Probabilistic Partial Evaluation: Exploiting rule structure in probabilistic inference

Size: px
Start display at page:

Download "Probabilistic Partial Evaluation: Exploiting rule structure in probabilistic inference"

Transcription

1 Probabilistic Partial Evaluation: Exploiting rule structure in probabilistic inference David Poole University of British Columbia 1

2 Overview Belief Networks Variable Elimination Algorithm Parent Contexts & Structured Representations Structure-preserving inference Conclusion 2

3 Belief (Bayesian) Networks n P(x 1,...,x n ) = P(x i x i 1...x 1 ) = i=1 n i=1 P(x i π xi ) π xi are parents of x i : set of variables such that the predecessors are independent of x i given its parents. 3

4 Variable Elimination Algorithm Given: Bayesian Network, Query variable, Observations, Elimination ordering on remaining variables 1. set observed variables 2. sum out variables according to elimination ordering 3. renormalize 4

5 Summing Out a Variable... h c d e f g a b Sum out e: P(a c, d, e) P(b e, f, g) P(e h) P(a, b c, d, f, g, h) 5

6 Structured Probability Tables P(a c, d, e) P(b e, f, g) t d e c t f t f p 1 p 2 p 3 p 4 f f e g p 5 p 6 p 7 p 8 p 2 = P(a = t d = t e = f ) 6

7 Eliminating e, preserving structure We only need to consider a & b together when d = true f = true. In this context c & g are irrelevant. In all other contexts we can consider a & b separately. When d = false f = false, e is irrelevant. In this context the probabilities shouldn t be affected by eliminating e. 7

8 Contextual Independence Given a set of variables C,acontext on C is an assignment of one value to each variable in C. Suppose X, Y and C are disjoint sets of variables. X and Y are contextually independent given context c val(c) if P(X Y=y 1 C=c) = P(X Y=y 2 C=c) for all y 1, y 2 val(y) such that P(y 1 c) >0and P(y 2 c) >0. 8

9 Parent Contexts A parent context for variable x i is a context c for a subset of the predecessors for x i such that x i is contextually independent of the other predecessors given c. For variable x i & assignment x i 1 =v i 1,...,x 1 =v 1 of values to its preceding variables, there is a parent context π v i 1...v 1 x i. P(x 1 =v 1,...,x n =v n ) n = P(x i =v n x i 1 =v i 1,...,x 1 =v 1 ) = i=1 n i=1 P(x i =v i π v i 1...v 1 x i ) 9

10 Idea behind probabilistic partial evaluation Maintain rules that are statements of probabilities in contexts. When eliminating a variable, you can ignore all rules that don t involve that variable. This wins when a variable is only in few parent contexts. Eliminating a variable looks like resolution! 10

11 Rule-based representation of our example a d e : p 1 b f e : p 5 a d e : p 2 b f e : p 6 a d c : p 3 b f g : p 7 a b c : p 4 b f g : p 8 e h : p 9 e h : p 10 11

12 Eliminating e a d e : p 1 b f e : p 5 a d e : p 2 b f e : p 6 a d c : p 3 b f g : p 7 a b c : p 4 b f g : p 8 e h : p 9 e h : p 10 unaffected by eliminating e 12

13 Variable partial evaluation If we are eliminating e, and have rules: x y e : p 1 x y e : p 2 e z : p 3 no other rules compatible with y contain e in the body y & z are compatible contexts, we create the rule: x y z : p 1 p 3 + p 2 (1 p 3 ) 13

14 Splitting Rules A rule a b : p 1 can be split on variable d, forming rules: a b d : p 1 a b d : p 1 14

15 Why Split? If there are different contexts for a given e and for a given e, you need to split the contexts to make them directly comparable: a b c e : p1 a b e : p 1 a b c e : p 1 a b c e : p 2 a b c e : p 3 15

16 Combining Heads Rules a c : p 1 b c : p 2 where a and b refer to different variables, can be combined producing: a b c : p 1 p 2 Thus in the context with a, b, and c all true, the latter rule can be used instead of the first two. 16

17 Splitting Compatible Bodies a d e : p 1 b f e : p 5 a d f e : p 1 b d f e : p 5 a d f e : p 1 b d f e : p 5 a d e : p 2 b f e : p 6 a d f e : p 2 b d f e : p 6 a d f e : p 2 b d f e : p 6 e h : p 9 e h : p 10 17

18 Combining Rules a d f e : p 1 b d f e : p 5 a d f e : p 1 b d f e : p 5 a d f e : p 2 b d f e : p 6 a d f e : p 2 b d f e : p 6 e h : p 9 e h : p 10 18

19 Result of eliminating e The resultant rules encode the probabilities of {a, b} in the contexts: d f h, d f h For all other contexts we consider a and b separately. The resulting number of rules is 24. Tree structured probability for P(a, b c, d, f, g, h, i) has 72 leaves. (Same as number of rules if a and b are combined in all contexts). VE has a table of size

20 Evidence We can set the values of all evidence variables before summing out the remaining non-query variables. Suppose e 1 =o 1... e s =o s is observed: Remove any rule that contains e i =o i, where o i = o i in the body. Remove any term e i =o i in the body of a rule. Replace any e i =o i, where o i = o i, in the head of a rule false. Replace any e i =o i in the head of a rule by true. In rule heads, use true a a, and false a false. 20

21 Conclusions New notion of parent context rule-based representation for Bayesian networks. New algorithm for probabilistic inference that preserves rule-structure. Exploits more structure than tree-based representations of conditional probability. Allows for finer-grained approximation than in a Bayesian network. 21

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech

Probabilistic Graphical Models and Bayesian Networks. Artificial Intelligence Bert Huang Virginia Tech Probabilistic Graphical Models and Bayesian Networks Artificial Intelligence Bert Huang Virginia Tech Concept Map for Segment Probabilistic Graphical Models Probabilistic Time Series Models Particle Filters

More information

Quantifying uncertainty & Bayesian networks

Quantifying uncertainty & Bayesian networks Quantifying uncertainty & Bayesian networks CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition,

More information

Inference in Graphical Models Variable Elimination and Message Passing Algorithm

Inference in Graphical Models Variable Elimination and Message Passing Algorithm Inference in Graphical Models Variable Elimination and Message Passing lgorithm Le Song Machine Learning II: dvanced Topics SE 8803ML, Spring 2012 onditional Independence ssumptions Local Markov ssumption

More information

Intro to AI: Lecture 8. Volker Sorge. Introduction. A Bayesian Network. Inference in. Bayesian Networks. Bayesian Networks.

Intro to AI: Lecture 8. Volker Sorge. Introduction. A Bayesian Network. Inference in. Bayesian Networks. Bayesian Networks. Specifying Probability Distributions Specifying a probability for every atomic event is impractical We have already seen it can be easier to specify probability distributions by using (conditional) independence

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference

COS402- Artificial Intelligence Fall Lecture 10: Bayesian Networks & Exact Inference COS402- Artificial Intelligence Fall 2015 Lecture 10: Bayesian Networks & Exact Inference Outline Logical inference and probabilistic inference Independence and conditional independence Bayes Nets Semantics

More information

Rapid Introduction to Machine Learning/ Deep Learning

Rapid Introduction to Machine Learning/ Deep Learning Rapid Introduction to Machine Learning/ Deep Learning Hyeong In Choi Seoul National University 1/32 Lecture 5a Bayesian network April 14, 2016 2/32 Table of contents 1 1. Objectives of Lecture 5a 2 2.Bayesian

More information

Introduction to Causal Calculus

Introduction to Causal Calculus Introduction to Causal Calculus Sanna Tyrväinen University of British Columbia August 1, 2017 1 / 1 2 / 1 Bayesian network Bayesian networks are Directed Acyclic Graphs (DAGs) whose nodes represent random

More information

Cogs 14B: Introduction to Statistical Analysis

Cogs 14B: Introduction to Statistical Analysis Cogs 14B: Introduction to Statistical Analysis Statistical Tools: Description vs. Prediction/Inference Description Averages Variability Correlation Prediction (Inference) Regression Confidence intervals/

More information

Computational Complexity of Inference

Computational Complexity of Inference Computational Complexity of Inference Sargur srihari@cedar.buffalo.edu 1 Topics 1. What is Inference? 2. Complexity Classes 3. Exact Inference 1. Variable Elimination Sum-Product Algorithm 2. Factor Graphs

More information

Probabilistic Robotics

Probabilistic Robotics University of Rome La Sapienza Master in Artificial Intelligence and Robotics Probabilistic Robotics Prof. Giorgio Grisetti Course web site: http://www.dis.uniroma1.it/~grisetti/teaching/probabilistic_ro

More information

Intelligent Systems (AI-2)

Intelligent Systems (AI-2) Intelligent Systems (AI-2) Computer Science cpsc422, Lecture 11 Oct, 3, 2016 CPSC 422, Lecture 11 Slide 1 422 big picture: Where are we? Query Planning Deterministic Logics First Order Logics Ontologies

More information

Directed Graphical Models

Directed Graphical Models CS 2750: Machine Learning Directed Graphical Models Prof. Adriana Kovashka University of Pittsburgh March 28, 2017 Graphical Models If no assumption of independence is made, must estimate an exponential

More information

Quantifying Uncertainty & Probabilistic Reasoning. Abdulla AlKhenji Khaled AlEmadi Mohammed AlAnsari

Quantifying Uncertainty & Probabilistic Reasoning. Abdulla AlKhenji Khaled AlEmadi Mohammed AlAnsari Quantifying Uncertainty & Probabilistic Reasoning Abdulla AlKhenji Khaled AlEmadi Mohammed AlAnsari Outline Previous Implementations What is Uncertainty? Acting Under Uncertainty Rational Decisions Basic

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulation Idea: probabilities samples Get probabilities from samples: X count x 1 n 1. x k total. n k m X probability x 1. n 1 /m. x k n k /m If we could sample from a variable s (posterior)

More information

Computer Science CPSC 322. Lecture 23 Planning Under Uncertainty and Decision Networks

Computer Science CPSC 322. Lecture 23 Planning Under Uncertainty and Decision Networks Computer Science CPSC 322 Lecture 23 Planning Under Uncertainty and Decision Networks 1 Announcements Final exam Mon, Dec. 18, 12noon Same general format as midterm Part short questions, part longer problems

More information

Logic, Knowledge Representation and Bayesian Decision Theory

Logic, Knowledge Representation and Bayesian Decision Theory Logic, Knowledge Representation and Bayesian Decision Theory David Poole University of British Columbia Overview Knowledge representation, logic, decision theory. Belief networks Independent Choice Logic

More information

Reasoning Under Uncertainty: Conditioning, Bayes Rule & the Chain Rule

Reasoning Under Uncertainty: Conditioning, Bayes Rule & the Chain Rule Reasoning Under Uncertainty: Conditioning, Bayes Rule & the Chain Rule Alan Mackworth UBC CS 322 Uncertainty 2 March 13, 2013 Textbook 6.1.3 Lecture Overview Recap: Probability & Possible World Semantics

More information

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Probability Review

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Probability Review STAT 598L Probabilistic Graphical Models Instructor: Sergey Kirshner Probability Review Some slides are taken (or modified) from Carlos Guestrin s 10-708 Probabilistic Graphical Models Fall 2008 at CMU

More information

Sociology 6Z03 Topic 10: Probability (Part I)

Sociology 6Z03 Topic 10: Probability (Part I) Sociology 6Z03 Topic 10: Probability (Part I) John Fox McMaster University Fall 2014 John Fox (McMaster University) Soc 6Z03: Probability I Fall 2014 1 / 29 Outline: Probability (Part I) Introduction Probability

More information

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863

Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Tópicos Especiais em Modelagem e Análise - Aprendizado por Máquina CPS863 Daniel, Edmundo, Rosa Terceiro trimestre de 2012 UFRJ - COPPE Programa de Engenharia de Sistemas e Computação Bayesian Networks

More information

Machine Learning Lecture 14

Machine Learning Lecture 14 Many slides adapted from B. Schiele, S. Roth, Z. Gharahmani Machine Learning Lecture 14 Undirected Graphical Models & Inference 23.06.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

Bayesian networks. Chapter 14, Sections 1 4

Bayesian networks. Chapter 14, Sections 1 4 Bayesian networks Chapter 14, Sections 1 4 Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 14, Sections 1 4 1 Bayesian networks

More information

Probabilistic Machine Learning

Probabilistic Machine Learning Probabilistic Machine Learning Bayesian Nets, MCMC, and more Marek Petrik 4/18/2017 Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10. Conditional Independence Independent

More information

Exact Inference Algorithms Bucket-elimination

Exact Inference Algorithms Bucket-elimination Exact Inference Algorithms Bucket-elimination COMPSCI 276, Spring 2011 Class 5: Rina Dechter (Reading: class notes chapter 4, Darwiche chapter 6) 1 Belief Updating Smoking lung Cancer Bronchitis X-ray

More information

Introduction to Bayes Nets. CS 486/686: Introduction to Artificial Intelligence Fall 2013

Introduction to Bayes Nets. CS 486/686: Introduction to Artificial Intelligence Fall 2013 Introduction to Bayes Nets CS 486/686: Introduction to Artificial Intelligence Fall 2013 1 Introduction Review probabilistic inference, independence and conditional independence Bayesian Networks - - What

More information

4 : Exact Inference: Variable Elimination

4 : Exact Inference: Variable Elimination 10-708: Probabilistic Graphical Models 10-708, Spring 2014 4 : Exact Inference: Variable Elimination Lecturer: Eric P. ing Scribes: Soumya Batra, Pradeep Dasigi, Manzil Zaheer 1 Probabilistic Inference

More information

Probability. CS 3793/5233 Artificial Intelligence Probability 1

Probability. CS 3793/5233 Artificial Intelligence Probability 1 CS 3793/5233 Artificial Intelligence 1 Motivation Motivation Random Variables Semantics Dice Example Joint Dist. Ex. Axioms Agents don t have complete knowledge about the world. Agents need to make decisions

More information

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016

CS 2750: Machine Learning. Bayesian Networks. Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 CS 2750: Machine Learning Bayesian Networks Prof. Adriana Kovashka University of Pittsburgh March 14, 2016 Plan for today and next week Today and next time: Bayesian networks (Bishop Sec. 8.1) Conditional

More information

1. what conditional independencies are implied by the graph. 2. whether these independecies correspond to the probability distribution

1. what conditional independencies are implied by the graph. 2. whether these independecies correspond to the probability distribution NETWORK ANALYSIS Lourens Waldorp PROBABILITY AND GRAPHS The objective is to obtain a correspondence between the intuitive pictures (graphs) of variables of interest and the probability distributions of

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 4 Occam s Razor, Model Construction, and Directed Graphical Models https://people.orie.cornell.edu/andrew/orie6741 Cornell University September

More information

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic

Announcements. CS 188: Artificial Intelligence Fall Causality? Example: Traffic. Topology Limits Distributions. Example: Reverse Traffic CS 188: Artificial Intelligence Fall 2008 Lecture 16: Bayes Nets III 10/23/2008 Announcements Midterms graded, up on glookup, back Tuesday W4 also graded, back in sections / box Past homeworks in return

More information

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

Part I. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Part I C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Probabilistic Graphical Models Graphical representation of a probabilistic model Each variable corresponds to a

More information

Bayesian networks. Chapter Chapter

Bayesian networks. Chapter Chapter Bayesian networks Chapter 14.1 3 Chapter 14.1 3 1 Outline Syntax Semantics Parameterized distributions Chapter 14.1 3 2 Bayesian networks A simple, graphical notation for conditional independence assertions

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

PROBABILISTIC REASONING SYSTEMS

PROBABILISTIC REASONING SYSTEMS PROBABILISTIC REASONING SYSTEMS In which we explain how to build reasoning systems that use network models to reason with uncertainty according to the laws of probability theory. Outline Knowledge in uncertain

More information

Artificial Intelligence Uncertainty

Artificial Intelligence Uncertainty Artificial Intelligence Uncertainty Ch. 13 Uncertainty Let action A t = leave for airport t minutes before flight Will A t get me there on time? A 25, A 60, A 3600 Uncertainty: partial observability (road

More information

Variable Elimination: Algorithm

Variable Elimination: Algorithm Variable Elimination: Algorithm Sargur srihari@cedar.buffalo.edu 1 Topics 1. Types of Inference Algorithms 2. Variable Elimination: the Basic ideas 3. Variable Elimination Sum-Product VE Algorithm Sum-Product

More information

Consider an experiment that may have different outcomes. We are interested to know what is the probability of a particular set of outcomes.

Consider an experiment that may have different outcomes. We are interested to know what is the probability of a particular set of outcomes. CMSC 310 Artificial Intelligence Probabilistic Reasoning and Bayesian Belief Networks Probabilities, Random Variables, Probability Distribution, Conditional Probability, Joint Distributions, Bayes Theorem

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Chapter 8&9: Classification: Part 3 Instructor: Yizhou Sun yzsun@ccs.neu.edu March 12, 2013 Midterm Report Grade Distribution 90-100 10 80-89 16 70-79 8 60-69 4

More information

CSEP 573: Artificial Intelligence

CSEP 573: Artificial Intelligence CSEP 573: Artificial Intelligence Bayesian Networks: Inference Ali Farhadi Many slides over the course adapted from either Luke Zettlemoyer, Pieter Abbeel, Dan Klein, Stuart Russell or Andrew Moore 1 Outline

More information

Introduction into Bayesian statistics

Introduction into Bayesian statistics Introduction into Bayesian statistics Maxim Kochurov EF MSU November 15, 2016 Maxim Kochurov Introduction into Bayesian statistics EF MSU 1 / 7 Content 1 Framework Notations 2 Difference Bayesians vs Frequentists

More information

Bayesian Networks. Motivation

Bayesian Networks. Motivation Bayesian Networks Computer Sciences 760 Spring 2014 http://pages.cs.wisc.edu/~dpage/cs760/ Motivation Assume we have five Boolean variables,,,, The joint probability is,,,, How many state configurations

More information

Statistical Approaches to Learning and Discovery

Statistical Approaches to Learning and Discovery Statistical Approaches to Learning and Discovery Graphical Models Zoubin Ghahramani & Teddy Seidenfeld zoubin@cs.cmu.edu & teddy@stat.cmu.edu CALD / CS / Statistics / Philosophy Carnegie Mellon University

More information

COMP9414: Artificial Intelligence Reasoning Under Uncertainty

COMP9414: Artificial Intelligence Reasoning Under Uncertainty COMP9414, Monday 16 April, 2012 Reasoning Under Uncertainty 2 COMP9414: Artificial Intelligence Reasoning Under Uncertainty Overview Problems with Logical Approach What Do the Numbers Mean? Wayne Wobcke

More information

Probabilistic Reasoning. (Mostly using Bayesian Networks)

Probabilistic Reasoning. (Mostly using Bayesian Networks) Probabilistic Reasoning (Mostly using Bayesian Networks) Introduction: Why probabilistic reasoning? The world is not deterministic. (Usually because information is limited.) Ways of coping with uncertainty

More information

Reasoning with Uncertainty

Reasoning with Uncertainty Reasoning with Uncertainty Representing Uncertainty Manfred Huber 2005 1 Reasoning with Uncertainty The goal of reasoning is usually to: Determine the state of the world Determine what actions to take

More information

Lecture 8. Probabilistic Reasoning CS 486/686 May 25, 2006

Lecture 8. Probabilistic Reasoning CS 486/686 May 25, 2006 Lecture 8 Probabilistic Reasoning CS 486/686 May 25, 2006 Outline Review probabilistic inference, independence and conditional independence Bayesian networks What are they What do they mean How do we create

More information

Exact Inference Algorithms Bucket-elimination

Exact Inference Algorithms Bucket-elimination Exact Inference Algorithms Bucket-elimination COMPSCI 276, Spring 2013 Class 5: Rina Dechter (Reading: class notes chapter 4, Darwiche chapter 6) 1 Belief Updating Smoking lung Cancer Bronchitis X-ray

More information

Ch.6 Uncertain Knowledge. Logic and Uncertainty. Representation. One problem with logical approaches: Department of Computer Science

Ch.6 Uncertain Knowledge. Logic and Uncertainty. Representation. One problem with logical approaches: Department of Computer Science Ch.6 Uncertain Knowledge Representation Hantao Zhang http://www.cs.uiowa.edu/ hzhang/c145 The University of Iowa Department of Computer Science Artificial Intelligence p.1/39 Logic and Uncertainty One

More information

Lecture 1: Probability Fundamentals

Lecture 1: Probability Fundamentals Lecture 1: Probability Fundamentals IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge January 22nd, 2008 Rasmussen (CUED) Lecture 1: Probability

More information

Probabilistic Representation and Reasoning

Probabilistic Representation and Reasoning Probabilistic Representation and Reasoning Alessandro Panella Department of Computer Science University of Illinois at Chicago May 4, 2010 Alessandro Panella (CS Dept. - UIC) Probabilistic Representation

More information

Bayesian Approaches Data Mining Selected Technique

Bayesian Approaches Data Mining Selected Technique Bayesian Approaches Data Mining Selected Technique Henry Xiao xiao@cs.queensu.ca School of Computing Queen s University Henry Xiao CISC 873 Data Mining p. 1/17 Probabilistic Bases Review the fundamentals

More information

Where are we? Knowledge Engineering Semester 2, Reasoning under Uncertainty. Probabilistic Reasoning

Where are we? Knowledge Engineering Semester 2, Reasoning under Uncertainty. Probabilistic Reasoning Knowledge Engineering Semester 2, 2004-05 Michael Rovatsos mrovatso@inf.ed.ac.uk Lecture 8 Dealing with Uncertainty 8th ebruary 2005 Where are we? Last time... Model-based reasoning oday... pproaches to

More information

COMP90051 Statistical Machine Learning

COMP90051 Statistical Machine Learning COMP90051 Statistical Machine Learning Semester 2, 2017 Lecturer: Trevor Cohn 2. Statistical Schools Adapted from slides by Ben Rubinstein Statistical Schools of Thought Remainder of lecture is to provide

More information

Bayes Nets: Independence

Bayes Nets: Independence Bayes Nets: Independence [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Bayes Nets A Bayes

More information

Variable Elimination: Algorithm

Variable Elimination: Algorithm Variable Elimination: Algorithm Sargur srihari@cedar.buffalo.edu 1 Topics 1. Types of Inference Algorithms 2. Variable Elimination: the Basic ideas 3. Variable Elimination Sum-Product VE Algorithm Sum-Product

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 9: A Bayesian model of concept learning Chris Lucas School of Informatics University of Edinburgh October 16, 218 Reading Rules and Similarity in Concept Learning

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulation Idea: probabilities samples Get probabilities from samples: X count x 1 n 1. x k total. n k m X probability x 1. n 1 /m. x k n k /m If we could sample from a variable s (posterior)

More information

Directed Graphical Models or Bayesian Networks

Directed Graphical Models or Bayesian Networks Directed Graphical Models or Bayesian Networks Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Bayesian Networks One of the most exciting recent advancements in statistical AI Compact

More information

Tractable Inference in Hybrid Bayesian Networks with Deterministic Conditionals using Re-approximations

Tractable Inference in Hybrid Bayesian Networks with Deterministic Conditionals using Re-approximations Tractable Inference in Hybrid Bayesian Networks with Deterministic Conditionals using Re-approximations Rafael Rumí, Antonio Salmerón Department of Statistics and Applied Mathematics University of Almería,

More information

CS 188: Artificial Intelligence. Bayes Nets

CS 188: Artificial Intelligence. Bayes Nets CS 188: Artificial Intelligence Probabilistic Inference: Enumeration, Variable Elimination, Sampling Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew

More information

Uncertain Knowledge and Bayes Rule. George Konidaris

Uncertain Knowledge and Bayes Rule. George Konidaris Uncertain Knowledge and Bayes Rule George Konidaris gdk@cs.brown.edu Fall 2018 Knowledge Logic Logical representations are based on: Facts about the world. Either true or false. We may not know which.

More information

Probability and Statistics

Probability and Statistics Probability and Statistics Jesse Hoey School of Computer Science University of Waterloo January 9, 2012 Uncertainty Why is uncertainty important? Agents (and humans) don t know everything, but need to

More information

Course Introduction. Probabilistic Modelling and Reasoning. Relationships between courses. Dealing with Uncertainty. Chris Williams.

Course Introduction. Probabilistic Modelling and Reasoning. Relationships between courses. Dealing with Uncertainty. Chris Williams. Course Introduction Probabilistic Modelling and Reasoning Chris Williams School of Informatics, University of Edinburgh September 2008 Welcome Administration Handout Books Assignments Tutorials Course

More information

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 6375: Machine Learning Vibhav Gogate The University of Texas at Dallas Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Y Continuous Non-parametric

More information

Bayesian Networks aka belief networks, probabilistic networks. Bayesian Networks aka belief networks, probabilistic networks. An Example Bayes Net

Bayesian Networks aka belief networks, probabilistic networks. Bayesian Networks aka belief networks, probabilistic networks. An Example Bayes Net Bayesian Networks aka belief networks, probabilistic networks A BN over variables {X 1, X 2,, X n } consists of: a DAG whose nodes are the variables a set of PTs (Pr(X i Parents(X i ) ) for each X i P(a)

More information

CMPSCI 240: Reasoning about Uncertainty

CMPSCI 240: Reasoning about Uncertainty CMPSCI 240: Reasoning about Uncertainty Lecture 17: Representing Joint PMFs and Bayesian Networks Andrew McGregor University of Massachusetts Last Compiled: April 7, 2017 Warm Up: Joint distributions Recall

More information

Uncertainty and Bayesian Networks

Uncertainty and Bayesian Networks Uncertainty and Bayesian Networks Tutorial 3 Tutorial 3 1 Outline Uncertainty Probability Syntax and Semantics for Uncertainty Inference Independence and Bayes Rule Syntax and Semantics for Bayesian Networks

More information

Bayesian Networks Representation

Bayesian Networks Representation Bayesian Networks Representation Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University March 19 th, 2007 Handwriting recognition Character recognition, e.g., kernel SVMs a c z rr r r

More information

Decision Trees. Nicholas Ruozzi University of Texas at Dallas. Based on the slides of Vibhav Gogate and David Sontag

Decision Trees. Nicholas Ruozzi University of Texas at Dallas. Based on the slides of Vibhav Gogate and David Sontag Decision Trees Nicholas Ruozzi University of Texas at Dallas Based on the slides of Vibhav Gogate and David Sontag Supervised Learning Input: labelled training data i.e., data plus desired output Assumption:

More information

Implementing Machine Reasoning using Bayesian Network in Big Data Analytics

Implementing Machine Reasoning using Bayesian Network in Big Data Analytics Implementing Machine Reasoning using Bayesian Network in Big Data Analytics Steve Cheng, Ph.D. Guest Speaker for EECS 6893 Big Data Analytics Columbia University October 26, 2017 Outline Introduction Probability

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 2 Prof. Hanna Wallach wallach@cs.umass.edu January 26, 2012 Reminders Pick up a copy of B&T Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

Bayesian Network. Outline. Bayesian Network. Syntax Semantics Exact inference by enumeration Exact inference by variable elimination

Bayesian Network. Outline. Bayesian Network. Syntax Semantics Exact inference by enumeration Exact inference by variable elimination Outline Syntax Semantics Exact inference by enumeration Exact inference by variable elimination s A simple, graphical notation for conditional independence assertions and hence for compact specication

More information

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.2, Page 1

Learning Objectives. c D. Poole and A. Mackworth 2010 Artificial Intelligence, Lecture 7.2, Page 1 Learning Objectives At the end of the class you should be able to: identify a supervised learning problem characterize how the prediction is a function of the error measure avoid mixing the training and

More information

Introduction to Probabilistic Reasoning. Image credit: NASA. Assignment

Introduction to Probabilistic Reasoning. Image credit: NASA. Assignment Introduction to Probabilistic Reasoning Brian C. Williams 16.410/16.413 November 17 th, 2010 11/17/10 copyright Brian Williams, 2005-10 1 Brian C. Williams, copyright 2000-09 Image credit: NASA. Assignment

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 9: Bayesian Estimation Chris Lucas (Slides adapted from Frank Keller s) School of Informatics University of Edinburgh clucas2@inf.ed.ac.uk 17 October, 2017 1 / 28

More information

Terminology. Experiment = Prior = Posterior =

Terminology. Experiment = Prior = Posterior = Review: probability RVs, events, sample space! Measures, distributions disjoint union property (law of total probability book calls this sum rule ) Sample v. population Law of large numbers Marginals,

More information

Decision-Theoretic Specification of Credal Networks: A Unified Language for Uncertain Modeling with Sets of Bayesian Networks

Decision-Theoretic Specification of Credal Networks: A Unified Language for Uncertain Modeling with Sets of Bayesian Networks Decision-Theoretic Specification of Credal Networks: A Unified Language for Uncertain Modeling with Sets of Bayesian Networks Alessandro Antonucci Marco Zaffalon IDSIA, Istituto Dalle Molle di Studi sull

More information

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem Recall from last time: Conditional probabilities Our probabilistic models will compute and manipulate conditional probabilities. Given two random variables X, Y, we denote by Lecture 2: Belief (Bayesian)

More information

Learning P-maps Param. Learning

Learning P-maps Param. Learning Readings: K&F: 3.3, 3.4, 16.1, 16.2, 16.3, 16.4 Learning P-maps Param. Learning Graphical Models 10708 Carlos Guestrin Carnegie Mellon University September 24 th, 2008 10-708 Carlos Guestrin 2006-2008

More information

Reasoning with Bayesian Networks

Reasoning with Bayesian Networks Reasoning with Lecture 1: Probability Calculus, NICTA and ANU Reasoning with Overview of the Course Probability calculus, Bayesian networks Inference by variable elimination, factor elimination, conditioning

More information

Probabilistic Classification

Probabilistic Classification Bayesian Networks Probabilistic Classification Goal: Gather Labeled Training Data Build/Learn a Probability Model Use the model to infer class labels for unlabeled data points Example: Spam Filtering...

More information

Computer Science CPSC 322. Lecture 18 Marginalization, Conditioning

Computer Science CPSC 322. Lecture 18 Marginalization, Conditioning Computer Science CPSC 322 Lecture 18 Marginalization, Conditioning Lecture Overview Recap Lecture 17 Joint Probability Distribution, Marginalization Conditioning Inference by Enumeration Bayes Rule, Chain

More information

Recall from last time. Lecture 3: Conditional independence and graph structure. Example: A Bayesian (belief) network.

Recall from last time. Lecture 3: Conditional independence and graph structure. Example: A Bayesian (belief) network. ecall from last time Lecture 3: onditional independence and graph structure onditional independencies implied by a belief network Independence maps (I-maps) Factorization theorem The Bayes ball algorithm

More information

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan

Bayesian Learning. CSL603 - Fall 2017 Narayanan C Krishnan Bayesian Learning CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Bayes Theorem MAP Learners Bayes optimal classifier Naïve Bayes classifier Example text classification Bayesian networks

More information

Single Maths B: Introduction to Probability

Single Maths B: Introduction to Probability Single Maths B: Introduction to Probability Overview Lecturer Email Office Homework Webpage Dr Jonathan Cumming j.a.cumming@durham.ac.uk CM233 None! http://maths.dur.ac.uk/stats/people/jac/singleb/ 1 Introduction

More information

{ p if x = 1 1 p if x = 0

{ p if x = 1 1 p if x = 0 Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =

More information

School of EECS Washington State University. Artificial Intelligence

School of EECS Washington State University. Artificial Intelligence School of EECS Washington State University Artificial Intelligence 1 } Full joint probability distribution Can answer any query But typically too large } Conditional independence Can reduce the number

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Introduction. Basic Probability and Bayes Volkan Cevher, Matthias Seeger Ecole Polytechnique Fédérale de Lausanne 26/9/2011 (EPFL) Graphical Models 26/9/2011 1 / 28 Outline

More information

Probabilistic Graphical Networks: Definitions and Basic Results

Probabilistic Graphical Networks: Definitions and Basic Results This document gives a cursory overview of Probabilistic Graphical Networks. The material has been gleaned from different sources. I make no claim to original authorship of this material. Bayesian Graphical

More information

Quantifying Uncertainty

Quantifying Uncertainty Quantifying Uncertainty CSL 302 ARTIFICIAL INTELLIGENCE SPRING 2014 Outline Probability theory - basics Probabilistic Inference oinference by enumeration Conditional Independence Bayesian Networks Learning

More information

Artificial Intelligence Bayesian Networks

Artificial Intelligence Bayesian Networks Artificial Intelligence Bayesian Networks Stephan Dreiseitl FH Hagenberg Software Engineering & Interactive Media Stephan Dreiseitl (Hagenberg/SE/IM) Lecture 11: Bayesian Networks Artificial Intelligence

More information

Announcements. Inference. Mid-term. Inference by Enumeration. Reminder: Alarm Network. Introduction to Artificial Intelligence. V22.

Announcements. Inference. Mid-term. Inference by Enumeration. Reminder: Alarm Network. Introduction to Artificial Intelligence. V22. Introduction to Artificial Intelligence V22.0472-001 Fall 2009 Lecture 15: Bayes Nets 3 Midterms graded Assignment 2 graded Announcements Rob Fergus Dept of Computer Science, Courant Institute, NYU Slides

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 16: Bayes Nets IV Inference 3/28/2011 Pieter Abbeel UC Berkeley Many slides over this course adapted from Dan Klein, Stuart Russell, Andrew Moore Announcements

More information

Probability Theory and Simulation Methods

Probability Theory and Simulation Methods Feb 28th, 2018 Lecture 10: Random variables Countdown to midterm (March 21st): 28 days Week 1 Chapter 1: Axioms of probability Week 2 Chapter 3: Conditional probability and independence Week 4 Chapters

More information

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 7301: Advanced Machine Learning Vibhav Gogate The University of Texas at Dallas Supervised Learning Issues in supervised learning What makes learning hard Point Estimation: MLE vs Bayesian

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Parameter Estimation December 14, 2015 Overview 1 Motivation 2 3 4 What did we have so far? 1 Representations: how do we model the problem? (directed/undirected). 2 Inference: given a model and partially

More information