013 COMPLETE MONOTONICITY OF FUNCTIONS INVOLVING THE q-trigamma AND q-tetragamma FUNCTIONS arxiv:1301.0155v math.ca 1 Sep 013 FENG QI Abstract. Let ψ qx) for q > 0 stand for the q-digamma function. In the

More information

Fractional derivatives of the generalized Mittag-Leffler functions

Fractional derivatives of the generalized Mittag-Leffler functions Pang et al. Advances in ifference Equations 2018 2018:415 https://doi.org/10.1186/s13662-018-1855-9 R E S E A R C H Open Access Fractional derivatives of the generalized Mittag-Leffler functions enghao

More information

Notes on Special Functions

Notes on Special Functions Spring 25 1 Notes on Special Functions Francis J. Narcowich Department of Mathematics Texas A&M University College Station, TX 77843-3368 Introduction These notes are for our classes on special functions.

More information

Defining Incomplete Gamma Type Function with Negative Arguments and Polygamma functions ψ (n) ( m)

Defining Incomplete Gamma Type Function with Negative Arguments and Polygamma functions ψ (n) ( m) 1 Defining Incomplete Gamma Type Function with Negative Arguments and Polygamma functions ψ (n) (m) arxiv:147.349v1 [math.ca] 27 Jun 214 Emin Özc. ağ and İnci Ege Abstract. In this paper the incomplete

More information

Logarithmic and Exponential Equations and Change-of-Base

Logarithmic and Exponential Equations and Change-of-Base Logarithmic and Exponential Equations and Change-of-Base MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to solve exponential equations

More information

ON BINOMIAL OPERATOR REPRESENTATIONS OF SOME POLYNOMIALS. K.S. Nisar. Mumtaz Ahmad Khan Introduction

ON BINOMIAL OPERATOR REPRESENTATIONS OF SOME POLYNOMIALS. K.S. Nisar. Mumtaz Ahmad Khan Introduction italian journal of pure and applied mathematics n. 31 2013 (15 20) 15 ON BINOMIAL OPERATOR REPRESENTATIONS OF SOME POLYNOMIALS K.S. Nisar Department of Mathematics Salman bin Abdul aziz University Wadi

More information

Appendix A Vector Analysis

Appendix A Vector Analysis Appendix A Vector Analysis A.1 Orthogonal Coordinate Systems A.1.1 Cartesian (Rectangular Coordinate System The unit vectors are denoted by x, ŷ, ẑ in the Cartesian system. By convention, ( x, ŷ, ẑ triplet

More information

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p

Two special equations: Bessel s and Legendre s equations. p Fourier-Bessel and Fourier-Legendre series. p LECTURE 1 Table of Contents Two special equations: Bessel s and Legendre s equations. p. 259-268. Fourier-Bessel and Fourier-Legendre series. p. 453-460. Boundary value problems in other coordinate system.

More information

On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion

On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion Applied Mathematics Letters 18 (25 817 826 www.elsevier.com/locate/aml On the solution of the stochastic differential equation of exponential growth driven by fractional Brownian motion Guy Jumarie Department

More information

Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices

Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 14 (2011), Article 11.4.6 Investigating Geometric and Exponential Polynomials with Euler-Seidel Matrices Ayhan Dil and Veli Kurt Department of Mathematics

More information

Higher Monotonicity Properties of q-gamma and q-psi Functions

Higher Monotonicity Properties of q-gamma and q-psi Functions Advances in Dynamical Systems and Applications ISSN 973-5321, Volume 8, Number 2, pp. 247 259 (213) http://campus.mst.edu/adsa Higher Monotonicity Properties of q-gamma and q-psi Functions Mourad E. H.

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied Mathematics Letters 24 (211) 219 223 Contents lists available at ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Laplace transform and fractional differential

More information

New asymptotic expansion for the Γ (z) function.

New asymptotic expansion for the Γ (z) function. New asymptotic expansion for the Γ z function. Gergő Nemes Institute of Mathematics, Eötvös Loránd University 7 Budapest, Hungary September 4, 007 Published in Stan s Library, Volume II, 3 Dec 007. Link:

More information

SOME INEQUALITIES FOR THE q-digamma FUNCTION

SOME INEQUALITIES FOR THE q-digamma FUNCTION Volume 10 (009), Issue 1, Article 1, 8 pp SOME INEQUALITIES FOR THE -DIGAMMA FUNCTION TOUFIK MANSOUR AND ARMEND SH SHABANI DEPARTMENT OF MATHEMATICS UNIVERSITY OF HAIFA 31905 HAIFA, ISRAEL toufik@mathhaifaacil

More information

PolyGamma Functions of Negative Order

PolyGamma Functions of Negative Order Carnegie Mellon University Research Showcase @ CMU Computer Science Department School of Computer Science -998 PolyGamma Functions of Negative Order Victor S. Adamchik Carnegie Mellon University Follow

More information

Polyexponentials. Khristo N. Boyadzhiev Ohio Northern University Departnment of Mathematics Ada, OH

Polyexponentials. Khristo N. Boyadzhiev Ohio Northern University Departnment of Mathematics Ada, OH Polyexponentials Khristo N. Boyadzhiev Ohio Northern University Departnment of Mathematics Ada, OH 45810 k-boyadzhiev@onu.edu 1. Introduction. The polylogarithmic function [15] (1.1) and the more general

More information

FRACTIONAL CALCULUS APPLIED IN SOLVING INSTABILITY PHENOMENON IN FLUID DYNAMICS

FRACTIONAL CALCULUS APPLIED IN SOLVING INSTABILITY PHENOMENON IN FLUID DYNAMICS INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET) International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 6308 (Print), ISSN 0976 6308 (Print) ISSN 0976 6316(Online)

More information

Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind

Explicit formulas for computing Bernoulli numbers of the second kind and Stirling numbers of the first kind Filomat 28:2 (24), 39 327 DOI.2298/FIL4239O Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Explicit formulas for computing Bernoulli

More information

Extension of Summation Formulas involving Stirling series

Extension of Summation Formulas involving Stirling series Etension of Summation Formulas involving Stirling series Raphael Schumacher arxiv:6050904v [mathnt] 6 May 06 Abstract This paper presents a family of rapidly convergent summation formulas for various finite

More information

Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuş-Srivastava Polynomials

Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials and the Erkuş-Srivastava Polynomials Proyecciones Journal of Mathematics Vol. 33, N o 1, pp. 77-90, March 2014. Universidad Católica del Norte Antofagasta - Chile Some Umbral Calculus Presentations of the Chan-Chyan-Srivastava Polynomials

More information

1. Introduction Interest in this project began with curiosity about the Laplace transform of the Digamma function, e as ψ(s + 1)ds,

1. Introduction Interest in this project began with curiosity about the Laplace transform of the Digamma function, e as ψ(s + 1)ds, ON THE LAPLACE TRANSFORM OF THE PSI FUNCTION M. LAWRENCE GLASSER AND DANTE MANNA Abstract. Guided by numerical experimentation, we have been able to prove that Z 8 / x x + ln dx = γ + ln) [cosx)] and to

More information

Solution of fractional oxygen diffusion problem having without singular kernel

Solution of fractional oxygen diffusion problem having without singular kernel Available online at www.isr-publications.com/jnsa J. Nonlinear Sci. Appl., 1 (17), 99 37 Research Article Journal Homepage: www.tjnsa.com - www.isr-publications.com/jnsa Solution of fractional oxygen diffusion

More information

Asymptotics of Integrals of. Hermite Polynomials

Asymptotics of Integrals of. Hermite Polynomials Applied Mathematical Sciences, Vol. 4, 010, no. 61, 04-056 Asymptotics of Integrals of Hermite Polynomials R. B. Paris Division of Complex Systems University of Abertay Dundee Dundee DD1 1HG, UK R.Paris@abertay.ac.uk

More information

Research Article On a Fractional Master Equation

Research Article On a Fractional Master Equation Hindawi Publishing Corporation International Journal of Differential Equations Volume 211, Article ID 346298, 13 pages doi:1.1155/211/346298 Research Article On a Fractional Master Equation Anitha Thomas

More information

On the stirling expansion into negative powers of a triangular number

On the stirling expansion into negative powers of a triangular number MATHEMATICAL COMMUNICATIONS 359 Math. Commun., Vol. 5, No. 2, pp. 359-364 200) On the stirling expansion into negative powers of a triangular number Cristinel Mortici, Department of Mathematics, Valahia

More information

Jordan Journal of Mathematics and Statistics (JJMS) 7(4), 2014, pp

Jordan Journal of Mathematics and Statistics (JJMS) 7(4), 2014, pp Jordan Journal of Mathematics and Statistics (JJMS) 7(4), 2014, pp.257-271 ON RELATIONS FOR THE MOMENT GENERATING FUNCTIONS FROM THE EXTENDED TYPE II GENERALIZED LOGISTIC DISTRIBUTION BASED ON K-TH UPPER

More information

arxiv: v1 [math.ho] 28 Jul 2017

arxiv: v1 [math.ho] 28 Jul 2017 Generalized Fibonacci Sequences and Binet-Fibonacci Curves arxiv:1707.09151v1 [math.ho] 8 Jul 017 Merve Özvatan and Oktay K. Pashaev Department of Mathematics Izmir Institute of Technology Izmir, 35430,

More information

A generalized Gronwall inequality and its application to a fractional differential equation

A generalized Gronwall inequality and its application to a fractional differential equation J. Math. Anal. Appl. 328 27) 75 8 www.elsevier.com/locate/jmaa A generalized Gronwall inequality and its application to a fractional differential equation Haiping Ye a,, Jianming Gao a, Yongsheng Ding

More information

ON QUADRAPELL NUMBERS AND QUADRAPELL POLYNOMIALS

ON QUADRAPELL NUMBERS AND QUADRAPELL POLYNOMIALS Hacettepe Journal of Mathematics and Statistics Volume 8() (009), 65 75 ON QUADRAPELL NUMBERS AND QUADRAPELL POLYNOMIALS Dursun Tascı Received 09:0 :009 : Accepted 04 :05 :009 Abstract In this paper we

More information

A Note on the Differential Equations with Distributional Coefficients

A Note on the Differential Equations with Distributional Coefficients MATEMATIKA, 24, Jilid 2, Bil. 2, hlm. 115 124 c Jabatan Matematik, UTM. A Note on the Differential Equations with Distributional Coefficients Adem Kilicman Department of Mathematics, Institute for Mathematical

More information

Renewal Theory and Geometric Infinite Divisibility

Renewal Theory and Geometric Infinite Divisibility ProbStat Models, 2, May-2003, Pages 1-8 Department of Statistics Valiavilakom Prajyoti Niketan College Ookode Pudukkad, Trichur 680 301 Trivandrum 695 020 India. India. esandhya@hotmail.com Received in

More information

A Study of Fractional Calculus Operators Associated with Generalized Functions. Doctor of Philosophy

A Study of Fractional Calculus Operators Associated with Generalized Functions. Doctor of Philosophy A Study of Fractional Calculus Operators Associated with Generalized Functions A Synopsis Submitted in Partial fulfillment for the degree Of Doctor of Philosophy (Mathematics) Supervised by Dr. Kishan

More information

Integrals Involving H-function of Several Complex Variables

Integrals Involving H-function of Several Complex Variables International Journal of Scientific and Research Publications, Volume 7, Issue 2, February 2017 95 Integrals Involving H-function of Several Complex Variables AshiqHussain Khan, Neelam Pandey Department

More information

Summation Techniques, Padé Approximants, and Continued Fractions

Summation Techniques, Padé Approximants, and Continued Fractions Chapter 5 Summation Techniques, Padé Approximants, and Continued Fractions 5. Accelerated Convergence Conditionally convergent series, such as 2 + 3 4 + 5 6... = ( ) n+ = ln2, (5.) n converge very slowly.

More information

BESSEL FUNCTIONS APPENDIX D

BESSEL FUNCTIONS APPENDIX D APPENDIX D BESSEL FUNCTIONS D.1 INTRODUCTION Bessel functions are not classified as one of the elementary functions in mathematics; however, Bessel functions appear in the solution of many physical problems

More information

k-weyl Fractional Derivative, Integral and Integral Transform

k-weyl Fractional Derivative, Integral and Integral Transform Int. J. Contemp. Math. Sciences, Vol. 8, 213, no. 6, 263-27 HIKARI Ltd, www.m-hiari.com -Weyl Fractional Derivative, Integral and Integral Transform Luis Guillermo Romero 1 and Luciano Leonardo Luque Faculty

More information

arxiv:math/ v2 [math.ap] 3 Oct 2006

arxiv:math/ v2 [math.ap] 3 Oct 2006 THE TAYLOR SERIES OF THE GAUSSIAN KERNEL arxiv:math/0606035v2 [math.ap] 3 Oct 2006 L. ESCAURIAZA From some people one can learn more than mathematics Abstract. We describe a formula for the Taylor series

More information

A RECURSION FORMULA FOR THE COEFFICIENTS OF ENTIRE FUNCTIONS SATISFYING AN ODE WITH POLYNOMIAL COEFFICIENTS

A RECURSION FORMULA FOR THE COEFFICIENTS OF ENTIRE FUNCTIONS SATISFYING AN ODE WITH POLYNOMIAL COEFFICIENTS Georgian Mathematical Journal Volume 11 (2004), Number 3, 409 414 A RECURSION FORMULA FOR THE COEFFICIENTS OF ENTIRE FUNCTIONS SATISFYING AN ODE WITH POLYNOMIAL COEFFICIENTS C. BELINGERI Abstract. A recursion

More information

FRACTIONAL FOURIER TRANSFORM AND FRACTIONAL DIFFUSION-WAVE EQUATIONS

FRACTIONAL FOURIER TRANSFORM AND FRACTIONAL DIFFUSION-WAVE EQUATIONS FRACTIONAL FOURIER TRANSFORM AND FRACTIONAL DIFFUSION-WAVE EQUATIONS L. Boyadjiev*, B. Al-Saqabi** Department of Mathematics, Faculty of Science, Kuwait University *E-mail: boyadjievl@yahoo.com **E-mail:

More information

Infinite Series. 1 Introduction. 2 General discussion on convergence

Infinite Series. 1 Introduction. 2 General discussion on convergence Infinite Series 1 Introduction I will only cover a few topics in this lecture, choosing to discuss those which I have used over the years. The text covers substantially more material and is available for

More information

The integrals in Gradshteyn and Ryzhik. Part 10: The digamma function

The integrals in Gradshteyn and Ryzhik. Part 10: The digamma function SCIENTIA Series A: Mathematical Sciences, Vol 7 29, 45 66 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 76-8446 c Universidad Técnica Federico Santa María 29 The integrals in Gradshteyn

More information

Sharp inequalities and complete monotonicity for the Wallis ratio

Sharp inequalities and complete monotonicity for the Wallis ratio Sharp inequalities and complete monotonicity for the Wallis ratio Cristinel Mortici Abstract The aim of this paper is to prove the complete monotonicity of a class of functions arising from Kazarinoff

More information

1. Prove the following properties satisfied by the gamma function: 4 n n!

1. Prove the following properties satisfied by the gamma function: 4 n n! Math 205A: Complex Analysis, Winter 208 Homework Problem Set #6 February 20, 208. Prove the following properties satisfied by the gamma function: (a) Values at half-integers: Γ ( n + 2 (b) The duplication

More information

Higher monotonicity properties of q gamma and q-psi functions

Higher monotonicity properties of q gamma and q-psi functions Advances in Dynamical Systems and Applications ISSN 973-5321, Volume x, Number x, pp. 1 13 (2xx) http://campus.mst.edu/adsa Higher monotonicity properties of q gamma and q-psi functions Mourad E. H. Ismail

More information

A196837: Ordinary Generating Functions for Sums of Powers of the First n Positive Integers

A196837: Ordinary Generating Functions for Sums of Powers of the First n Positive Integers Karlsruhe October 14, 2011 November 1, 2011 A196837: Ordinary Generating Functions for Sums of Powers of the First n Positive Integers Wolfdieter L a n g 1 The sum of the k th power of the first n positive

More information

arxiv: v1 [math.ca] 25 Jan 2011

arxiv: v1 [math.ca] 25 Jan 2011 AN INEQUALITY INVOLVING THE GAMMA AND DIGAMMA FUNCTIONS arxiv:04698v mathca] 25 Jan 20 FENG QI AND BAI-NI GUO Abstract In the paper, we establish an inequality involving the gamma and digamma functions

More information

THE LEGENDRE FORMULA IN CLIFFORD ANALYSIS. Guy Laville, Ivan Ramadanoff

THE LEGENDRE FORMULA IN CLIFFORD ANALYSIS. Guy Laville, Ivan Ramadanoff Serdica Math. J. 35 (2009), 61 74 THE LEGENDRE FORMULA IN CLIFFORD ANALYSIS Guy Laville, Ivan Ramadanoff Communicated by P. Pflug Abstract. Let R 0,2m+1 be the Clifford algebra of the antieuclidean 2m+1

More information

ON GENERALIZED WEYL FRACTIONAL q-integral OPERATOR INVOLVING GENERALIZED BASIC HYPERGEOMETRIC FUNCTIONS. Abstract

ON GENERALIZED WEYL FRACTIONAL q-integral OPERATOR INVOLVING GENERALIZED BASIC HYPERGEOMETRIC FUNCTIONS. Abstract ON GENERALIZED WEYL FRACTIONAL q-integral OPERATOR INVOLVING GENERALIZED BASIC HYPERGEOMETRIC FUNCTIONS R.K. Yadav 1, S.D. Purohit, S.L. Kalla 3 Abstract Fractional q-integral operators of generalized

More information

INEQUALITIES FOR THE GAMMA FUNCTION

INEQUALITIES FOR THE GAMMA FUNCTION INEQUALITIES FOR THE GAMMA FUNCTION Received: 16 October, 26 Accepted: 9 February, 27 Communicated by: XIN LI AND CHAO-PING CHEN College of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo

More information

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016

Legendre s Equation. PHYS Southern Illinois University. October 18, 2016 Legendre s Equation PHYS 500 - Southern Illinois University October 18, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 18, 2016 1 / 11 Legendre s Equation Recall We are trying

More information

Bilinear generating relations for a family of q-polynomials and generalized basic hypergeometric functions

Bilinear generating relations for a family of q-polynomials and generalized basic hypergeometric functions ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 16, Number 2, 2012 Available online at www.math.ut.ee/acta/ Bilinear generating relations for a family of -polynomials and generalized

More information

A FEW REMARKS ON THE SUPREMUM OF STABLE PROCESSES P. PATIE

A FEW REMARKS ON THE SUPREMUM OF STABLE PROCESSES P. PATIE A FEW REMARKS ON THE SUPREMUM OF STABLE PROCESSES P. PATIE Abstract. In [1], Bernyk et al. offer a power series and an integral representation for the density of S 1, the maximum up to time 1, of a regular

More information

A Note on Certain Stability and Limiting Properties of ν-infinitely divisible distributions

A Note on Certain Stability and Limiting Properties of ν-infinitely divisible distributions Int. J. Contemp. Math. Sci., Vol. 1, 2006, no. 4, 155-161 A Note on Certain Stability and Limiting Properties of ν-infinitely divisible distributions Tomasz J. Kozubowski 1 Department of Mathematics &

More information

Exercises for Chap. 2

Exercises for Chap. 2 1 Exercises for Chap..1 For the Riemann-Liouville fractional integral of the first kind of order α, 1,(a,x) f, evaluate the fractional integral if (i): f(t)= tν, (ii): f(t)= (t c) ν for some constant c,

More information

Lecture 17: The Exponential and Some Related Distributions

Lecture 17: The Exponential and Some Related Distributions Lecture 7: The Exponential and Some Related Distributions. Definition Definition: A continuous random variable X is said to have the exponential distribution with parameter if the density of X is e x if

More information

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0 Legendre equation This ODE arises in many physical systems that we shall investigate We choose We then have Substitution gives ( x 2 ) d 2 u du 2x 2 dx dx + ( + )u u x s a λ x λ a du dx λ a λ (λ + s)x

More information

Generalized Functions for the Fractional Calculus. and Dirichlet Averages

Generalized Functions for the Fractional Calculus. and Dirichlet Averages International Mathematical Forum, Vol. 8, 2013, no. 25, 1199-1204 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2013.3483 Generalized Functions for the Fractional Calculus and Dirichlet Averages

More information

A Note on Extended Binomial Coefficients

A Note on Extended Binomial Coefficients A Note on Extended Binomial Coefficients Thorsten Neuschel arxiv:407.749v [math.co] 8 Jul 04 Abstract We study the distribution of the extended binomial coefficients by deriving a complete asymptotic expansion

More information

MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES

MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES J. Korean Math. Soc. 47 1, No., pp. 63 75 DOI 1.4134/JKMS.1.47..63 MOMENT CONVERGENCE RATES OF LIL FOR NEGATIVELY ASSOCIATED SEQUENCES Ke-Ang Fu Li-Hua Hu Abstract. Let X n ; n 1 be a strictly stationary

More information

ISSN Article

ISSN Article Axioms 214, xx, 1-x; doi:1.339/ OPEN ACCESS axioms ISSN 275-168 www.mdpi.com/journal/axioms Article Space-time Fractional Reaction-Diffusion Equations Associated with a Generalized Riemann-Liouville Fractional

More information

Stability of the Defect Renewal Volterra Integral Equations

Stability of the Defect Renewal Volterra Integral Equations 19th International Congress on Modelling and Simulation, Perth, Australia, 12 16 December 211 http://mssanz.org.au/modsim211 Stability of the Defect Renewal Volterra Integral Equations R. S. Anderssen,

More information

Numerical Solutions of Laplacian Problems over L-Shaped Domains and Calculations of the Generalized Stress Intensity Factors

Numerical Solutions of Laplacian Problems over L-Shaped Domains and Calculations of the Generalized Stress Intensity Factors WCCM V Fifth World Congress on Computational Mechanics July 7-2, 2002, Vienna, Austria Eds.: H.A. Mang, F.G. Rammerstorfer, J. Eberhardsteiner Numerical Solutions of Laplacian Problems over L-Shaped Domains

More information

4 Power Series Solutions: Frobenius Method

4 Power Series Solutions: Frobenius Method 4 Power Series Solutions: Frobenius Method Now the ODE adventure takes us to series solutions for ODEs, a technique A & W, that is often viable, valuable and informative. These can be readily applied Sec.

More information

Differential Equations and Associators for Periods

Differential Equations and Associators for Periods Differential Equations and Associators for Periods Stephan Stieberger, MPP München Workshop on Geometry and Physics in memoriam of Ioannis Bakas November 2-25, 26 Schloß Ringberg, Tegernsee based on: St.St.,

More information

Fractional Schrödinger Wave Equation and Fractional Uncertainty Principle

Fractional Schrödinger Wave Equation and Fractional Uncertainty Principle Int. J. Contemp. Math. Sciences, Vol., 007, no. 9, 943-950 Fractional Schrödinger Wave Equation and Fractional Uncertainty Principle Muhammad Bhatti Department of Physics and Geology University of Texas

More information

Marichev-Saigo-Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function

Marichev-Saigo-Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function Mishra et al. Cogent Mathematics 2017 4: 1320830 PURE MATHEMATICS RESEARCH ARTICLE Marichev-Saigo-Maeda ractional calculus operators Srivastava polynomials and generalized Mittag-Leler unction Received:

More information

A Generalization of the Fock Space

A Generalization of the Fock Space A Generalization of the Fock Space Southeastern Analysis Meeting Joel Rosenfeld, Ben Russo* March 2017 Definition The Fock space F 2 is a RKHS consisting of entire functions where f 2 = f (z) 2 1 π e z

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

Taylor Expansions with Finite Radius of Convergence Work of Robert Jentzsch, 1917

Taylor Expansions with Finite Radius of Convergence Work of Robert Jentzsch, 1917 Polynomial Families with Interesting Zeros Robert Boyer Drexel University April 30, 2010 Taylor Expansions with Finite Radius of Convergence Work of Robert Jentzsch, 1917 Partial Sums of Geometric Series

More information

Regularization in Reproducing Kernel Banach Spaces

Regularization in Reproducing Kernel Banach Spaces .... Regularization in Reproducing Kernel Banach Spaces Guohui Song School of Mathematical and Statistical Sciences Arizona State University Comp Math Seminar, September 16, 2010 Joint work with Dr. Fred

More information

Notes on Bessel s Equation and the Gamma Function

Notes on Bessel s Equation and the Gamma Function Notes on Bessel s Equation and the Gamma Function Charles Byrne (Charles Byrne@uml.edu) Department of Mathematical Sciences University of Massachusetts at Lowell Lowell, MA 1854, USA April 19, 7 1 Bessel

More information

Boyce/DiPrima/Meade 11 th ed, Ch 1.1: Basic Mathematical Models; Direction Fields

Boyce/DiPrima/Meade 11 th ed, Ch 1.1: Basic Mathematical Models; Direction Fields Boyce/DiPrima/Meade 11 th ed, Ch 1.1: Basic Mathematical Models; Direction Fields Elementary Differential Equations and Boundary Value Problems, 11 th edition, by William E. Boyce, Richard C. DiPrima,

More information

Equations with regular-singular points (Sect. 5.5).

Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points (Sect. 5.5). Equations with regular-singular points. s: Equations with regular-singular points. Method to find solutions. : Method to find solutions. Recall: The

More information

ON CERTAIN CHARACTERIZATIONS AND INTEGRAL REPRESENTATIONS OF CHATTERJEA S GENERALIZED BESSEL POLYNOMIAL

ON CERTAIN CHARACTERIZATIONS AND INTEGRAL REPRESENTATIONS OF CHATTERJEA S GENERALIZED BESSEL POLYNOMIAL GLASNIK MATEMATIČKI Vol. 37(57)(22), 93 1 ON CERTAIN CHARACTERIZATIONS AND INTEGRAL REPRESENTATIONS OF CHATTERJEA S GENERALIZED BESSEL POLYNOMIAL Mumtaz Ahmad Khan and Khursheed Ahmad Aligarh Muslim University,

More information

THE ZEROS OF THE SOLUTIONS OF THE FRACTIONAL OSCILLATION EQUATION

THE ZEROS OF THE SOLUTIONS OF THE FRACTIONAL OSCILLATION EQUATION RESEARCH PAPER THE ZEROS OF THE SOLUTIONS OF THE FRACTIONAL OSCILLATION EQUATION Jun-Sheng Duan 1,2, Zhong Wang 2, Shou-Zhong Fu 2 Abstract We consider the zeros of the solution α (t) =E α ( t α ), 1

More information

The KMO Method for Solving Non-homogenous, mth Order Differential Equations

The KMO Method for Solving Non-homogenous, mth Order Differential Equations Rose-Hulman Undergraduate Mathematics Journal Volume 15 Issue 1 Article 8 The KMO Method for Solving Non-homogenous, mth Order Differential Equations David Krohn University of Notre Dame Daniel Mariño-Johnson

More information

An extension of Caputo fractional derivative operator and its applications

An extension of Caputo fractional derivative operator and its applications Available online at wwwtjnsacom J Nonlinear Sci Appl 9 26, 36 362 Research Article An extension of Caputo fractional derivative operator and its applications İ Onur Kıyma a, Ayşegül Çetinkaya a,, Praveen

More information

( ) ( ) Page 339 Research Guru: Online Journal of Multidisciplinary Subjects (Peer Reviewed)

( ) ( ) Page 339 Research Guru: Online Journal of Multidisciplinary Subjects (Peer Reviewed) Marichev-Saigo Maeda Fractional Calculus Operators and the Image Formulas of the Product of Generalized Gauss Hypergeometric Function and the K-Function Javid Majid, Aarif Hussain, Imtiyaz, Shakir Hussain

More information

arxiv: v1 [math.ca] 31 Dec 2018

arxiv: v1 [math.ca] 31 Dec 2018 arxiv:181.1173v1 [math.ca] 31 Dec 18 Some trigonometric integrals and the Fourier transform of a spherically symmetric exponential function Hideshi YAMANE Department of Mathematical Sciences, Kwansei Gakuin

More information

Math 308 Final Exam Practice Problems

Math 308 Final Exam Practice Problems Math 308 Final Exam Practice Problems This review should not be used as your sole source for preparation for the exam You should also re-work all examples given in lecture and all suggested homework problems

More information

Multi-Term Linear Fractional Nabla Difference Equations with Constant Coefficients

Multi-Term Linear Fractional Nabla Difference Equations with Constant Coefficients International Journal of Difference Equations ISSN 0973-6069, Volume 0, Number, pp. 9 06 205 http://campus.mst.edu/ijde Multi-Term Linear Fractional Nabla Difference Equations with Constant Coefficients

More information

A NEW CLASS OF INTEGRALS INVOLVING EXTENDED MITTAG-LEFFLER FUNCTIONS

A NEW CLASS OF INTEGRALS INVOLVING EXTENDED MITTAG-LEFFLER FUNCTIONS Preprints www.preprints.org) NOT PR-RVIWD Posted: 1 May 217 doi:1.29/preprints2175.222.v1 A NW CLASS OF INTGRALS INVOLVING XTNDD MITTAG-LFFLR FUNCTIONS G. RAHMAN, A. GHAFFAR, K.S. NISAR* AND S. MUBN Abstract.

More information

IMPROVEMENTS OF COMPOSITION RULE FOR THE CANAVATI FRACTIONAL DERIVATIVES AND APPLICATIONS TO OPIAL-TYPE INEQUALITIES

IMPROVEMENTS OF COMPOSITION RULE FOR THE CANAVATI FRACTIONAL DERIVATIVES AND APPLICATIONS TO OPIAL-TYPE INEQUALITIES Dynamic Systems and Applications ( 383-394 IMPROVEMENTS OF COMPOSITION RULE FOR THE CANAVATI FRACTIONAL DERIVATIVES AND APPLICATIONS TO OPIAL-TYPE INEQUALITIES M ANDRIĆ, J PEČARIĆ, AND I PERIĆ Faculty

More information

MULTISECTION METHOD AND FURTHER FORMULAE FOR π. De-Yin Zheng

MULTISECTION METHOD AND FURTHER FORMULAE FOR π. De-Yin Zheng Indian J. pure appl. Math., 39(: 37-55, April 008 c Printed in India. MULTISECTION METHOD AND FURTHER FORMULAE FOR π De-Yin Zheng Department of Mathematics, Hangzhou Normal University, Hangzhou 30036,

More information

Math Assignment 11

Math Assignment 11 Math 2280 - Assignment 11 Dylan Zwick Fall 2013 Section 8.1-2, 8, 13, 21, 25 Section 8.2-1, 7, 14, 17, 32 Section 8.3-1, 8, 15, 18, 24 1 Section 8.1 - Introduction and Review of Power Series 8.1.2 - Find

More information

Computing Consecutive-Type Reliabilities Non-Recursively

Computing Consecutive-Type Reliabilities Non-Recursively IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 3, SEPTEMBER 2003 367 Computing Consecutive-Type Reliabilities Non-Recursively Galit Shmueli Abstract The reliability of consecutive-type systems has been

More information

Invariance Properties of the Negative Binomial Lévy Process and Stochastic Self-similarity

Invariance Properties of the Negative Binomial Lévy Process and Stochastic Self-similarity International Mathematical Forum, 2, 2007, no. 30, 1457-1468 Invariance Properties of the Negative Binomial Lévy Process and Stochastic Self-similarity Tomasz J. Kozubowski Department of Mathematics &

More information

SOME IDENTITIES FOR THE RIEMANN ZETA-FUNCTION II. Aleksandar Ivić

SOME IDENTITIES FOR THE RIEMANN ZETA-FUNCTION II. Aleksandar Ivić FACTA UNIVERSITATIS (NIŠ Ser. Math. Inform. 2 (25, 8 SOME IDENTITIES FOR THE RIEMANN ZETA-FUNCTION II Aleksandar Ivić Abstract. Several identities for the Riemann zeta-function ζ(s are proved. For eample,

More information