Statistical Model Checking as Feedback Control

Size: px
Start display at page:

Download "Statistical Model Checking as Feedback Control"

Transcription

1 Statistical Model Checking as Feedback Control, MSc Vienna University of Technology Supervisor: Radu Grosu Co-supervisor: Ezio Bartocci

2 Analysis of CPS: Challenges State-space explosion: Open, physical part, uncertain and distributed Model is generally not known: Basic laws of physical part (or controller) only partially available Current-state is generally not known: Output is a function of only a subset of the state variables How to steer towards rare events (RE) is a challenge: Relation between RE and the CPS behavior is not known

3 Outline o o o o Learning State Estimation Control Future

4 Model Checking as Feedback Control???? 2 3 T T 2 T a: 4/5 b: /5 / 2 / 2 a: /5 / 2 / a: /5 Controller (imp. splitting) state Estimator (imp. sampling) action CP System (hidden MM) output / 2 / 2 / 2 / a: 4/5 b: /5 a: /5 a: /5

5 Learning a DTMC: Input Trace(s):,, 2, 3,, 2, 2, 2, 3, 3,, 2, 3, 3, 3,... Unknown model: 2 assume DTMC x 3 T H x x ( x4 x3) O H x P 0 0 P 0 x (4 )

6 Learning a DTMC: Output Learned model x x x3 x T H x x O H x

7 Learning a DTMC: Input Trace(s):,, 2, 3,, 2, 2, 2, 3, 3,, 2, 3, 3, 3,... Unknown model: 2,3 assume HMM x,2 3,4,4 T H x O H x x

8 Learning a DTMC: Output Learned model 0.84 x P()=0.64 P(2)= P(3)= P(4)= Initial O H big impact! P(4)= T H x x O H x

9 Discrete-time Markov Chain / 2 / 2 / 2 / 2 / Learning curve with Matlab HMM Toolbox

10 State Estimation (IS) Given P(X X ) T, P( X P( y t trace t t H X t) OH y y,, y,t t ) T H T H T H X t- X t X t+ O H O H O H yt yt y t T H ( X y ) Compute P t+ t+ :

11 State Estimation (IS) 0.6 Initial distribution of the particles P(a) = 0.2 P(b) = 0.8 x P(c) =.0 P(a) = 0.6 P(b) = P(d) =.0.0 P(a) = 0-6 P(b) = x5

12 State Estimation (IS) 0.6 Simulate the CPS P(a) = 0.2 P(b) = 0.8 x P(c) =.0 P(a) = 0.6 P(b) = P(d) =.0.0 P(a) = 0-6 P(b) = x5

13 State Estimation (IS) 0.6 New configuration of the particles P(a) = 0.2 P(b) = 0.8 x P(c) =.0 P(a) = 0.6 P(b) = P(d) =.0.0 P(a) = 0-6 P(b) = x5

14 State Estimation (IS) 0.6 Observe a and resample the particles P(a) = 0.2 P(b) = 0.8 x 0.4 P( x ) P(c) =.0 P( x ) 0 2 P(a) = 0.6 P(b) = 0.4 P(d) = P( x ) P( x ) P(a) = 0-6 P(b) = x5 P( x ) 0.5 5

15 Property Decomposition A nested sequence of temporal logic properties: A set of increasing levels: n n T Reaching a level implies having reached all the lower levels: P( i ) P( i i) P( i), P 0 ( ), P( ) n The shorter trace satisfying more intermediate properties is given a higher score The probability of the rare event: n P( i i) i0 Levels are chosen such that to minimize the relative variance of the final estimate

16 Adaptive Levels for Control (ISp) / 2 / 2 / 2 / 2 / 2 / Check the property of reaching state N within N- transitions T H p p p 0 p p p O H

17 Adaptive Levels for Control (ISp) Simulation with 0 particles for checking the property of reaching state 25

18 Model Checking as Feedback Control???? 2 3 T T Controller (imp. splitting) a: 4/5 b: /5 / 2 / 2 / a: /5 / 2 Estimator (imp. sampling) a: /5 action: s CP System output: a

19 Model Checking as Feedback Control???? 2 3 T T Controller (imp. splitting) a: 4/5 b: /5 / 2 / 2 a: /5 / 2 / Estimator (imp. sampling) a: /5 action: s CP System output: a

20 Model Checking as Feedback Control???? 2 3 T T Controller (imp. splitting) a: 4/5 b: /5 / 2 / 2 a: /5 / 2 / Estimator (imp. sampling) a: /5 action: s CP System output: a

21 Model Checking as Feedback Control???? 2 3 4/5 a: 4/5 b: /5 / 2 / 2 T T 2 /5 a: /5 / 2 / a: /5 Controller (imp. splitting) state: Estimator (imp. sampling) action: s CP System output: a

22 Model Checking as Feedback Control???? 2 3 T T a: 4/5 b: /5 / 2 / 2 a: /5 / 2 / a: /5 Controller (imp. splitting) state: Estimator (imp. sampling) action: s CP System output: ab

23 Model Checking as Feedback Control???? 2 3 T T a: 4/5 b: /5 / 2 / 2 / a: /5 / 2 a: /5 Controller (imp. splitting) state: Estimator (imp. sampling) action: s CP System output: ab

24 Model Checking as Feedback Control???? 2 3 T T /5 a: 4/5 b: /5 / 2 / 2 2 4/5 a: /5 / 2 / a: /5 Controller (imp. splitting) state: 2 Estimator (imp. sampling) action: s CP System output: ab

25 Model Checking as Feedback Control???? 2 3 T T a: 4/5 b: /5 / 2 / 2 / a: /5 / 2 a: /5 Controller (imp. splitting) state: 2 Estimator (imp. sampling) action: sp CP System output: ab

26 Model Checking as Feedback Control?? 2 3 T T a: 4/5 b: /5 / 2 / 2 a: /5 / 2 / a: /5 Controller (imp. splitting) state Estimator (imp. sampling) action CP System output

27 Model Checking as Feedback Control 2 / 0?? 2 3 T T a: 4/5 b: /5 / 2 / 2 a: /5 / 2 / a: /5 Controller (imp. splitting) state Estimator (imp. sampling) action CP System output

28 Model Checking as Feedback Control 2 / 0?? 2 3 T T 2 T a: 4/5 b: /5 / 2 / 2 a: /5 / 2 / a: /5 Controller (imp. splitting) state Estimator (imp. sampling) action CP System output

29 Future Research Testing on real case studies of CPS Efficient scoring for importance splitting Optimal derivation of the levels for importance splitting Importance sampling gives the beliefs and not actual states Optimal control from the belief-states

30 Q&A Thank you!

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/32 Lecture 5a Bayesian network April 14, 2016 2/32 Table of contents 1 1. Objectives of Lecture 5a 2 2.Bayesian

More information

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept

Computational Biology Lecture #3: Probability and Statistics. Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept Computational Biology Lecture #3: Probability and Statistics Bud Mishra Professor of Computer Science, Mathematics, & Cell Biology Sept 26 2005 L2-1 Basic Probabilities L2-2 1 Random Variables L2-3 Examples

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Hidden Markov Models Part 1: Introduction

Hidden Markov Models Part 1: Introduction Hidden Markov Models Part 1: Introduction CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Modeling Sequential Data Suppose that

More information

Artificial Intelligence Markov Chains

Artificial Intelligence Markov Chains Artificial Intelligence Markov Chains Stephan Dreiseitl FH Hagenberg Software Engineering & Interactive Media Stephan Dreiseitl (Hagenberg/SE/IM) Lecture 12: Markov Chains Artificial Intelligence SS2010

More information

Recall from last time. Lecture 3: Conditional independence and graph structure. Example: A Bayesian (belief) network.

Recall from last time. Lecture 3: Conditional independence and graph structure. Example: A Bayesian (belief) network. ecall from last time Lecture 3: onditional independence and graph structure onditional independencies implied by a belief network Independence maps (I-maps) Factorization theorem The Bayes ball algorithm

More information

Probability. CS 3793/5233 Artificial Intelligence Probability 1

Probability. CS 3793/5233 Artificial Intelligence Probability 1 CS 3793/5233 Artificial Intelligence 1 Motivation Motivation Random Variables Semantics Dice Example Joint Dist. Ex. Axioms Agents don t have complete knowledge about the world. Agents need to make decisions

More information

Outline. CSE 473: Artificial Intelligence Spring Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car

Outline. CSE 473: Artificial Intelligence Spring Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car CSE 473: rtificial Intelligence Spring 2012 ayesian Networks Dan Weld Outline Probabilistic models (and inference) ayesian Networks (Ns) Independence in Ns Efficient Inference in Ns Learning Many slides

More information

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Daniel, Edmundo, Rosa Terceiro trimestre de 2012 UFRJ - COPPE Programa de Engenharia de Sistemas e Computação Bayesian Networks

More information

200 2 10 17 5 5 10 18 12 1 10 19 960 1 10 21 Deductive Logic Probability Theory π X X X X = X X = x f z x Physics f Sensor z x f f z P(X = x) X x X x P(X = x) = 1 /6 P(X = x) P(x) F(x) F(x) =

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 11 Oct, 3, 2016 CPSC 422, Lecture 11 Slide 1 422 big picture: Where are we? Query Planning Deterministic Logics First Order Logics Ontologies

More information

15-381: Artificial Intelligence. Hidden Markov Models (HMMs)

15-381: Artificial Intelligence. Hidden Markov Models (HMMs) 15-381: Artificial Intelligence Hidden Markov Models (HMMs) What s wrong with Bayesian networks Bayesian networks are very useful for modeling joint distributions But they have their limitations: - Cannot

More information

15-780: Grad AI Lecture 19: Graphical models, Monte Carlo methods. Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman

15-780: Grad AI Lecture 19: Graphical models, Monte Carlo methods. Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman 15-780: Grad AI Lecture 19: Graphical models, Monte Carlo methods Geoff Gordon (this lecture) Tuomas Sandholm TAs Erik Zawadzki, Abe Othman Admin Reminder: midterm March 29 Reminder: project milestone

More information

Note Set 5: Hidden Markov Models

Note Set 5: Hidden Markov Models Note Set 5: Hidden Markov Models Probabilistic Learning: Theory and Algorithms, CS 274A, Winter 2016 1 Hidden Markov Models (HMMs) 1.1 Introduction Consider observed data vectors x t that are d-dimensional

More information

Probabilistic Reasoning. (Mostly using Bayesian Networks)

Probabilistic Reasoning. (Mostly using Bayesian Networks) Probabilistic Reasoning (Mostly using Bayesian Networks) Introduction: Why probabilistic reasoning? The world is not deterministic. (Usually because information is limited.) Ways of coping with uncertainty

More information

Cogs 14B: Introduction to Statistical Analysis

Cogs 14B: Introduction to Statistical Analysis Cogs 14B: Introduction to Statistical Analysis Statistical Tools: Description vs. Prediction/Inference Description Averages Variability Correlation Prediction (Inference) Regression Confidence intervals/

More information

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang

Chapter 4 Dynamic Bayesian Networks Fall Jin Gu, Michael Zhang Chapter 4 Dynamic Bayesian Networks 2016 Fall Jin Gu, Michael Zhang Reviews: BN Representation Basic steps for BN representations Define variables Define the preliminary relations between variables Check

More information

The Monte Carlo Method: Bayesian Networks

The Monte Carlo Method: Bayesian Networks The Method: Bayesian Networks Dieter W. Heermann Methods 2009 Dieter W. Heermann ( Methods)The Method: Bayesian Networks 2009 1 / 18 Outline 1 Bayesian Networks 2 Gene Expression Data 3 Bayesian Networks

More information

Introduction to Artificial Intelligence (AI)

Introduction to Artificial Intelligence (AI) Introduction to Artificial Intelligence (AI) Computer Science cpsc502, Lecture 9 Oct, 11, 2011 Slide credit Approx. Inference : S. Thrun, P, Norvig, D. Klein CPSC 502, Lecture 9 Slide 1 Today Oct 11 Bayesian

More information

Hidden Markov Model. Ying Wu. Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208

Hidden Markov Model. Ying Wu. Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 Hidden Markov Model Ying Wu Electrical Engineering and Computer Science Northwestern University Evanston, IL 60208 http://www.eecs.northwestern.edu/~yingwu 1/19 Outline Example: Hidden Coin Tossing Hidden

More information

Hidden Markov models 1

Hidden Markov models 1 Hidden Markov models 1 Outline Time and uncertainty Markov process Hidden Markov models Inference: filtering, prediction, smoothing Most likely explanation: Viterbi 2 Time and uncertainty The world changes;

More information

STATISTICAL METHODS IN AI/ML Vibhav Gogate The University of Texas at Dallas. Bayesian networks: Representation

STATISTICAL METHODS IN AI/ML Vibhav Gogate The University of Texas at Dallas. Bayesian networks: Representation STATISTICAL METHODS IN AI/ML Vibhav Gogate The University of Texas at Dallas Bayesian networks: Representation Motivation Explicit representation of the joint distribution is unmanageable Computationally:

More information

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II)

CISC 889 Bioinformatics (Spring 2004) Hidden Markov Models (II) CISC 889 Bioinformatics (Spring 24) Hidden Markov Models (II) a. Likelihood: forward algorithm b. Decoding: Viterbi algorithm c. Model building: Baum-Welch algorithm Viterbi training Hidden Markov models

More information

CSE 473: Artificial Intelligence Probability Review à Markov Models. Outline

CSE 473: Artificial Intelligence Probability Review à Markov Models. Outline CSE 473: Artificial Intelligence Probability Review à Markov Models Daniel Weld University of Washington [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Outline. CSE 573: Artificial Intelligence Autumn Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car

Outline. CSE 573: Artificial Intelligence Autumn Bayes Nets: Big Picture. Bayes Net Semantics. Hidden Markov Models. Example Bayes Net: Car CSE 573: Artificial Intelligence Autumn 2012 Bayesian Networks Dan Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer Outline Probabilistic models (and inference)

More information

Approximate Inference

Approximate Inference Approximate Inference Simulation has a name: sampling Sampling is a hot topic in machine learning, and it s really simple Basic idea: Draw N samples from a sampling distribution S Compute an approximate

More information

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference COS402- Artificial Intelligence Fall 2015 Lecture 10: Bayesian Networks & Exact Inference Outline Logical inference and probabilistic inference Independence and conditional independence Bayes Nets Semantics

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulation Idea: probabilities samples Get probabilities from samples: X count x 1 n 1. x k total. n k m X probability x 1. n 1 /m. x k n k /m If we could sample from a variable s (posterior)

More information

Information Science 2

Information Science 2 Information Science 2 Probability Theory: An Overview Week 12 College of Information Science and Engineering Ritsumeikan University Agenda Terms and concepts from Week 11 Basic concepts of probability

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

Extensions of Bayesian Networks. Outline. Bayesian Network. Reasoning under Uncertainty. Features of Bayesian Networks.

Extensions of Bayesian Networks. Outline. Bayesian Network. Reasoning under Uncertainty. Features of Bayesian Networks. Extensions of Bayesian Networks Outline Ethan Howe, James Lenfestey, Tom Temple Intro to Dynamic Bayesian Nets (Tom Exact inference in DBNs with demo (Ethan Approximate inference and learning (Tom Probabilistic

More information

Hidden Markov Models. AIMA Chapter 15, Sections 1 5. AIMA Chapter 15, Sections 1 5 1

Hidden Markov Models. AIMA Chapter 15, Sections 1 5. AIMA Chapter 15, Sections 1 5 1 Hidden Markov Models AIMA Chapter 15, Sections 1 5 AIMA Chapter 15, Sections 1 5 1 Consider a target tracking problem Time and uncertainty X t = set of unobservable state variables at time t e.g., Position

More information

Probability Review. Yutian Li. January 18, Stanford University. Yutian Li (Stanford University) Probability Review January 18, / 27

Probability Review. Yutian Li. January 18, Stanford University. Yutian Li (Stanford University) Probability Review January 18, / 27 Probability Review Yutian Li Stanford University January 18, 2018 Yutian Li (Stanford University) Probability Review January 18, 2018 1 / 27 Outline 1 Elements of probability 2 Random variables 3 Multiple

More information

PROBABILISTIC REASONING OVER TIME

PROBABILISTIC REASONING OVER TIME PROBABILISTIC REASONING OVER TIME In which we try to interpret the present, understand the past, and perhaps predict the future, even when very little is crystal clear. Outline Time and uncertainty Inference:

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

CS 7180: Behavioral Modeling and Decision- making in AI

CS 7180: Behavioral Modeling and Decision- making in AI CS 7180: Behavioral Modeling and Decision- making in AI Bayesian Networks for Dynamic and/or Relational Domains Prof. Amy Sliva October 12, 2012 World is not only uncertain, it is dynamic Beliefs, observations,

More information

ECE521 Lecture 19 HMM cont. Inference in HMM

ECE521 Lecture 19 HMM cont. Inference in HMM ECE521 Lecture 19 HMM cont. Inference in HMM Outline Hidden Markov models Model definitions and notations Inference in HMMs Learning in HMMs 2 Formally, a hidden Markov model defines a generative process

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 23, 2015 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

CSE 473: Ar+ficial Intelligence. Hidden Markov Models. Bayes Nets. Two random variable at each +me step Hidden state, X i Observa+on, E i

CSE 473: Ar+ficial Intelligence. Hidden Markov Models. Bayes Nets. Two random variable at each +me step Hidden state, X i Observa+on, E i CSE 473: Ar+ficial Intelligence Bayes Nets Daniel Weld [Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at hnp://ai.berkeley.edu.]

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 19 Oct, 24, 2016 Slide Sources Raymond J. Mooney University of Texas at Austin D. Koller, Stanford CS - Probabilistic Graphical Models D. Page,

More information

Hidden Markov Models. x 1 x 2 x 3 x K

Hidden Markov Models. x 1 x 2 x 3 x K Hidden Markov Models 1 1 1 1 2 2 2 2 K K K K x 1 x 2 x 3 x K Viterbi, Forward, Backward VITERBI FORWARD BACKWARD Initialization: V 0 (0) = 1 V k (0) = 0, for all k > 0 Initialization: f 0 (0) = 1 f k (0)

More information

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech Probabilistic Graphical Models and Bayesian Networks Artificial Intelligence Bert Huang Virginia Tech Concept Map for Segment Probabilistic Graphical Models Probabilistic Time Series Models Particle Filters

More information

Stephen Scott.

Stephen Scott. 1 / 28 ian ian Optimal (Adapted from Ethem Alpaydin and Tom Mitchell) Naïve Nets sscott@cse.unl.edu 2 / 28 ian Optimal Naïve Nets Might have reasons (domain information) to favor some hypotheses/predictions

More information

Hidden Markov Models. based on chapters from the book Durbin, Eddy, Krogh and Mitchison Biological Sequence Analysis via Shamir s lecture notes

Hidden Markov Models. based on chapters from the book Durbin, Eddy, Krogh and Mitchison Biological Sequence Analysis via Shamir s lecture notes Hidden Markov Models based on chapters from the book Durbin, Eddy, Krogh and Mitchison Biological Sequence Analysis via Shamir s lecture notes music recognition deal with variations in - actual sound -

More information

Inference in Graphical Models Variable Elimination and Message Passing Algorithm

Inference in Graphical Models Variable Elimination and Message Passing Algorithm Inference in Graphical Models Variable Elimination and Message Passing lgorithm Le Song Machine Learning II: dvanced Topics SE 8803ML, Spring 2012 onditional Independence ssumptions Local Markov ssumption

More information

Reasoning under Uncertainty: Intro to Probability

Reasoning under Uncertainty: Intro to Probability Reasoning under Uncertainty: Intro to Probability Computer Science cpsc322, Lecture 24 (Textbook Chpt 6.1, 6.1.1) March, 15, 2010 CPSC 322, Lecture 24 Slide 1 To complete your Learning about Logics Review

More information

Probabilistic Partial Evaluation: Exploiting rule structure in probabilistic inference

Probabilistic Partial Evaluation: Exploiting rule structure in probabilistic inference Probabilistic Partial Evaluation: Exploiting rule structure in probabilistic inference David Poole University of British Columbia 1 Overview Belief Networks Variable Elimination Algorithm Parent Contexts

More information

Pengju

Pengju Introduction to AI Chapter13 Uncertainty Pengju Ren@IAIR Outline Uncertainty Probability Syntax and Semantics Inference Independence and Bayes Rule Example: Car diagnosis Wumpus World Environment Squares

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis .. Lecture 6. Hidden Markov model and Viterbi s decoding algorithm Institute of Computing Technology Chinese Academy of Sciences, Beijing, China . Outline The occasionally dishonest casino: an example

More information

A Tutorial on Learning with Bayesian Networks

A Tutorial on Learning with Bayesian Networks A utorial on Learning with Bayesian Networks David Heckerman Presented by: Krishna V Chengavalli April 21 2003 Outline Introduction Different Approaches Bayesian Networks Learning Probabilities and Structure

More information

Introduction to Computational Biology Lecture # 14: MCMC - Markov Chain Monte Carlo

Introduction to Computational Biology Lecture # 14: MCMC - Markov Chain Monte Carlo Introduction to Computational Biology Lecture # 14: MCMC - Markov Chain Monte Carlo Assaf Weiner Tuesday, March 13, 2007 1 Introduction Today we will return to the motif finding problem, in lecture 10

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

Probability, Entropy, and Inference / More About Inference

Probability, Entropy, and Inference / More About Inference Probability, Entropy, and Inference / More About Inference Mário S. Alvim (msalvim@dcc.ufmg.br) Information Theory DCC-UFMG (2018/02) Mário S. Alvim (msalvim@dcc.ufmg.br) Probability, Entropy, and Inference

More information

Advanced Herd Management Probabilities and distributions

Advanced Herd Management Probabilities and distributions Advanced Herd Management Probabilities and distributions Anders Ringgaard Kristensen Slide 1 Outline Probabilities Conditional probabilities Bayes theorem Distributions Discrete Continuous Distribution

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 5 Sequential Monte Carlo methods I 31 March 2017 Computer Intensive Methods (1) Plan of today s lecture

More information

Capturing Independence Graphically; Undirected Graphs

Capturing Independence Graphically; Undirected Graphs Capturing Independence Graphically; Undirected Graphs COMPSCI 276, Spring 2017 Set 2: Rina Dechter (Reading: Pearl chapters 3, Darwiche chapter 4) 1 Outline Graphical models: The constraint network, Probabilistic

More information

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012

Hidden Markov Models. Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Hidden Markov Models Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 19 Apr 2012 Many slides courtesy of Dan Klein, Stuart Russell, or

More information

Covariance. if X, Y are independent

Covariance. if X, Y are independent Review: probability Monty Hall, weighted dice Frequentist v. Bayesian Independence Expectations, conditional expectations Exp. & independence; linearity of exp. Estimator (RV computed from sample) law

More information

Model Repair in Systems Design. Panagiotis Katsaros Aristotle University of Thessaloniki (GR)

Model Repair in Systems Design. Panagiotis Katsaros Aristotle University of Thessaloniki (GR) Model Repair in Systems Design Panagiotis Katsaros Aristotle University of Thessaloniki (GR) Model-Based Design for Space Systems @ AUTh Design Validation Studies Using COMPASS! Bozzano, Cimatti, Katoen,

More information

CS325 Artificial Intelligence Ch. 15,20 Hidden Markov Models and Particle Filtering

CS325 Artificial Intelligence Ch. 15,20 Hidden Markov Models and Particle Filtering CS325 Artificial Intelligence Ch. 15,20 Hidden Markov Models and Particle Filtering Cengiz Günay, Emory Univ. Günay Ch. 15,20 Hidden Markov Models and Particle FilteringSpring 2013 1 / 21 Get Rich Fast!

More information

Be able to define the following terms and answer basic questions about them:

Be able to define the following terms and answer basic questions about them: CS440/ECE448 Section Q Fall 2017 Final Review Be able to define the following terms and answer basic questions about them: Probability o Random variables, axioms of probability o Joint, marginal, conditional

More information

Genome 373: Hidden Markov Models II. Doug Fowler

Genome 373: Hidden Markov Models II. Doug Fowler Genome 373: Hidden Markov Models II Doug Fowler Review From Hidden Markov Models I What does a Markov model describe? Review From Hidden Markov Models I A T A Markov model describes a random process of

More information

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear.

( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. Problems 01 - POINT Page 1 ( 1 ) Show that P ( a, b + c ), Q ( b, c + a ) and R ( c, a + b ) are collinear. ( ) Prove that the two lines joining the mid-points of the pairs of opposite sides and the line

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 3 - Fall 2016 Lecture 18: Time Series Jan-Willem van de Meent (credit: Aggarwal Chapter 14.3) Time Series Data http://www.capitalhubs.com/2012/08/the-correlation-between-apple-product.html

More information

Replicated Softmax: an Undirected Topic Model. Stephen Turner

Replicated Softmax: an Undirected Topic Model. Stephen Turner Replicated Softmax: an Undirected Topic Model Stephen Turner 1. Introduction 2. Replicated Softmax: A Generative Model of Word Counts 3. Evaluating Replicated Softmax as a Generative Model 4. Experimental

More information

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions.

Markov Models. CS 188: Artificial Intelligence Fall Example. Mini-Forward Algorithm. Stationary Distributions. CS 88: Artificial Intelligence Fall 27 Lecture 2: HMMs /6/27 Markov Models A Markov model is a chain-structured BN Each node is identically distributed (stationarity) Value of X at a given time is called

More information

Monte Carlo Methods. Geoff Gordon February 9, 2006

Monte Carlo Methods. Geoff Gordon February 9, 2006 Monte Carlo Methods Geoff Gordon ggordon@cs.cmu.edu February 9, 2006 Numerical integration problem 5 4 3 f(x,y) 2 1 1 0 0.5 0 X 0.5 1 1 0.8 0.6 0.4 Y 0.2 0 0.2 0.4 0.6 0.8 1 x X f(x)dx Used for: function

More information

Lecture 2: Bayesian inference and Hidden Markov Models

Lecture 2: Bayesian inference and Hidden Markov Models Lecture 2: Bayesian inference and Hidden Markov Models Scribe: Audrow Nash 1 Probability Chain rule P(X 1,..., X n ) = P(X 1 X 2,..., X n )P(X 2,..., X n ) = P(X 1 X 2,..., X n )P(X 2 X 3,..., X n )P(X

More information

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.2, Page 1

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.2, Page 1 Learning Objectives At the end of the class you should be able to: identify a supervised learning problem characterize how the prediction is a function of the error measure avoid mixing the training and

More information

We Live in Exciting Times. CSCI-567: Machine Learning (Spring 2019) Outline. Outline. ACM (an international computing research society) has named

We Live in Exciting Times. CSCI-567: Machine Learning (Spring 2019) Outline. Outline. ACM (an international computing research society) has named We Live in Exciting Times ACM (an international computing research society) has named CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Apr. 2, 2019 Yoshua Bengio,

More information

Contributions to Statistical Model Checking

Contributions to Statistical Model Checking Contributions to Statistical Model Checking Axel Legay 18 novembre 2015 Jury: Radu Grosu, RAPPORTEUR Tiziana Margaria, RAPPORTEUR Sylvain Peyronnet, RAPPORTEUR Albert Benveniste, EXAMINATEUR Kim. G. Larsen,

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Hidden Markov Models Part 2: Algorithms

Hidden Markov Models Part 2: Algorithms Hidden Markov Models Part 2: Algorithms CSE 6363 Machine Learning Vassilis Athitsos Computer Science and Engineering Department University of Texas at Arlington 1 Hidden Markov Model An HMM consists of:

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 07: profile Hidden Markov Model http://bibiserv.techfak.uni-bielefeld.de/sadr2/databasesearch/hmmer/profilehmm.gif Slides adapted from Dr. Shaojie Zhang

More information

Reasoning Under Uncertainty: Bayesian networks intro

Reasoning Under Uncertainty: Bayesian networks intro Reasoning Under Uncertainty: Bayesian networks intro Alan Mackworth UBC CS 322 Uncertainty 4 March 18, 2013 Textbook 6.3, 6.3.1, 6.5, 6.5.1, 6.5.2 Lecture Overview Recap: marginal and conditional independence

More information

Plan for today. ! Part 1: (Hidden) Markov models. ! Part 2: String matching and read mapping

Plan for today. ! Part 1: (Hidden) Markov models. ! Part 2: String matching and read mapping Plan for today! Part 1: (Hidden) Markov models! Part 2: String matching and read mapping! 2.1 Exact algorithms! 2.2 Heuristic methods for approximate search (Hidden) Markov models Why consider probabilistics

More information

Hidden Markov Models

Hidden Markov Models Hidden Markov Models CI/CI(CS) UE, SS 2015 Christian Knoll Signal Processing and Speech Communication Laboratory Graz University of Technology June 23, 2015 CI/CI(CS) SS 2015 June 23, 2015 Slide 1/26 Content

More information

4 : Exact Inference: Variable Elimination

4 : Exact Inference: Variable Elimination 10-708: Probabilistic Graphical Models 10-708, Spring 2014 4 : Exact Inference: Variable Elimination Lecturer: Eric P. ing Scribes: Soumya Batra, Pradeep Dasigi, Manzil Zaheer 1 Probabilistic Inference

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Hidden Markov Models Luke Zettlemoyer Many slides over the course adapted from either Dan Klein, Stuart Russell, Andrew Moore, Ali Farhadi, or Dan Weld 1 Outline Probabilistic

More information

Symmetry Breaking for Relational Weighted Model Finding

Symmetry Breaking for Relational Weighted Model Finding Symmetry Breaking for Relational Weighted Model Finding Tim Kopp Parag Singla Henry Kautz WL4AI July 27, 2015 Outline Weighted logics. Symmetry-breaking in SAT. Symmetry-breaking for weighted logics. Weighted

More information

Probabilistic Graphical Models Homework 2: Due February 24, 2014 at 4 pm

Probabilistic Graphical Models Homework 2: Due February 24, 2014 at 4 pm Probabilistic Graphical Models 10-708 Homework 2: Due February 24, 2014 at 4 pm Directions. This homework assignment covers the material presented in Lectures 4-8. You must complete all four problems to

More information

A Brief Introduction to Graphical Models. Presenter: Yijuan Lu November 12,2004

A Brief Introduction to Graphical Models. Presenter: Yijuan Lu November 12,2004 A Brief Introduction to Graphical Models Presenter: Yijuan Lu November 12,2004 References Introduction to Graphical Models, Kevin Murphy, Technical Report, May 2001 Learning in Graphical Models, Michael

More information

Probabilistic Time Series Classification

Probabilistic Time Series Classification Probabilistic Time Series Classification Y. Cem Sübakan Boğaziçi University 25.06.2013 Y. Cem Sübakan (Boğaziçi University) M.Sc. Thesis Defense 25.06.2013 1 / 54 Problem Statement The goal is to assign

More information

Dynamic Programming: Hidden Markov Models

Dynamic Programming: Hidden Markov Models University of Oslo : Department of Informatics Dynamic Programming: Hidden Markov Models Rebecca Dridan 16 October 2013 INF4820: Algorithms for AI and NLP Topics Recap n-grams Parts-of-speech Hidden Markov

More information

Strong Lens Modeling (II): Statistical Methods

Strong Lens Modeling (II): Statistical Methods Strong Lens Modeling (II): Statistical Methods Chuck Keeton Rutgers, the State University of New Jersey Probability theory multiple random variables, a and b joint distribution p(a, b) conditional distribution

More information

CSCE 478/878 Lecture 9: Hidden. Markov. Models. Stephen Scott. Introduction. Outline. Markov. Chains. Hidden Markov Models. CSCE 478/878 Lecture 9:

CSCE 478/878 Lecture 9: Hidden. Markov. Models. Stephen Scott. Introduction. Outline. Markov. Chains. Hidden Markov Models. CSCE 478/878 Lecture 9: Useful for modeling/making predictions on sequential data E.g., biological sequences, text, series of sounds/spoken words Will return to graphical models that are generative sscott@cse.unl.edu 1 / 27 2

More information

Stephen Scott.

Stephen Scott. 1 / 27 sscott@cse.unl.edu 2 / 27 Useful for modeling/making predictions on sequential data E.g., biological sequences, text, series of sounds/spoken words Will return to graphical models that are generative

More information

Bayesian Approaches Data Mining Selected Technique

Bayesian Approaches Data Mining Selected Technique Bayesian Approaches Data Mining Selected Technique Henry Xiao xiao@cs.queensu.ca School of Computing Queen s University Henry Xiao CISC 873 Data Mining p. 1/17 Probabilistic Bases Review the fundamentals

More information

Markov Chain Monte Carlo Methods for Stochastic Optimization

Markov Chain Monte Carlo Methods for Stochastic Optimization Markov Chain Monte Carlo Methods for Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge U of Toronto, MIE,

More information

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012 CSE 573: Artificial Intelligence Autumn 2012 Reasoning about Uncertainty & Hidden Markov Models Daniel Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 Outline

More information

10. Hidden Markov Models (HMM) for Speech Processing. (some slides taken from Glass and Zue course)

10. Hidden Markov Models (HMM) for Speech Processing. (some slides taken from Glass and Zue course) 10. Hidden Markov Models (HMM) for Speech Processing (some slides taken from Glass and Zue course) Definition of an HMM The HMM are powerful statistical methods to characterize the observed samples of

More information

Fusion in simple models

Fusion in simple models Fusion in simple models Peter Antal antal@mit.bme.hu A.I. February 8, 2018 1 Basic concepts of probability theory Joint distribution Conditional probability Bayes rule Chain rule Marginalization General

More information

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods

Pattern Recognition and Machine Learning. Bishop Chapter 11: Sampling Methods Pattern Recognition and Machine Learning Chapter 11: Sampling Methods Elise Arnaud Jakob Verbeek May 22, 2008 Outline of the chapter 11.1 Basic Sampling Algorithms 11.2 Markov Chain Monte Carlo 11.3 Gibbs

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

Particle Filtering Approaches for Dynamic Stochastic Optimization

Particle Filtering Approaches for Dynamic Stochastic Optimization Particle Filtering Approaches for Dynamic Stochastic Optimization John R. Birge The University of Chicago Booth School of Business Joint work with Nicholas Polson, Chicago Booth. JRBirge I-Sim Workshop,

More information