Effect of interaction terms on particle production due to time-varying mass

Size: px
Start display at page:

Download "Effect of interaction terms on particle production due to time-varying mass"

Transcription

1 Effect of interaction terms on particle production due to time-varying mass Seishi Enomoto (Univ. of Warsaw) [work in progress] Collaborators : Olga Fuksińska Zygmunt Lalak (Univ. of Warsaw) (Univ. of Warsaw) Outline 1. Introduction 2. How to calculate particle number 3. Calculation of particle number 4. Summary 1/22

2 1. Introduction Particle production from vacuum x It is known that a varying background causes production of particles Oscillating Electric field pair production of electrons [E. Brezin and C. Itzykson, Phys. Rev. D 2,1191 (1970)] Changing metric gravitational particle production Oscillating inflaton (p)reheating etc [L. Parker, Phys. Rev. 183, 1057 (1969)] [L. H. Ford, Phys. Rev. D 35, 2955 (1987)] [L. Kofman, A. D. Linde, A. A. Starobinsky, Phys. Rev. Lett. 73, 3195 (1994)] [L. Kofman, A. D. Linde, A. A. Starobinsky, Phys. Rev. D 56, 3258 (1997)] 2/22

3 Example of scalar particle production Let us consider : L int = 1 2 g2 φ 2 χ 2 φ : complex scalar field (classical) g : coupling χ : real scalar particle (quantum) If φ goes near the origin, χ particles are produced Because mass of χ (m χ = gφ) becomes small around φ = 0 kinetic energy of φ converts to χ particles m χ produced occupation number : n χk = V exp π k2 +g 2 μ 2 gv χ χ χ χ χ χ Im φ v t [L. Kofman, A. D. Linde, X. Liu, A. Maloney, L. McAllister and E. Silverstein, JHEP 0405, 030 (2004)]. μ Re φ φ 3/22

4 Our interests 1. How about supersymmetric model? What is the role of the superpartner of the background field? 2. How do (quantum) interaction terms affect particle production? Usually production rates are calculated in the purely classical background We would like to estimate the contribution of the quantum interaction term φ χ ψ φ ψ χ 4/22

5 Our interests 1. How about supersymmetric model? What is the role of the superpartner of the background field? 2. How do (quantum) interaction terms affect particle production? Usually production rates are calculated in the purely classical background We would like to estimate the contribution of the quantum interaction term φ classical χ classical ψ φ ψ χ 5/22

6 Our interests 1. How about supersymmetric model? What is the role of the superpartner of the background field? 2. How do (quantum) interaction terms affect particle production? Usually production rates are calculated in the purely classical background We would like to estimate the contribution of the quantum interaction term φ classical χ quantum classical ψ φ quantum ψ χ 6/22

7 Model in this talk Super potential : Φ = φ + 2θψ φ + θ 2 F φ W = 1 2 gφx2 Χ = χ + 2θψ χ + θ 2 F χ Interaction terms in components : g : coupling L int = g 2 φ 2 χ g2 χ 4 g 1 2 φψ χψ χ + ψ φ ψ χ χ + (h. c. ) Stationary point : χ = ψ φ = ψ χ = 0, but φ can have any value Masses Production is possible φ 0 χ, ψ χ : mass = gφ, ψ φ : massless However, ψ φ s mass may be influenced by φ through loop effects? Is quantum part of φ also influenced? impossible Im φ φ Re φ 7/22

8 Equations of Motion for field operators : φ : 0 = 2 + g 2 χ 2 φ + 1 gψ 2 χ ψ χ χ : 0 = 2 + g 2 φ g2 χ 2 χ + gψ φ ψ χ ψ φ : 0 = σ μ μ ψ φ + igχ ψ χ ψ χ : 0 = σ μ μ ψ χ + igφ ψ χ + igχ ψ φ How do we calculate produced particle number including interaction term? 8/22

9 2. How to calculate particle number Definition of (occupation) number : n k = 0 in a out k a out k 0 in Information about in-state (@ far past) and out-state (@ far future) of field needs for the calculation How are they related to each other? (in-state) (out-state) Asymptotic field expansion 9/22

10 An example with a scalar field (mass) (source term) Operator field equation : 0 = 2 + M 2 Ψ + J Commutation relation : Ψ x, Ψ (y) = iδ 3 x y Formal solution (Yang-Feldman equations) Ψ x = ZΨ as x x iz 0 dy 0 t as d 3 y Ψ as x, Ψ as, y J y Z : some const. Ψ as : asymptotic field 0 = 2 + M 2 Ψ as J(y) Ψ as (x) J(y) J(y) J(y) If we take t as = t in = or t as = t out = +, Ψ out x out = Ψ in x out i Z d 4 y Ψ in x out, Ψ in y J y 10/22

11 An example with a scalar field (mass) (source term) Operator field equation : 0 = 2 + M 2 Ψ + J Commutation relation : Ψ x, Ψ (y) = iδ 3 x y Formal solution (Yang-Feldman equations) Ψ x = ZΨ as x x iz 0 dy 0 t as d 3 y Ψ as x, Ψ as, y J y Z : some const. a k out Ψ as : asymptotic field 0 = 2 + M 2 Ψ as a k in J(y) Ψ as (x) J(y) J(y) J(y) If we take t as = t in = or t as = t out = +, Ψ out x out = Ψ in x out i Z d 4 y Ψ in x out, Ψ in y J y 11/22

12 An example with a scalar field Ψ as is free particle, so we can expand with plane waves as Ψ as d 3 k x = 2π 3 eik x Ψ as k (x 0 )a as k + Ψ as k x 0 as b k plane wave (time dependent) wave func. 0 = Ψ k as + k 2 + M 2 Ψ k as creation/annihilation op. inner product relation : Ψ k as Ψ k as Ψ k as Ψ k as = i/z which comes from conditions a as k, a as k = 2π 3 δ 3 k k, Z Ψ as x, Ψ as y t t as = iħδ 3 x y a k as = iz d 3 x e ik x Ψ k as Ψ as Ψ k as Ψ as 12/22

13 An example with a scalar field Relation between a k in and a k out a k out = iz d 3 x e ik x Ψ k out Ψ out Ψ k out Ψ out Ψ out x out = Ψ in x out i Z d 4 y Ψ in x out, Ψ in, y J y a out k = α k a in k + β k a in k i Z d 4 x e ik x α k Ψ in in k β k Ψ k J(y) (usual) Bogoliubov tf low α k iz Ψ k out Ψ k in Ψ k out Ψ k in β k iz Ψ k out Ψ k in Ψ k out Ψ k in Interaction effects Ψ in k = α k Ψ out out k + β k Ψ k Ψ out k = α k Ψ in k β in k Ψ k α 2 k β 2 k = 1 13/22

14 An example with a scalar field Produced (occupation) number : n k = 0 in a k out a k out 0 in = β k a in k i Z d 4 x e ik x α k Ψ in in k β k Ψ k J 0 in 2 = V β k Z d 4 x e ik x Ψ k in J 0 in 2 + β k 0 β k = 0 Particles can be produced even if β k = 0! 14/22

15 3. Calculation of particle number Equation of Motion (again) : φ : 0 = 2 + g 2 χ 2 φ + 1 gψ 2 χ ψ χ χ : 0 = 2 + g 2 φ g2 χ 2 χ + gψ φ ψ χ ψ φ : 0 = σ μ μ ψ φ + igχ ψ χ ψ χ : 0 = σ μ μ ψ χ + igφ ψ χ + igχ ψ φ EOM for asymptotic fields (as = in, out): φ as : 0 = 2 φ as χ as : 0 = 2 + g 2 φ 2 χ as ψ φ as : ψ χ as : 0 = σ μ μ ψ φ as 0 = σ μ μ ψ χ as + ig φ ψ χ as φ : macroscopic χ, ψ φ, ψ χ : microscopic 15/22

16 Solutions for Asymptotic fields Assuming φ = φ (t) for simplicity, then 0 = 2 φ as φ as = φ as + d3 k 2π 3 eik x φ as k a as φk + φ as as k b φ k Im φ Z φ φ in = vt + iμ, Z φ φ k in = Z φ φ k out = 1 2 k μ v e i k t Re φ φ β φk = 0 φ k out = α k φ k in β k φ k in χ as = d3 k 2π 3 eik x χ as k a as χk + χ as as k b χ k Z χ χ in k 1 t exp i dt ω 2ω k (t ) k ( valid for t 1/ gv ) = 2 + g 2 φ 2 χ as ω k k 2 + Z φ g 2 φ 2 (analytic continuation) β χk i exp π k2 +g 2 μ 2 2gv χ in Im t Re t χ out 16/22

17 Solutions for Asymptotic fields eigen spinor for helicity op. : k i σ i e k ± = ± k σ 0 e k ± ψ φ as = d3 k 2π 3 eik x ± β ψφ k Z φ ψ ±,in φk = = 0 e + k ψ +,as φk a +as ψφ k Z φ ψ ±,out φk = e i k t + e k ψ,as as φk a ψφ k 0 = σ μ μ ψ φ as ψ χ as = d3 k 2π 3 eik x s=± e s + k ψ s,as s χk a ψχ k σ 0 e s k ψ s,as s χk a ψχ k Z χ ψ χk ± s,in gvt ω k ± 1 + gvt e iθ k s t exp i dt ω ω k t k 0 = σ μ μ ψ χ as + ig φ ψ χ as ( valid for t 1/ gv ) ω k k 2 + Z φ g 2 φ 2, e iθ k s s k igμ k 2 +g 2 μ 2 s (analytic continuation) β ψχ k s exp π k2 +g 2 μ 2 2gv 17/22

18 Produced Particle number n χk = β χk 2 + = exp π k 2 +g 2 μ 2 s n ψχ k s = β ψχ k gv 2 + = exp π k 2 +g 2 μ 2 leading term is obtained gv + + n φk = β φk 2 + = 0 + s n ψφ k s = β ψφ k 2 + = 0 + Focus on! need to calculate next to leading order 18/22

19 Calculation of n ψφ k n ψφ k = 0 in a s,out ψφ k a s,out ψφ k 0 in = g 2 Z φ Z2 χ d 4 x e ik x ψ in φk χ in e s k ψ in χ 0 in 2 + V g 2 Z φ Z χ 2 d 3 p 1 2π 3 r=± 2 1 sr p k pk dt ψ in in φk χ k+p ψ χp + r,in 2 Z φ ψ in φk = e i k t Z χ χ k in 1 2ω k e i dt ω k t Z χ ψ χk + s,in 1 2 t 1 gvt ω k ± 1 + gvt e iθ k s e i t dt ω k t ω k This integral is too complicated to perform Im t steepest decent method Re t We estimated in special case k = 0 with steepest decent method 19/22

20 Analytical Result s n ψφ k=0/v = C g2 4π exp π g2 μ 2 gv C = /6 Γ 4/3 2 π 2 e 2/ s (c.f.) n χk /V n ψχ k/v exp π k2 +g 2 μ 2 gv Produced number of ψ φ is suppressed by factor g 2 comparing with χ or ψ χ This results is consistent with perturbativity 20/22

21 Numerical Results 0.28 g 2 4π consistent with analytical expected value 2 exp π k2 + g 2 μ 2 gv 21/22

22 4. Summary 1. We constructed the Bogoliubov transformation taking into account interaction effects 2. We calculated produced particle s (occupation) number s n χk /V n ψχ k/v exp π k2 +g 2 μ 2 gv s n ψφ k=0/v 0.28 g2 exp π g2 μ 2 0 4π gv Massless particle can be produced, however the production is suppressed by the coupling n φk=0 /V now in progress The numerical result shows massless bosonic statistics. It would be interesting to see modification induced by supersymmetry breaking terms - this is issue under investigation 22/22

Dissipative and Stochastic Effects During Inflation 1

Dissipative and Stochastic Effects During Inflation 1 Dissipative and Stochastic Effects During Inflation 1 Rudnei O. Ramos Rio de Janeiro State University Department of Theoretical Physics McGill University Montreal, Canada September 8th, 2017 1 Collaborators:

More information

Talk online at

Talk online at Talk online at http://sachdev.physics.harvard.edu Outline 1. CFT3s in condensed matter physics Superfluid-insulator and Neel-valence bond solid transitions 2. Quantum-critical transport Collisionless-t0-hydrodynamic

More information

Contact interactions in string theory and a reformulation of QED

Contact interactions in string theory and a reformulation of QED Contact interactions in string theory and a reformulation of QED James Edwards QFT Seminar November 2014 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Worldline formalism

More information

11.D.2. Collision Operators

11.D.2. Collision Operators 11.D.. Collision Operators (11.94) can be written as + p t m h+ r +p h+ p = C + h + (11.96) where C + is the Boltzmann collision operator defined by [see (11.86a) for convention of notations] C + g(p)

More information

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE Francisco Torrentí - IFT/UAM Valencia Students Seminars - December 2014 Contents 1. The Friedmann equations 2. Inflation 2.1. The problems of hot Big

More information

Lecture 7: N = 2 supersymmetric gauge theory

Lecture 7: N = 2 supersymmetric gauge theory Lecture 7: N = 2 supersymmetric gauge theory José D. Edelstein University of Santiago de Compostela SUPERSYMMETRY Santiago de Compostela, November 22, 2012 José D. Edelstein (USC) Lecture 7: N = 2 supersymmetric

More information

Spacetime curvature and Higgs stability during and after inflation

Spacetime curvature and Higgs stability during and after inflation Spacetime curvature and Higgs stability during and after inflation arxiv:1407.3141 (PRL 113, 211102) arxiv:1506.04065 Tommi Markkanen 12 Matti Herranen 3 Sami Nurmi 4 Arttu Rajantie 2 1 King s College

More information

Semi-Classical Theory of Radiative Transitions

Semi-Classical Theory of Radiative Transitions Semi-Classical Theory of Radiative Transitions Massimo Ricotti ricotti@astro.umd.edu University of Maryland Semi-Classical Theory of Radiative Transitions p.1/13 Atomic Structure (recap) Time-dependent

More information

Higgs inflation: dark matter, detectability and unitarity

Higgs inflation: dark matter, detectability and unitarity Higgs inflation: dark matter, detectability and unitarity Rose Lerner University of Helsinki and Helsinki Institute of Physics In collaboration with John McDonald (Lancaster University) 0909.0520 (Phys.

More information

Evolution of Scalar Fields in the Early Universe

Evolution of Scalar Fields in the Early Universe Evolution of Scalar Fields in the Early Universe Louis Yang Department of Physics and Astronomy University of California, Los Angeles PACIFIC 2015 September 17th, 2015 Advisor: Alexander Kusenko Collaborator:

More information

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth

Misao Sasaki YITP, Kyoto University. 29 June, 2009 ICG, Portsmouth Misao Sasaki YITP, Kyoto University 9 June, 009 ICG, Portsmouth contents 1. Inflation and curvature perturbations δn formalism. Origin of non-gaussianity subhorizon or superhorizon scales 3. Non-Gaussianity

More information

Spontaneous breaking of supersymmetry

Spontaneous breaking of supersymmetry Spontaneous breaking of supersymmetry Hiroshi Suzuki Theoretical Physics Laboratory Nov. 18, 2009 @ Theoretical science colloquium in RIKEN Hiroshi Suzuki (TPL) Spontaneous breaking of supersymmetry Nov.

More information

Dark inflation. Micha l Artymowski. Jagiellonian University. January 29, Osaka University. arxiv:

Dark inflation. Micha l Artymowski. Jagiellonian University. January 29, Osaka University. arxiv: Dark inflation Micha l Artymowski Jagiellonian University January 29, 2018 Osaka University arxiv:1711.08473 (with Olga Czerwińska, M. Lewicki and Z. Lalak) Cosmic microwave background Cosmic microwave

More information

PREHEATING THE UNIVERSE IN HYBRID INFLATION

PREHEATING THE UNIVERSE IN HYBRID INFLATION PREHEATING THE UNIVERSE IN HYBRID INFLATION JUAN GARCÍA-BELLIDO Theory Division, C.E.R.N., CH-1211 Genève 23, Switzerland One of the fundamental problems of modern cosmology is to explain the origin of

More information

Beauty is Attractive: Moduli Trapping at Enhanced Symmetry Points

Beauty is Attractive: Moduli Trapping at Enhanced Symmetry Points hep-th/0403001 CITA-04-3 SLAC-PUB-10343 SU-ITP-04/05 Beauty is Attractive: arxiv:hep-th/0403001v2 19 Apr 2004 Moduli Trapping at Enhanced Symmetry Points Lev Kofman, a Andrei Linde, b Xiao Liu, b,c Alexander

More information

Nonperturbative Study of Supersymmetric Gauge Field Theories

Nonperturbative Study of Supersymmetric Gauge Field Theories Nonperturbative Study of Supersymmetric Gauge Field Theories Matteo Siccardi Tutor: Prof. Kensuke Yoshida Sapienza Università di Roma Facoltà di Scienze Matematiche, Fisiche e Naturali Dipartimento di

More information

Coupled Dark Energy and Dark Matter from dilatation symmetry

Coupled Dark Energy and Dark Matter from dilatation symmetry Coupled Dark Energy and Dark Matter from dilatation symmetry Cosmological Constant - Einstein - Constant λ compatible with all symmetries Constant λ compatible with all observations No time variation in

More information

Nonlocal Effects in Quantum Gravity

Nonlocal Effects in Quantum Gravity Nonlocal Effects in Quantum Gravity Suvrat Raju International Centre for Theoretical Sciences 29th Meeting of the IAGRG IIT Guwahati 20 May 2017 Collaborators Based on work with 1 Kyriakos Papadodimas

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li Institute) Slide_04 1 / 44 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination is the covariant derivative.

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

Aharonov-Bohm Effect and Unification of Elementary Particles. Yutaka Hosotani, Osaka University Warsaw, May 2006

Aharonov-Bohm Effect and Unification of Elementary Particles. Yutaka Hosotani, Osaka University Warsaw, May 2006 Aharonov-Bohm Effect and Unification of Elementary Particles Yutaka Hosotani, Osaka University Warsaw, May 26 - Part 1 - Aharonov-Bohm effect Aharonov-Bohm Effect! B)! Fµν = (E, vs empty or vacuum!= Fµν

More information

( ), λ. ( ) =u z. ( )+ iv z

( ), λ. ( ) =u z. ( )+ iv z AMS 212B Perturbation Metho Lecture 18 Copyright by Hongyun Wang, UCSC Method of steepest descent Consider the integral I = f exp( λ g )d, g C =u + iv, λ We consider the situation where ƒ() and g() = u()

More information

2 Canonical quantization

2 Canonical quantization Phys540.nb 7 Canonical quantization.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system?.1.1.lagrangian Lagrangian mechanics is a reformulation of classical mechanics.

More information

Second quantization: where quantization and particles come from?

Second quantization: where quantization and particles come from? 110 Phys460.nb 7 Second quantization: where quantization and particles come from? 7.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system? 7.1.1.Lagrangian Lagrangian

More information

Quantization of scalar fields

Quantization of scalar fields Quantization of scalar fields March 8, 06 We have introduced several distinct types of fields, with actions that give their field equations. These include scalar fields, S α ϕ α ϕ m ϕ d 4 x and complex

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Holography Duality (8.821/8.871) Fall 2014 Assignment 2

Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Holography Duality (8.821/8.871) Fall 2014 Assignment 2 Sept. 27, 2014 Due Thursday, Oct. 9, 2014 Please remember to put your name at the top of your paper. Note: The four laws of black hole mechanics

More information

QFT Perturbation Theory

QFT Perturbation Theory QFT Perturbation Theory Ling-Fong Li (Institute) Slide_04 1 / 43 Interaction Theory As an illustration, take electromagnetic interaction. Lagrangian density is The combination L = ψ (x ) γ µ ( i µ ea µ

More information

Quantum Field Theory III

Quantum Field Theory III Quantum Field Theory III Prof. Erick Weinberg April 5, 011 1 Lecture 6 Let s write down the superfield (without worrying about factors of i or Φ = A(y + θψ(y + θθf (y = A(x + θσ θ A + θθ θ θ A + θψ + θθ(

More information

Scalar field dark matter and the Higgs field

Scalar field dark matter and the Higgs field Scalar field dark matter and the Higgs field Catarina M. Cosme in collaboration with João Rosa and Orfeu Bertolami Phys. Lett., B759:1-8, 2016 COSMO-17, Paris Diderot University, 29 August 2017 Outline

More information

Geometry and Physics. Amer Iqbal. March 4, 2010

Geometry and Physics. Amer Iqbal. March 4, 2010 March 4, 2010 Many uses of Mathematics in Physics The language of the physical world is mathematics. Quantitative understanding of the world around us requires the precise language of mathematics. Symmetries

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass rather

More information

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY LOUIS YANG ( 楊智軒 ) UNIVERSITY OF CALIFORNIA, LOS ANGELES (UCLA) DEC 27, 2016 NATIONAL TSING HUA UNIVERSITY OUTLINE Big

More information

Quantum oscillations & black hole ringing

Quantum oscillations & black hole ringing Quantum oscillations & black hole ringing Sean Hartnoll Harvard University Work in collaboration with Frederik Denef : 0901.1160. Frederik Denef and Subir Sachdev : 0908.1788, 0908.2657. Sept. 09 ASC,

More information

Star operation in Quantum Mechanics. Abstract

Star operation in Quantum Mechanics. Abstract July 000 UMTG - 33 Star operation in Quantum Mechanics L. Mezincescu Department of Physics, University of Miami, Coral Gables, FL 3314 Abstract We outline the description of Quantum Mechanics with noncommuting

More information

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya

The boundary state from open string fields. Yuji Okawa University of Tokyo, Komaba. March 9, 2009 at Nagoya The boundary state from open string fields Yuji Okawa University of Tokyo, Komaba March 9, 2009 at Nagoya Based on arxiv:0810.1737 in collaboration with Kiermaier and Zwiebach (MIT) 1 1. Introduction Quantum

More information

Holographic Wilsonian Renormalization Group

Holographic Wilsonian Renormalization Group Holographic Wilsonian Renormalization Group JiYoung Kim May 0, 207 Abstract Strongly coupled systems are difficult to study because the perturbation of the systems does not work with strong couplings.

More information

Modelling the evolution of small black holes

Modelling the evolution of small black holes Modelling the evolution of small black holes Elizabeth Winstanley Astro-Particle Theory and Cosmology Group School of Mathematics and Statistics University of Sheffield United Kingdom Thanks to STFC UK

More information

Renormalizability in (noncommutative) field theories

Renormalizability in (noncommutative) field theories Renormalizability in (noncommutative) field theories LIPN in collaboration with: A. de Goursac, R. Gurău, T. Krajewski, D. Kreimer, J. Magnen, V. Rivasseau, F. Vignes-Tourneret, P. Vitale, J.-C. Wallet,

More information

Thermalization of axion dark matter

Thermalization of axion dark matter Thermalization of axion dark matter Ken ichi Saikawa ICRR, The University of Tokyo Collaborate with M. Yamaguchi (Tokyo Institute of Technology) Reference: KS and M. Yamaguchi, arxiv:1210.7080 [hep-ph]

More information

PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday).

PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday). PHY 396 K. Problem set #7. Due October 25, 2012 (Thursday. 1. Quantum mechanics of a fixed number of relativistic particles does not work (except as an approximation because of problems with relativistic

More information

The multi-field facets of inflation. David Langlois (APC, Paris)

The multi-field facets of inflation. David Langlois (APC, Paris) The multi-field facets of inflation David Langlois (APC, Paris) Introduction After 25 years of existence, inflation has been so far very successful to account for observational data. The nature of the

More information

arxiv:hep-th/ v2 12 Oct 1994

arxiv:hep-th/ v2 12 Oct 1994 UH-IfA-94/35 SU-ITP-94-13 YITP/U-94-15 hep-th/9405187 REHEATING AFTER INFLATION arxiv:hep-th/9405187v2 12 Oct 1994 Lev Kofman Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr., Honolulu,

More information

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are;

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are; Lecture 4 - Relativistic wave equations Postulates Relativistic wave equations must satisfy several general postulates. These are;. The equation is developed for a field amplitude function, ψ 2. The normal

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

PhD in Theoretical Particle Physics Academic Year 2017/2018

PhD in Theoretical Particle Physics Academic Year 2017/2018 July 10, 017 SISSA Entrance Examination PhD in Theoretical Particle Physics Academic Year 017/018 S olve two among the four problems presented. Problem I Consider a quantum harmonic oscillator in one spatial

More information

How I learned to stop worrying and love the tachyon

How I learned to stop worrying and love the tachyon love the tachyon Max Planck Institute for Gravitational Physics Potsdam 6-October-2008 Historical background Open string field theory Closed string field theory Experimental Hadron physics Mesons mass

More information

Show, for infinitesimal variations of nonabelian Yang Mills gauge fields:

Show, for infinitesimal variations of nonabelian Yang Mills gauge fields: Problem. Palatini Identity Show, for infinitesimal variations of nonabelian Yang Mills gauge fields: δf i µν = D µ δa i ν D ν δa i µ..) Begin by considering the following form of the field strength tensor

More information

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt

Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt Hamiltonian approach to QCD: The Polyakov loop potential H. Reinhardt H. R. & J. Heffner Phys. Lett.B718(2012)672 PRD(in press) arxiv:1304.2980 Phase diagram of QCD non-perturbative continuum approaches

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry Unreasonable effectiveness of the SM L Yukawa = y t H 0 t L t R + h.c. H 0 = H 0 + h 0 = v + h 0 m t = y t v t, L t R h 0 h 0 Figure 1: The top loop contribution to the Higgs

More information

Dilaton and IR-Driven Inflation

Dilaton and IR-Driven Inflation Dilaton and IR-Driven Inflation Chong-Sun Chu National Center for Theoretical Science NCTS and National Tsing-Hua University, Taiwan Third KIAS-NCTS Joint Workshop High 1 Feb 1, 2016 1506.02848 in collaboration

More information

Physics 443, Solutions to PS 4

Physics 443, Solutions to PS 4 Physics, Solutions to PS. Neutrino Oscillations a Energy eigenvalues and eigenvectors The eigenvalues of H are E E + A, and E E A and the eigenvectors are ν, ν And ν ν b Similarity transformation S S ν

More information

Bispectrum from open inflation

Bispectrum from open inflation Bispectrum from open inflation φ φ Kazuyuki Sugimura (YITP, Kyoto University) Y TP YUKAWA INSTITUTE FOR THEORETICAL PHYSICS K. S., E. Komatsu, accepted by JCAP, arxiv: 1309.1579 Bispectrum from a inflation

More information

Tachyon Condensation in String Theory and Field Theory

Tachyon Condensation in String Theory and Field Theory Tachyon Condensation in String Theory and Field Theory N.D. Lambert 1 and I. Sachs 2 1 Dept. of Physics and Astronomy Rutgers University Piscataway, NJ 08855 USA nlambert@physics.rutgers.edu 2 School of

More information

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly PHY 396 K. Solutions for problem set #10. Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where and Ĥ 0 = Ĥfree Φ

More information

Low-l CMB from String-Scale SUSY Breaking?

Low-l CMB from String-Scale SUSY Breaking? Low-l CMB from String-Scale SUSY Breaking? Augusto Sagnotti Scuola Normale Superiore and INFN Pisa E. Dudas, N. Kitazawa and AS, Phys. Lett. B 694 (2010) 80 [arxiv:1009.0874 [hep-th]] AS, Phys. Part. Nucl.

More information

A New Regulariation of N = 4 Super Yang-Mills Theory

A New Regulariation of N = 4 Super Yang-Mills Theory A New Regulariation of N = 4 Super Yang-Mills Theory Humboldt Universität zu Berlin Institut für Physik 10.07.2009 F. Alday, J. Henn, J. Plefka and T. Schuster, arxiv:0908.0684 Outline 1 Motivation Why

More information

Loop Quantum Cosmology holonomy corrections to inflationary models

Loop Quantum Cosmology holonomy corrections to inflationary models Michał Artymowski Loop Quantum Cosmology holonomy corrections to inflationary models University of Warsaw With collaboration with L. Szulc and Z. Lalak Pennstate 5 0 008 Michał Artymowski, University of

More information

PHY 396 K. Problem set #3. Due September 29, 2011.

PHY 396 K. Problem set #3. Due September 29, 2011. PHY 396 K. Problem set #3. Due September 29, 2011. 1. Quantum mechanics of a fixed number of relativistic particles may be a useful approximation for some systems, but it s inconsistent as a complete theory.

More information

The Turbulent Universe

The Turbulent Universe The Turbulent Universe WMAP Science Team J. Berges ALICE/CERN Universität Heidelberg JILA/NIST Festkolloquium der Karl Franzens Universität Graz FWF Doktoratskolleg Hadrons in Vacuum, Nuclei and Stars

More information

The Superfluid-Insulator transition

The Superfluid-Insulator transition The Superfluid-Insulator transition Boson Hubbard model M.P. A. Fisher, P.B. Weichmann, G. Grinstein, and D.S. Fisher, Phys. Rev. B 40, 546 (1989). Superfluid-insulator transition Ultracold 87 Rb atoms

More information

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY LOUIS YANG ( 楊智軒 ) UNIVERSITY OF CALIFORNIA, LOS ANGELES (UCLA) DEC 30, 2016 4TH INTERNATIONAL WORKSHOP ON DARK MATTER,

More information

arxiv: v1 [hep-th] 6 Feb 2009

arxiv: v1 [hep-th] 6 Feb 2009 SU-ITP-09/06 SLAC-PUB-13536 Trapped Inflation arxiv:0902.1006v1 [hep-th] 6 Feb 2009 Daniel Green a, Bart Horn a, Leonardo Senatore b,c and Eva Silverstein a a SLAC and Department of Physics, Stanford University,

More information

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models YKIS2016@YITP (2016/6/15) Supersymmetry breaking and Nambu-Goldstone fermions in lattice models Hosho Katsura (Department of Physics, UTokyo) Collaborators: Yu Nakayama (IPMU Rikkyo) Noriaki Sannomiya

More information

String / gauge theory duality and ferromagnetic spin chains

String / gauge theory duality and ferromagnetic spin chains String / gauge theory duality and ferromagnetic spin chains M. Kruczenski Princeton Univ. In collaboration w/ Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov Summary Introduction mesons,,...

More information

Corrections to the SM effective action and stability of EW vacuum

Corrections to the SM effective action and stability of EW vacuum Corrections to the SM effective action and stability of EW vacuum Zygmunt Lalak ITP Warsaw Corfu Summer Institute 2015 with M. Lewicki and P. Olszewski arxiv:1402.3826 (JHEP), arxiv:1505.05505, and to

More information

D-Branes at Finite Temperature in TFD

D-Branes at Finite Temperature in TFD D-Branes at Finite Temperature in TFD arxiv:hep-th/0308114v1 18 Aug 2003 M. C. B. Abdalla a, A. L. Gadelha a, I. V. Vancea b January 8, 2014 a Instituto de Física Teórica, Universidade Estadual Paulista

More information

BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS

BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS 1 BACKREACTION OF HEAVY MODULI FIELDS IN INFLATIONARY MODELS Based on : - W.Buchmuller, E.D., L.Heurtier and C.Wieck, arxiv:1407.0253 [hep-th], JHEP 1409 (2014) 053. - W.Buchmuller, E.D., L.Heurtier, A.Westphal,

More information

New Model of massive spin-2 particle

New Model of massive spin-2 particle New Model of massive spin-2 particle Based on Phys.Rev. D90 (2014) 043006, Y.O, S. Akagi, S. Nojiri Phys.Rev. D90 (2014) 123013, S. Akagi, Y.O, S. Nojiri Yuichi Ohara QG lab. Nagoya univ. Introduction

More information

TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes

TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes Andrew Hodges Wadham College, University of Oxford London Mathematical Society Durham Symposium on Twistors, Strings and Scattering Amplitudes, 20

More information

Towards a manifestly diffeomorphism invariant Exact Renormalization Group

Towards a manifestly diffeomorphism invariant Exact Renormalization Group Towards a manifestly diffeomorphism invariant Exact Renormalization Group Anthony W. H. Preston University of Southampton Supervised by Prof. Tim R. Morris Talk prepared for UK QFT-V, University of Nottingham,

More information

D-term Dynamical SUSY Breaking. Nobuhito Maru (Keio University)

D-term Dynamical SUSY Breaking. Nobuhito Maru (Keio University) D-term Dynamical SUSY Breaking Nobuhito Maru (Keio University) with H. Itoyama (Osaka City University) Int. J. Mod. Phys. A27 (2012) 1250159 [arxiv: 1109.2276 [hep-ph]] 12/6/2012 SCGT2012@Nagoya University

More information

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16

Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 Speculations on extensions of symmetry and interctions to GUT energies Lecture 16 1 Introduction The use of symmetry, as has previously shown, provides insight to extensions of present physics into physics

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16 As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16 Masses for Vectors: the Higgs mechanism April 6, 2012 The momentum-space propagator

More information

QFT Dimensional Analysis

QFT Dimensional Analysis QFT Dimensional Analysis In the h = c = 1 units, all quantities are measured in units of energy to some power. For example m = p µ = E +1 while x µ = E 1 where m stands for the dimensionality of the mass

More information

Massive Spinors and ds/cft Correspondence

Massive Spinors and ds/cft Correspondence Massive Spinors and ds/cft Correspondence Farhang Loran arxiv:hep-th/00135v3 16 Jun 00 Department of Physics, Isfahan University of Technology IUT) Isfahan, Iran, Institute for Studies in Theoretical Physics

More information

Open quantum systems

Open quantum systems Open quantum systems Wikipedia: An open quantum system is a quantum system which is found to be in interaction with an external quantum system, the environment. The open quantum system can be viewed as

More information

A New Approach to the Cosmological Constant Problem, and Dark Energy. Gregory Gabadadze

A New Approach to the Cosmological Constant Problem, and Dark Energy. Gregory Gabadadze A New Approach to the Cosmological Constant Problem, and Dark Energy Gregory Gabadadze New York University GG, Phys. Lett. B, 2014, and work in preparation with Siqing Yu October 12, 2015 Einstein s equations

More information

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple Symmetry Groups Symmetry plays an essential role in particle theory. If a theory is invariant under transformations by a symmetry group one obtains a conservation law and quantum numbers. For example,

More information

The 1-loop effective potential for the Standard Model in curved spacetime

The 1-loop effective potential for the Standard Model in curved spacetime The 1-loop effective potential for the Standard Model in curved spacetime arxiv:1804.02020 (JHEP) The 1-loop effective potential for the SM in curved spacetime arxiv:1809.06923 (Review) Cosmological Aspects

More information

Nonminimal coupling and inflationary attractors. Abstract

Nonminimal coupling and inflationary attractors. Abstract 608.059 Nonminimal coupling and inflationary attractors Zhu Yi, and Yungui Gong, School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China Abstract We show explicitly

More information

Higgs Vacuum Stability and Physics Beyond the Standard Model Archil Kobakhidze

Higgs Vacuum Stability and Physics Beyond the Standard Model Archil Kobakhidze Higgs Vacuum Stability and Physics Beyond the Standard Model Archil Kobakhidze AK & A. Spencer-Smith, Phys Lett B 722 (2013) 130 [arxiv:1301.2846] AK & A. Spencer-Smith, JHEP 1308 (2013) 036 [arxiv:1305.7283]

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where PHY 396 K. Solutions for problem set #11. Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where Ĥ 0 = Ĥfree Φ + Ĥfree

More information

Spinning strings and QED

Spinning strings and QED Spinning strings and QED James Edwards Oxford Particles and Fields Seminar January 2015 Based on arxiv:1409.4948 [hep-th] and arxiv:1410.3288 [hep-th] Outline Introduction Various relationships between

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs RHI seminar Pascal Büscher i ( t Φ (r, t) = 2 2 ) 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) 27 Nov 2008 RHI seminar Pascal Büscher 1 (Stamper-Kurn

More information

The boundary supersymmetric sine-gordon model revisited

The boundary supersymmetric sine-gordon model revisited UMTG 7 The boundary supersymmetric sine-gordon model revisited arxiv:hep-th/010309v 7 Mar 001 Rafael I. Nepomechie Physics Department, P.O. Box 48046, University of Miami Coral Gables, FL 3314 USA Abstract

More information

WHY BLACK HOLES PHYSICS?

WHY BLACK HOLES PHYSICS? WHY BLACK HOLES PHYSICS? Nicolò Petri 13/10/2015 Nicolò Petri 13/10/2015 1 / 13 General motivations I Find a microscopic description of gravity, compatibile with the Standard Model (SM) and whose low-energy

More information

Symmetries of the amplituhedron

Symmetries of the amplituhedron Symmetries of the amplituhedron Livia Ferro Ludwig-Maximilians-Universität München Amplitudes 2017 Higgs Center, The University of Edinburgh, 10.07.2017 Based on: J. Phys. A: Math. Theor. 50 294005 & 10.1007

More information

Lecture 7 SUSY breaking

Lecture 7 SUSY breaking Lecture 7 SUSY breaking Outline Spontaneous SUSY breaking in the WZ-model. The goldstino. Goldstino couplings. The goldstino theorem. Reading: Terning 5.1, 5.3-5.4. Spontaneous SUSY Breaking Reminder:

More information

BSM physics and Dark Matter

BSM physics and Dark Matter BSM physics and Dark Matter Andrea Mammarella University of Debrecen 26-11-2013 1 Introduction and motivation 2 Dark Matter 3 MiAUMSSM 4 Dark Matter in the MiAUMSSM 5 Conclusion Introduction and motivation

More information

Katrin Becker, Texas A&M University. Strings 2016, YMSC,Tsinghua University

Katrin Becker, Texas A&M University. Strings 2016, YMSC,Tsinghua University Katrin Becker, Texas A&M University Strings 2016, YMSC,Tsinghua University ± Overview Overview ± II. What is the manifestly supersymmetric complete space-time action for an arbitrary string theory or M-theory

More information

Notes on EDMs. Matt Reece. October 20, 2013

Notes on EDMs. Matt Reece. October 20, 2013 Notes on EDMs Matt Reece October 20, 2013 EDMs and the mass scale of new physics The electron EDM in QED is the dimension 5 operator L = d e i 2 ψσ µν γ 5 ψf µν, (1) where ψ is the electron field and F

More information

SUSY Breaking in Gauge Theories

SUSY Breaking in Gauge Theories SUSY Breaking in Gauge Theories Joshua Berger With the Witten index constraint on SUSY breaking having been introduced in last week s Journal club, we proceed to explicitly determine the constraints on

More information

Inflationary Massive Gravity

Inflationary Massive Gravity New perspectives on cosmology APCTP, 15 Feb., 017 Inflationary Massive Gravity Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University C. Lin & MS, PLB 75, 84 (016) [arxiv:1504.01373 ]

More information

Konishi Anomaly. 32π 2 ǫκλµν F κλ F µν. (5)

Konishi Anomaly. 32π 2 ǫκλµν F κλ F µν. (5) Konishi Anomaly Consider the SQED with massless charged fields A and B. Classically, it has an axial symmetry A e +iϕ A, B e +iϕ B and hence a conserved axial current J ax = Ae +2gV A + B e 2gV B, () D

More information

FromBigCrunchToBigBang IsItPossible? Nathan Seiberg School of Natural Sciences Institute for Advanced Study Princeton, NJ 08540, USA.

FromBigCrunchToBigBang IsItPossible? Nathan Seiberg School of Natural Sciences Institute for Advanced Study Princeton, NJ 08540, USA. hep-th/0201039 FromBigCrunchToBigBang IsItPossible? Nathan Seiberg School of Natural Sciences Institute for Advanced Study Princeton, NJ 08540, USA seiberg@ias.edu ABSTRACT We discuss the possibility of

More information

Two-Higgs-Doublet Model

Two-Higgs-Doublet Model Two-Higgs-Doublet Model Logan A. Morrison University of California, Santa Cruz loanmorr@ucsc.edu March 18, 016 Logan A. Morrison (UCSC) HDM March 18, 016 1 / 7 Overview 1 Review of SM HDM Formalism HDM

More information

Damping signatures in future neutrino oscillation experiments

Damping signatures in future neutrino oscillation experiments Damping signatures in future neutrino oscillation experiments Based on JHEP 06(2005)049 In collaboration with Tommy Ohlsson and Walter Winter Mattias Blennow Division of Mathematical Physics Department

More information

Aspects of integrability in classical and quantum field theories

Aspects of integrability in classical and quantum field theories Aspects of integrability in classical and quantum field theories Second year seminar Riccardo Conti Università degli Studi di Torino and INFN September 26, 2018 Plan of the talk PART 1 Supersymmetric 3D

More information