TURBULENCE SIGNAL DETECTION USING SPIRAL MICROPHONE ARRAY. YiNeng Wang

Size: px
Start display at page:

Download "TURBULENCE SIGNAL DETECTION USING SPIRAL MICROPHONE ARRAY. YiNeng Wang"

Transcription

1 TURBULENCE SIGNAL DETECTION USING SPIRAL MICROPHONE ARRA ineng Wang National Taiwan Universit of Science and Technolog Department of Electronic Engineering No.43, Sec. 4, Keelung Rd., Da an Dist., Taipei Cit 06, Taiwan ABSTRACT The purpose of this project is to verif that the turbulence signal can be efficientl measured using the Fourier transform of sampled sound pressure based on the spiral microphone arra. Depending on the characteristics of microphones, microphone arra must be well configured and the frequencies of the source are restricted. Since the number of microphones is restricted, the resulting resolution of Fourier spectrum will be poor without epanding the number of sampling ponits. In this stud, we utilize the Whittaker-Shannon Sampling theorem [] to predict the transformation result. According to this theorem, the spectrum of sampled sound pressure can be obtained b erecting the spectrum of the original sound pressure. We have simulated different transmitted waves with constant or random-distributed intensities over the wavefront and their spectrums all look like turbulence. Inde Terms Microphone arra, Spiral configuration, Whittaker-Shannon sampling theorem. Fig.. Geometr configuration of the microphone arra. angular lattices to approimate the samples of the function g(, ) defined as:. INTRODUCTION Because a pressure microphone ehibits some directionalit along its main ais at short wavelengths caused principall b diffraction effects [2], we carefull arrange each microphone such that the are oriented toward the same direction, as illustrated in Fig.. Our microphones are fairl small so that the will have minimal effect on the sound field the are sampling. As microphones operating at higher frequencies, there are bound to be certain aberrations in directional response as the dimensions of the microphone case become a significant portion of the sound wavelength. Moreover, such high frequencies are inaudible to the average person [3]. In order for the application of audio recordings, we emplo signals with relativel low frequencies acoustic sound, as our sound sources. 2. WHITTAKER-SHANNON SAMPLING THEOREM To lead to the simplest wa to predict what will arise after appling Fourier transform to the sampled signals, we use rectthis draft was supported b Interactive Multimedia Laborator, NTUST. gs (, ) = comb( ) comb( )g(, ) () The sampled function gs (, ), thus consists of an arra of δ functions, spaced at intervals of width in the direction and width in the direction, as illustrated in Fig. 2. The area under each δ function is proportional to the value of the function g(, ) at that particular point in the rectangular sampling lattice. As implied b the convolution theorem, the spectrum Gs (f, f ) of g(, ), can be found b convolving the transform of comb( ) comb( ) with the transform of g(, ), or: Gs (f, f ) = F {comb( ) comb( )} G(f, f ) (2) where indicates that a two-dimensional convolution is to be performed. B using Table, we have: F {comb( ) comb( )} = comb(f ) comb( f ) (3)

2 Table. Transform pairs for some functions separable in rectangular coordinates. Fig. 2. The sampled function. F unction T ransf orm ep[ π(a b 2 2 )] ep[ π( f () 2 a 2 + f () 2 b 2 )] rect(a)rect(b) sinc(f /a) sinc(f /b) (a) (b) sinc2 (f /a) sinc 2 (f /b) δ(a, b) ep[jπ(a + b)] sgn(a)sgn(b) δ(f a/2, f b/2) ab jπf jπf comb(a)comb(b) comb(f /a)comb(f /b) ep[jπ(a b 2 2 )] ep[ (a + b )] j ep[ jπ(a + b)] 2 2 +(2πf /a) 2 +(2πf /b) 2 whereas from the propert of Dirac delta function: comb(f ) comb( f ) = δ(f n, f m ) ) (4) It follows that: n= m= n= m= G s (f, f ) = G(f n, f m ) (5) Fig. 3. Spectrum of the original function. Fig. 4. Spectrum of the sampled data (onl one period is shown for this infinitel periodic function). Evidentl the spectrum of g s (, ), can be simpl found b erecting the spectrum of g(, ) about each point (n/, m/ ) in the f -f plane as shown in Fig. 3. Since the function g(, ) is assumed to be bandlimited, its spectrum G(f, f ) is nonzero over onl a finite region R of the frequenc space. As implied b Eq. 5, the region over which the spectrum of the sampled function is nonzero can be found b constructing the region R about each point (n/, m/ ) in the frequenc plane. Notice that if and are sufficientl small, i.e., the samples are sufficientl close to each other, then the separations / and / of the various spectral islands will be great enough to assure that the adjacent regions do not overlap. However, in our case, as shown in Fig. 4, there are still some overlaps as a handful of microphones are used compared to the resolution we need. 3. SPATIAL FILTERING The recover of the original spectrum G(f, f ) from G s (f, f ) can be accomplished eactl b passing the sampled function g(, ) through a linear invariant filter that transmits the term

3 (n = 0, m = 0) of Eq. 5 without distortion, whereas perfectl ecluding all other terms. 3.. Introduction The concert of linear filtering is also based on the utilization of Fourier transform for signal procession in the frequenc domain. However, here we are interested in filtering operations performed directl on the piels of an image. The linear operations consist of multipling each piel in the neighborhood b a corresponding weight and summing up the products to obtain the response at each point (, ). If the neighborhood is of size m n, mn coefficients are required. The coefficients are arranged as a matri, called a filter, mask, filter mask, kernel, template, or window. There are two similar operations: correlation and convolution. In both operations, a mask w and an image f are required. The mask w can be considered as impulse response in performing the convolution if this is a LTI sstem. The onl difference between correlation and convolution is that mask is rotated b 80 in performing the convolution. The rotation can accomplished b. build-in matlab function: rot90(w, 2), 2. the following codes [row, col ] = size(w); num = row col ; w r = zeros(row, col ); w r ( : end) = w(end : : ); The second method is just reversing the order of reading an arra. It is ver fortunate that this rotation operation can be done through the use of imfilter function b specifing the filtering mode with the conv parameter Detail operations Suppose both mask w and image f are one-dimensional arras with m and n elements, respectivel. We assume tpicall that m and n are nonnegative odd integers because the have a unique center. To perform the correlation of the two arras, we shift w in order for its last element to conincide with the origin of f (for one-dimensional case, this is just the first element of f and for two-dimensional case, it is the upper leftmost point). Notice that there are points between the two arras that do not overlap. The most common wa to solve this problem is to pad f with as man 0s as are necessar to assure that there will alwas be corresponding points for the full etension of w past f. The padded arra f is then denoted as f p and f p has m + 2(n ) = (m + n 2) + n elements since onl the last element (or the first) element of w overlaps with f for the first (or the last) operation. The response of the filter at that point is the sum of products (SOP) of the filter coefficients and the corresponding neighborhood piels in the area etended b the filter mask. Ever time the SOP operation is done, w is shifted one location to the net element and repeat the process. Proceeded in this manner, w (6) Fig. 5. Illustration of one-dimensional correlation using full option. Fig. 6. Illustration of one-dimensional correlation using same option. moves completel past f p and the process is finished. The set of values is the correlation of w with f p (denoted b w f p, not b f p w and will be eplained below). Since w has n elements, there are n products for each colored block and there are (m + n 2) + n blocks due to the fact that f p has m + 2(n ) elements as shown above. Obviousl, the resulted output g has (m+n 2) 0+ = m+n elements and is epressed mathematicall as n g[t + ] = w[τ]f p [t + τ], for t = 0 (m + n 2) τ= (7) where the inde of output arra g is denoted as t+ and starts from to m + n due to the fact that MATLAB does not allow negative indices. Compared with we know that g(t) = w f p = w(τ)f(t τ)dτ (8) imfilter(f, w, full ) (9) is an correlation operation of w on padded arra f, f p, and therefore the operation performed b imfilter is w f p instead of f p w. From the discussion so far, we know that performing correlation with a rotated filter is the same as performing convolution with the original filter. If the filter is smmetric about its center, then both options ield the same result. Notice that, had we moved w such that the starting point was with the center of the mask aligned with the origin of f. The last computation was with the center element of the mask aligned with the last element of f. Then, the padded arra f p would have m + 2((n + )/2 ) = m + n elements and the resulted output g would have m elements (the same size as f) and would be epressed as n g[t + ] = w[τ]f p [t + τ], for t = 0 (m ) τ= (0) where the inde of output arra g is denoted as t+ and starts from to m.

4 Table 2. Options for function imfilter Options Filtering Mode corr conv Boundar Options P replicate smmetric circular Size Options same full Description 3.3. Testing the imfilter functiom Filtering is done using correlation. This is the default. Filtering is done using convolution. The boundaries of the input image are etended padding with a value, P(written without quotes). This is the default, with value 0. The size of the image is etended b replicating the values in its outer border. The size of the image is etended b mirror-reflecting it across its border. The size of the image is etended b treating the image as one 2-D periodic function. The output is of the same size as the input. This is achieved b limiting ecursions of the center of the filter mask to points contained in the original image. This is the default. The output is of the same size as the etended(padded) image. The test of imfilter starts with the practice of EAMPLE 3.7 on page 94 [4]. First of all, lets have a look at the usage of imfilter.the IPT implements linear spatial-domain filtering using imfilter, which has the following snta: g = imf ilter(f, w, f ilteringmode, boundaroptions, sizeoptions) () After the practice, there are some important points that must be paid attention :. Although it is said that Fig.7(a) is a class double image, it is read b MATLAB and is stored as a class uint8 arra. 2. So we have to convert it into a class double image to avoid data loss caused b rounding off and filtered value outside the [0 255] range. This can be seen from Fig.7(f). a b c d e f Fig. 7. (a)original image. (b)result of using imfilter with default zero padding. (c)result with the replicate option. (d)result with the smmetric option. (e)result with the circular option. (f)result of converting the image back to class uint8 and then filtering with the replicate option. A filter of size 33 with all s was used 3. When w is an arra completel consisting of ones, the result is proportional to the arithmetic mean of the original image (240250/(3*3)= 250) in the area etended b the filter mask.as shown in the orange ring in Fig.8. In particular, if the coefficients of the mask sum to (normalization is done with w divided b 96=3*3), the result is the arithmetic mean of the original image in the area etended b the filter mask Boundar Problem Blurred results are produced on the boundaries between black (0s, zero padding) and light (s) regions. It can be understand easil through the following discussion.if zero padding were used, and the outer border is light (s). The filter mask is assumed to be of size 33 with all s. As Fig.9 shows, the sum of the nine products at different centers is different. The resulted image is darker (value is smaller) near the top (above boundar) and the resulted image is brighter (value is larger). 4. CONCLUSION AND FUTURE RESEARCH In spite of the poor resolution, due to the limitation of the number of microphones, we use signal processing technique to make the spectrum look more like a spiral. For eample, epanding the sampled points b zero padding and then performing Fourier transform (the sampled acoustic pressure is viewed as the intensit of an image). The reason for the two

5 Fig. 8. Variables a, b, c, d, e, and f are corresponding to figure 3. (a), (b), (c), (d), (e), and (f), respectivel. W is the filter mask with size 33. spectra showing different colors is that the spacing of each Dirac comb function is not uniform for spiral microphone configuration [5]; however, the deploment of the spectra of the sampled signal are alwas spiral regardless of the sound source is plane wave, spherical wave, or even random distribution [6]. The recover of the original spectrum G(f, f ) from G s (f, f ) can be accomplished eactl b passing the sampled function g(, ) through a linear invariant filter that transmits the term (n = 0, m = 0) of Eq. 5 without distortion, whereas perfectl ecluding all other terms. Therefore, our net objective in the future is to find an eact replica of the original data g(, ) with an FIR filter. Linear spatial-domain filtering presented here is basicall a convolution operation. Due to zero paddings, the boundar problem arises. To avoid this problem, we filter the original image with replicate option. And the problem about data loss can be solved b converting the image class to double or b normalization of the filter mask. 5. REFERENCES [] Joseph W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New ork, [2] Hoffman, M.W., Microphone arra calibration for robust adaptive processing, IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, pp. -4, Oct 995. [3] John Eargle, The Microphone Book: From Mono to Stereo to Surround - A Guide to Microphone Design and Application, Focal-Press, Oford, [4] Rafael C.Gonzalez, Richard E. Wooods, Steven L. Eddins Digital Image Processing Using MATLAB, Pearson Education, USA, pp , [5] Tamai,., Kagami, S., Amemia,., Sasaki,., Mizoguchi, H., and Takano, T., Circular microphone arra for robot s audition, Proc. of the IEEE Sensors, vol. 2, pp , Oct [6] Del Galdo, G., Thiergart, O., Weller, T., and Habets, E.A.P., Generating virtual microphone signals using geometrical information gathered b distributed arras, Joint Workshop on Hands-free Speech Communication and Microphone Arras (HSCMA), pp , Ma June 20. Fig. 9. Eample of boundar problem.

Imaging Metrics. Frequency response Coherent systems Incoherent systems MTF OTF Strehl ratio Other Zemax Metrics. ECE 5616 Curtis

Imaging Metrics. Frequency response Coherent systems Incoherent systems MTF OTF Strehl ratio Other Zemax Metrics. ECE 5616 Curtis Imaging Metrics Frequenc response Coherent sstems Incoherent sstems MTF OTF Strehl ratio Other Zema Metrics Where we are going with this Use linear sstems concept of transfer function to characterize sstem

More information

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II

LESSON #42 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART 2 COMMON CORE ALGEBRA II LESSON #4 - INVERSES OF FUNCTIONS AND FUNCTION NOTATION PART COMMON CORE ALGEBRA II You will recall from unit 1 that in order to find the inverse of a function, ou must switch and and solve for. Also,

More information

RELATIONS AND FUNCTIONS through

RELATIONS AND FUNCTIONS through RELATIONS AND FUNCTIONS 11.1.2 through 11.1. Relations and Functions establish a correspondence between the input values (usuall ) and the output values (usuall ) according to the particular relation or

More information

11.4 Polar Coordinates

11.4 Polar Coordinates 11. Polar Coordinates 917 11. Polar Coordinates In Section 1.1, we introduced the Cartesian coordinates of a point in the plane as a means of assigning ordered pairs of numbers to points in the plane.

More information

14.1 Systems of Linear Equations in Two Variables

14.1 Systems of Linear Equations in Two Variables 86 Chapter 1 Sstems of Equations and Matrices 1.1 Sstems of Linear Equations in Two Variables Use the method of substitution to solve sstems of equations in two variables. Use the method of elimination

More information

10.2 The Unit Circle: Cosine and Sine

10.2 The Unit Circle: Cosine and Sine 0. The Unit Circle: Cosine and Sine 77 0. The Unit Circle: Cosine and Sine In Section 0.., we introduced circular motion and derived a formula which describes the linear velocit of an object moving on

More information

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards. An equation that contains an absolute value expression

Glossary. Also available at BigIdeasMath.com: multi-language glossary vocabulary flash cards. An equation that contains an absolute value expression Glossar This student friendl glossar is designed to be a reference for ke vocabular, properties, and mathematical terms. Several of the entries include a short eample to aid our understanding of important

More information

Lecture Outline. Basics of Spatial Filtering Smoothing Spatial Filters. Sharpening Spatial Filters

Lecture Outline. Basics of Spatial Filtering Smoothing Spatial Filters. Sharpening Spatial Filters 1 Lecture Outline Basics o Spatial Filtering Smoothing Spatial Filters Averaging ilters Order-Statistics ilters Sharpening Spatial Filters Laplacian ilters High-boost ilters Gradient Masks Combining Spatial

More information

MATRIX TRANSFORMATIONS

MATRIX TRANSFORMATIONS CHAPTER 5. MATRIX TRANSFORMATIONS INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRIX TRANSFORMATIONS Matri Transformations Definition Let A and B be sets. A function f : A B

More information

8.1 Exponents and Roots

8.1 Exponents and Roots Section 8. Eponents and Roots 75 8. Eponents and Roots Before defining the net famil of functions, the eponential functions, we will need to discuss eponent notation in detail. As we shall see, eponents

More information

Strain Transformation and Rosette Gage Theory

Strain Transformation and Rosette Gage Theory Strain Transformation and Rosette Gage Theor It is often desired to measure the full state of strain on the surface of a part, that is to measure not onl the two etensional strains, and, but also the shear

More information

2.2 SEPARABLE VARIABLES

2.2 SEPARABLE VARIABLES 44 CHAPTER FIRST-ORDER DIFFERENTIAL EQUATIONS 6 Consider the autonomous DE 6 Use our ideas from Problem 5 to find intervals on the -ais for which solution curves are concave up and intervals for which

More information

TDOA-Based Acoustic Source Localization in the Space-Range Reference Frame

TDOA-Based Acoustic Source Localization in the Space-Range Reference Frame TDOA-Based Acoustic Source Localization in the Space-Range Reference Frame P Bestagini, M Compagnoni, F Antonacci, A Sarti, S Tubaro Dipartimento di Elettronica ed Informazione Dipartimento di Matematica

More information

Systems of Linear Equations: Solving by Graphing

Systems of Linear Equations: Solving by Graphing 8.1 Sstems of Linear Equations: Solving b Graphing 8.1 OBJECTIVE 1. Find the solution(s) for a set of linear equations b graphing NOTE There is no other ordered pair that satisfies both equations. From

More information

SEPARABLE EQUATIONS 2.2

SEPARABLE EQUATIONS 2.2 46 CHAPTER FIRST-ORDER DIFFERENTIAL EQUATIONS 4. Chemical Reactions When certain kinds of chemicals are combined, the rate at which the new compound is formed is modeled b the autonomous differential equation

More information

1.5. Analyzing Graphs of Functions. The Graph of a Function. What you should learn. Why you should learn it. 54 Chapter 1 Functions and Their Graphs

1.5. Analyzing Graphs of Functions. The Graph of a Function. What you should learn. Why you should learn it. 54 Chapter 1 Functions and Their Graphs 0_005.qd /7/05 8: AM Page 5 5 Chapter Functions and Their Graphs.5 Analzing Graphs of Functions What ou should learn Use the Vertical Line Test for functions. Find the zeros of functions. Determine intervals

More information

12.1 Systems of Linear equations: Substitution and Elimination

12.1 Systems of Linear equations: Substitution and Elimination . Sstems of Linear equations: Substitution and Elimination Sstems of two linear equations in two variables A sstem of equations is a collection of two or more equations. A solution of a sstem in two variables

More information

Subband Coding and Wavelets. National Chiao Tung University Chun-Jen Tsai 12/04/2014

Subband Coding and Wavelets. National Chiao Tung University Chun-Jen Tsai 12/04/2014 Subband Coding and Wavelets National Chiao Tung Universit Chun-Jen Tsai /4/4 Concept of Subband Coding In transform coding, we use N (or N N) samples as the data transform unit Transform coefficients are

More information

LESSON #11 - FORMS OF A LINE COMMON CORE ALGEBRA II

LESSON #11 - FORMS OF A LINE COMMON CORE ALGEBRA II LESSON # - FORMS OF A LINE COMMON CORE ALGEBRA II Linear functions come in a variet of forms. The two shown below have been introduced in Common Core Algebra I and Common Core Geometr. TWO COMMON FORMS

More information

Exponential, Logistic, and Logarithmic Functions

Exponential, Logistic, and Logarithmic Functions CHAPTER 3 Eponential, Logistic, and Logarithmic Functions 3.1 Eponential and Logistic Functions 3.2 Eponential and Logistic Modeling 3.3 Logarithmic Functions and Their Graphs 3.4 Properties of Logarithmic

More information

On the Missing Modes When Using the Exact Frequency Relationship between Kirchhoff and Mindlin Plates

On the Missing Modes When Using the Exact Frequency Relationship between Kirchhoff and Mindlin Plates On the Missing Modes When Using the Eact Frequenc Relationship between Kirchhoff and Mindlin Plates C.W. Lim 1,*, Z.R. Li 1, Y. Xiang, G.W. Wei 3 and C.M. Wang 4 1 Department of Building and Construction,

More information

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force]

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 3 Solutions [Multiple Integration; Lines of Force] ENGI 44 Advanced Calculus for Engineering Facult of Engineering and Applied Science Problem Set Solutions [Multiple Integration; Lines of Force]. Evaluate D da over the triangular region D that is bounded

More information

3.3 Logarithmic Functions and Their Graphs

3.3 Logarithmic Functions and Their Graphs 274 CHAPTER 3 Eponential, Logistic, and Logarithmic Functions What ou ll learn about Inverses of Eponential Functions Common Logarithms Base 0 Natural Logarithms Base e Graphs of Logarithmic Functions

More information

Consider a slender rod, fixed at one end and stretched, as illustrated in Fig ; the original position of the rod is shown dotted.

Consider a slender rod, fixed at one end and stretched, as illustrated in Fig ; the original position of the rod is shown dotted. 4.1 Strain If an object is placed on a table and then the table is moved, each material particle moves in space. The particles undergo a displacement. The particles have moved in space as a rigid bod.

More information

LESSON #48 - INTEGER EXPONENTS COMMON CORE ALGEBRA II

LESSON #48 - INTEGER EXPONENTS COMMON CORE ALGEBRA II LESSON #8 - INTEGER EXPONENTS COMMON CORE ALGEBRA II We just finished our review of linear functions. Linear functions are those that grow b equal differences for equal intervals. In this unit we will

More information

5.2 Solving Quadratic Equations by Factoring

5.2 Solving Quadratic Equations by Factoring Name. Solving Quadratic Equations b Factoring MATHPOWER TM, Ontario Edition, pp. 78 8 To solve a quadratic equation b factoring, a) write the equation in the form a + b + c = b) factor a + b + c c) use

More information

LESSON #12 - FORMS OF A LINE COMMON CORE ALGEBRA II

LESSON #12 - FORMS OF A LINE COMMON CORE ALGEBRA II LESSON # - FORMS OF A LINE COMMON CORE ALGEBRA II Linear functions come in a variet of forms. The two shown below have been introduced in Common Core Algebra I and Common Core Geometr. TWO COMMON FORMS

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polnomial and Rational Functions Figure -mm film, once the standard for capturing photographic images, has been made largel obsolete b digital photograph. (credit film : modification of work b Horia Varlan;

More information

Lecture 3: Linear Filters

Lecture 3: Linear Filters Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

Chapter 4 Analytic Trigonometry

Chapter 4 Analytic Trigonometry Analtic Trigonometr Chapter Analtic Trigonometr Inverse Trigonometric Functions The trigonometric functions act as an operator on the variable (angle, resulting in an output value Suppose this process

More information

Chapter 6: Systems of Equations and Inequalities

Chapter 6: Systems of Equations and Inequalities Chapter 6: Sstems of Equations and Inequalities 6-1: Solving Sstems b Graphing Objectives: Identif solutions of sstems of linear equation in two variables. Solve sstems of linear equation in two variables

More information

Table of Contents. Module 1

Table of Contents. Module 1 Table of Contents Module 1 11 Order of Operations 16 Signed Numbers 1 Factorization of Integers 17 Further Signed Numbers 13 Fractions 18 Power Laws 14 Fractions and Decimals 19 Introduction to Algebra

More information

5.3.3 The general solution for plane waves incident on a layered halfspace. The general solution to the Helmholz equation in rectangular coordinates

5.3.3 The general solution for plane waves incident on a layered halfspace. The general solution to the Helmholz equation in rectangular coordinates 5.3.3 The general solution for plane waves incident on a laered halfspace The general solution to the elmhol equation in rectangular coordinates The vector propagation constant Vector relationships between

More information

10.5 Graphs of the Trigonometric Functions

10.5 Graphs of the Trigonometric Functions 790 Foundations of Trigonometr 0.5 Graphs of the Trigonometric Functions In this section, we return to our discussion of the circular (trigonometric functions as functions of real numbers and pick up where

More information

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. December 21, 2001 topic13_grid_generation 1

AE/ME 339. K. M. Isaac Professor of Aerospace Engineering. December 21, 2001 topic13_grid_generation 1 AE/ME 339 Professor of Aerospace Engineering December 21, 2001 topic13_grid_generation 1 The basic idea behind grid generation is the creation of the transformation laws between the phsical space and the

More information

Lecture 3: Linear Filters

Lecture 3: Linear Filters Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

The spatial frequency domain

The spatial frequency domain The spatial frequenc /3/5 wk9-a- Recall: plane wave propagation λ z= θ path dela increases linearl with E ep i2π sinθ + λ z i2π cosθ λ z plane of observation /3/5 wk9-a-2 Spatial frequenc angle of propagation?

More information

Computer Vision & Digital Image Processing

Computer Vision & Digital Image Processing Computer Vision & Digital Image Processing Image Segmentation Dr. D. J. Jackson Lecture 6- Image segmentation Segmentation divides an image into its constituent parts or objects Level of subdivision depends

More information

7-6. nth Roots. Vocabulary. Geometric Sequences in Music. Lesson. Mental Math

7-6. nth Roots. Vocabulary. Geometric Sequences in Music. Lesson. Mental Math Lesson 7-6 nth Roots Vocabular cube root n th root BIG IDEA If is the nth power of, then is an nth root of. Real numbers ma have 0, 1, or 2 real nth roots. Geometric Sequences in Music A piano tuner adjusts

More information

Parameterized Joint Densities with Gaussian and Gaussian Mixture Marginals

Parameterized Joint Densities with Gaussian and Gaussian Mixture Marginals Parameterized Joint Densities with Gaussian and Gaussian Miture Marginals Feli Sawo, Dietrich Brunn, and Uwe D. Hanebeck Intelligent Sensor-Actuator-Sstems Laborator Institute of Computer Science and Engineering

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Name Date Chapter Polnomial and Rational Functions Section.1 Quadratic Functions Objective: In this lesson ou learned how to sketch and analze graphs of quadratic functions. Important Vocabular Define

More information

Perception III: Filtering, Edges, and Point-features

Perception III: Filtering, Edges, and Point-features Perception : Filtering, Edges, and Point-features Davide Scaramuzza Universit of Zurich Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart 1 Toda s outline mage filtering Smoothing Edge detection

More information

The American School of Marrakesh. Algebra 2 Algebra 2 Summer Preparation Packet

The American School of Marrakesh. Algebra 2 Algebra 2 Summer Preparation Packet The American School of Marrakesh Algebra Algebra Summer Preparation Packet Summer 016 Algebra Summer Preparation Packet This summer packet contains eciting math problems designed to ensure our readiness

More information

Convolution. Define a mathematical operation on discrete-time signals called convolution, represented by *. Given two discrete-time signals x 1, x 2,

Convolution. Define a mathematical operation on discrete-time signals called convolution, represented by *. Given two discrete-time signals x 1, x 2, Filters Filters So far: Sound signals, connection to Fourier Series, Introduction to Fourier Series and Transforms, Introduction to the FFT Today Filters Filters: Keep part of the signal we are interested

More information

Unit 12 Study Notes 1 Systems of Equations

Unit 12 Study Notes 1 Systems of Equations You should learn to: Unit Stud Notes Sstems of Equations. Solve sstems of equations b substitution.. Solve sstems of equations b graphing (calculator). 3. Solve sstems of equations b elimination. 4. Solve

More information

4 Strain true strain engineering strain plane strain strain transformation formulae

4 Strain true strain engineering strain plane strain strain transformation formulae 4 Strain The concept of strain is introduced in this Chapter. The approimation to the true strain of the engineering strain is discussed. The practical case of two dimensional plane strain is discussed,

More information

SECTION 8-7 De Moivre s Theorem. De Moivre s Theorem, n a Natural Number nth-roots of z

SECTION 8-7 De Moivre s Theorem. De Moivre s Theorem, n a Natural Number nth-roots of z 8-7 De Moivre s Theorem 635 B eactl; compute the modulus and argument for part C to two decimal places. 9. (A) 3 i (B) 1 i (C) 5 6i 10. (A) 1 i 3 (B) 3i (C) 7 4i 11. (A) i 3 (B) 3 i (C) 8 5i 12. (A) 3

More information

Determinants. We said in Section 3.3 that a 2 2 matrix a b. Determinant of an n n Matrix

Determinants. We said in Section 3.3 that a 2 2 matrix a b. Determinant of an n n Matrix 3.6 Determinants We said in Section 3.3 that a 2 2 matri a b is invertible if and onl if its c d erminant, ad bc, is nonzero, and we saw the erminant used in the formula for the inverse of a 2 2 matri.

More information

a. plotting points in Cartesian coordinates (Grade 9 and 10), b. using a graphing calculator such as the TI-83 Graphing Calculator,

a. plotting points in Cartesian coordinates (Grade 9 and 10), b. using a graphing calculator such as the TI-83 Graphing Calculator, GRADE PRE-CALCULUS UNIT C: QUADRATIC FUNCTIONS CLASS NOTES FRAME. After linear functions, = m + b, and their graph the Quadratic Functions are the net most important equation or function. The Quadratic

More information

11.1 Double Riemann Sums and Double Integrals over Rectangles

11.1 Double Riemann Sums and Double Integrals over Rectangles Chapter 11 Multiple Integrals 11.1 ouble Riemann Sums and ouble Integrals over Rectangles Motivating Questions In this section, we strive to understand the ideas generated b the following important questions:

More information

6 = 1 2. The right endpoints of the subintervals are then 2 5, 3, 7 2, 4, 2 9, 5, while the left endpoints are 2, 5 2, 3, 7 2, 4, 9 2.

6 = 1 2. The right endpoints of the subintervals are then 2 5, 3, 7 2, 4, 2 9, 5, while the left endpoints are 2, 5 2, 3, 7 2, 4, 9 2. 5 THE ITEGRAL 5. Approimating and Computing Area Preliminar Questions. What are the right and left endpoints if [, 5] is divided into si subintervals? If the interval [, 5] is divided into si subintervals,

More information

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Chapter 8 KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Figure 8.1: 195 196 CHAPTER 8. KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS 8.1 Motivation In Chapter 3, the conservation of linear momentum for a

More information

Algebra II Notes Unit Six: Polynomials Syllabus Objectives: 6.2 The student will simplify polynomial expressions.

Algebra II Notes Unit Six: Polynomials Syllabus Objectives: 6.2 The student will simplify polynomial expressions. Algebra II Notes Unit Si: Polnomials Sllabus Objectives: 6. The student will simplif polnomial epressions. Review: Properties of Eponents (Allow students to come up with these on their own.) Let a and

More information

Uncertainty and Parameter Space Analysis in Visualization -

Uncertainty and Parameter Space Analysis in Visualization - Uncertaint and Parameter Space Analsis in Visualiation - Session 4: Structural Uncertaint Analing the effect of uncertaint on the appearance of structures in scalar fields Rüdiger Westermann and Tobias

More information

Analytic Trigonometry

Analytic Trigonometry CHAPTER 5 Analtic Trigonometr 5. Fundamental Identities 5. Proving Trigonometric Identities 5.3 Sum and Difference Identities 5.4 Multiple-Angle Identities 5.5 The Law of Sines 5.6 The Law of Cosines It

More information

Enhancement Using Local Histogram

Enhancement Using Local Histogram Enhancement Using Local Histogram Used to enhance details over small portions o the image. Deine a square or rectangular neighborhood hose center moves rom piel to piel. Compute local histogram based on

More information

y R T However, the calculations are easier, when carried out using the polar set of co-ordinates ϕ,r. The relations between the co-ordinates are:

y R T However, the calculations are easier, when carried out using the polar set of co-ordinates ϕ,r. The relations between the co-ordinates are: Curved beams. Introduction Curved beams also called arches were invented about ears ago. he purpose was to form such a structure that would transfer loads, mainl the dead weight, to the ground b the elements

More information

Gauss and Gauss Jordan Elimination

Gauss and Gauss Jordan Elimination Gauss and Gauss Jordan Elimination Row-echelon form: (,, ) A matri is said to be in row echelon form if it has the following three properties. () All row consisting entirel of zeros occur at the bottom

More information

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential CHAPTER : Partial Derivatives.1 Definition of a Partial Derivative. Increments and Differential.3 Chain Rules.4 Local Etrema.5 Absolute Etrema 1 Chapter : Partial Derivatives.1 Definition of a Partial

More information

APPENDIX D Rotation and the General Second-Degree Equation

APPENDIX D Rotation and the General Second-Degree Equation APPENDIX D Rotation and the General Second-Degree Equation Rotation of Aes Invariants Under Rotation After rotation of the - and -aes counterclockwise through an angle, the rotated aes are denoted as the

More information

Computed Tomography Notes, Part 1. The equation that governs the image intensity in projection imaging is:

Computed Tomography Notes, Part 1. The equation that governs the image intensity in projection imaging is: Noll 3 CT Notes : Page Compute Tomograph Notes Part Challenges with Projection X-ra Sstems The equation that governs the image intensit in projection imaging is: z I I ep µ z Projection -ra sstems are

More information

1. Solutions to Systems of Linear Equations. Determine whether the ordered pairs are solutions to the system. x y 6. 3x y 2

1. Solutions to Systems of Linear Equations. Determine whether the ordered pairs are solutions to the system. x y 6. 3x y 2 78 Chapter Sstems of Linear Equations Section. Concepts. Solutions to Sstems of Linear Equations. Dependent and Inconsistent Sstems of Linear Equations. Solving Sstems of Linear Equations b Graphing Solving

More information

Simultaneous Orthogonal Rotations Angle

Simultaneous Orthogonal Rotations Angle ELEKTROTEHNIŠKI VESTNIK 8(1-2): -11, 2011 ENGLISH EDITION Simultaneous Orthogonal Rotations Angle Sašo Tomažič 1, Sara Stančin 2 Facult of Electrical Engineering, Universit of Ljubljana 1 E-mail: saso.tomaic@fe.uni-lj.si

More information

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I,

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures AB = BA = I, FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 7 MATRICES II Inverse of a matri Sstems of linear equations Solution of sets of linear equations elimination methods 4

More information

Nonlocal Optical Real Image Formation Theory

Nonlocal Optical Real Image Formation Theory See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/48170933 Nonlocal Optical Real Image Formation Theor Article December 010 Source: arxiv READS

More information

Module 3, Section 4 Analytic Geometry II

Module 3, Section 4 Analytic Geometry II Principles of Mathematics 11 Section, Introduction 01 Introduction, Section Analtic Geometr II As the lesson titles show, this section etends what ou have learned about Analtic Geometr to several related

More information

Exercise solutions: concepts from chapter 5

Exercise solutions: concepts from chapter 5 1) Stud the oöids depicted in Figure 1a and 1b. a) Assume that the thin sections of Figure 1 lie in a principal plane of the deformation. Measure and record the lengths and orientations of the principal

More information

Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission

Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission DOI:.38/NNANO.25.86 Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission Amir Arbabi, Yu Horie, Mahmood Bagheri, and Andrei

More information

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification INF 4300 151014 Introduction to classifiction Anne Solberg anne@ifiuiono Based on Chapter 1-6 in Duda and Hart: Pattern Classification 151014 INF 4300 1 Introduction to classification One of the most challenging

More information

Fringe Analysis for Photoelasticity Using Image Processing Techniques

Fringe Analysis for Photoelasticity Using Image Processing Techniques International Journal of Software Engineering and Its pplications, pp.91-102 http://d.doi.org/10.14257/ijseia.2014.8.4.11 Fringe nalsis for Photoelasticit Using Image Processing Techniques Tae Hun Baek

More information

Computation of Total Capacity for Discrete Memoryless Multiple-Access Channels

Computation of Total Capacity for Discrete Memoryless Multiple-Access Channels IEEE TRANSACTIONS ON INFORATION THEORY, VOL. 50, NO. 11, NOVEBER 2004 2779 Computation of Total Capacit for Discrete emorless ultiple-access Channels ohammad Rezaeian, ember, IEEE, and Ale Grant, Senior

More information

On the Extension of Goal-Oriented Error Estimation and Hierarchical Modeling to Discrete Lattice Models

On the Extension of Goal-Oriented Error Estimation and Hierarchical Modeling to Discrete Lattice Models On the Etension of Goal-Oriented Error Estimation and Hierarchical Modeling to Discrete Lattice Models J. T. Oden, S. Prudhomme, and P. Bauman Institute for Computational Engineering and Sciences The Universit

More information

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II

LESSON #28 - POWER FUNCTIONS COMMON CORE ALGEBRA II 1 LESSON #8 - POWER FUNCTIONS COMMON CORE ALGEBRA II Before we start to analze polnomials of degree higher than two (quadratics), we first will look at ver simple functions known as power functions. The

More information

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives Chapter 3 3Quadratics Objectives To recognise and sketch the graphs of quadratic polnomials. To find the ke features of the graph of a quadratic polnomial: ais intercepts, turning point and ais of smmetr.

More information

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1,

SAMPLE. A Gallery of Graphs. To recognise the rules of a number of common algebraic relationships: y = x 1, Objectives C H A P T E R 5 A Galler of Graphs To recognise the rules of a number of common algebraic relationships: =, =, = / and + =. To be able to sketch the graphs and simple transformations of these

More information

The Force Table Introduction: Theory:

The Force Table Introduction: Theory: 1 The Force Table Introduction: "The Force Table" is a simple tool for demonstrating Newton s First Law and the vector nature of forces. This tool is based on the principle of equilibrium. An object is

More information

Krylov Integration Factor Method on Sparse Grids for High Spatial Dimension Convection Diffusion Equations

Krylov Integration Factor Method on Sparse Grids for High Spatial Dimension Convection Diffusion Equations DOI.7/s95-6-6-7 Krlov Integration Factor Method on Sparse Grids for High Spatial Dimension Convection Diffusion Equations Dong Lu Yong-Tao Zhang Received: September 5 / Revised: 9 March 6 / Accepted: 8

More information

Math 121. Practice Problems from Chapter 4 Fall 2016

Math 121. Practice Problems from Chapter 4 Fall 2016 Math 11. Practice Problems from Chapter Fall 01 1 Inverse Functions 1. The graph of a function f is given below. On same graph sketch the inverse function of f; notice that f goes through the points (0,

More information

REPORT DOCUMENTATION PAGE

REPORT DOCUMENTATION PAGE REPORT DOCUMENTATION PAGE Form Approved OMB No. 74-88 Public reporting burden for this collection of information is estimated to average hour per response, including the time for reviewing instructions,

More information

Functions of Several Variables

Functions of Several Variables Chapter 1 Functions of Several Variables 1.1 Introduction A real valued function of n variables is a function f : R, where the domain is a subset of R n. So: for each ( 1,,..., n ) in, the value of f is

More information

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations

Ch 3 Alg 2 Note Sheet.doc 3.1 Graphing Systems of Equations Ch 3 Alg Note Sheet.doc 3.1 Graphing Sstems of Equations Sstems of Linear Equations A sstem of equations is a set of two or more equations that use the same variables. If the graph of each equation =.4

More information

Linear Equations and Arithmetic Sequences

Linear Equations and Arithmetic Sequences CONDENSED LESSON.1 Linear Equations and Arithmetic Sequences In this lesson, ou Write eplicit formulas for arithmetic sequences Write linear equations in intercept form You learned about recursive formulas

More information

Multiple Integration

Multiple Integration Contents 7 Multiple Integration 7. Introduction to Surface Integrals 7. Multiple Integrals over Non-rectangular Regions 7. Volume Integrals 4 7.4 Changing Coordinates 66 Learning outcomes In this Workbook

More information

Conic Sections CHAPTER OUTLINE. The Circle Ellipses and Hyperbolas Second-Degree Inequalities and Nonlinear Systems FIGURE 1

Conic Sections CHAPTER OUTLINE. The Circle Ellipses and Hyperbolas Second-Degree Inequalities and Nonlinear Systems FIGURE 1 088_0_p676-7 /7/0 :5 PM Page 676 (FPG International / Telegraph Colour Librar) Conic Sections CHAPTER OUTLINE. The Circle. Ellipses and Hperbolas.3 Second-Degree Inequalities and Nonlinear Sstems O ne

More information

ALGEBRA 2 NY STATE COMMON CORE

ALGEBRA 2 NY STATE COMMON CORE ALGEBRA NY STATE COMMON CORE Kingston High School 017-018 emathinstruction, RED HOOK, NY 1571, 015 Table of Contents U n i t 1 - Foundations of Algebra... 1 U n i t - Linear Functions, Equations, and their

More information

Inference about the Slope and Intercept

Inference about the Slope and Intercept Inference about the Slope and Intercept Recall, we have established that the least square estimates and 0 are linear combinations of the Y i s. Further, we have showed that the are unbiased and have the

More information

Wavelets bases in higher dimensions

Wavelets bases in higher dimensions Wavelets bases in higher dimensions 1 Topics Basic issues Separable spaces and bases Separable wavelet bases D DWT Fast D DWT Lifting steps scheme JPEG000 Advanced concepts Overcomplete bases Discrete

More information

Viktor Shkolnikov, Juan G. Santiago*

Viktor Shkolnikov, Juan G. Santiago* Supplementar Information: Coupling Isotachophoresis with Affinit Chromatograph for Rapid and Selective Purification with High Column Utilization. Part I: Theor Viktor Shkolnikov, Juan G. Santiago* Department

More information

Affine transformations

Affine transformations Reading Optional reading: Affine transformations Brian Curless CSE 557 Autumn 207 Angel and Shreiner: 3., 3.7-3. Marschner and Shirle: 2.3, 2.4.-2.4.4, 6..-6..4, 6.2., 6.3 Further reading: Angel, the rest

More information

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS

5.6 RATIOnAl FUnCTIOnS. Using Arrow notation. learning ObjeCTIveS CHAPTER PolNomiAl ANd rational functions learning ObjeCTIveS In this section, ou will: Use arrow notation. Solve applied problems involving rational functions. Find the domains of rational functions. Identif

More information

Section 1.5 Formal definitions of limits

Section 1.5 Formal definitions of limits Section.5 Formal definitions of limits (3/908) Overview: The definitions of the various tpes of limits in previous sections involve phrases such as arbitraril close, sufficientl close, arbitraril large,

More information

Lecture 05 Point Feature Detection and Matching

Lecture 05 Point Feature Detection and Matching nstitute of nformatics nstitute of Neuroinformatics Lecture 05 Point Feature Detection and Matching Davide Scaramuzza 1 Lab Eercise 3 - Toda afternoon Room ETH HG E 1.1 from 13:15 to 15:00 Wor description:

More information

CH. 1 FUNDAMENTAL PRINCIPLES OF MECHANICS

CH. 1 FUNDAMENTAL PRINCIPLES OF MECHANICS 446.201 (Solid echanics) Professor Youn, eng Dong CH. 1 FUNDENTL PRINCIPLES OF ECHNICS Ch. 1 Fundamental Principles of echanics 1 / 14 446.201 (Solid echanics) Professor Youn, eng Dong 1.2 Generalied Procedure

More information

MATHEMATICS LEVEL 2 TEST FORM B Continued

MATHEMATICS LEVEL 2 TEST FORM B Continued Mathematics Level Test Form B For each of the following problems, decide which is the BEST of the choices given. If the eact numerical value is not one of the choices, select the choice that best approimates

More information

x c x c This suggests the following definition.

x c x c This suggests the following definition. 110 Chapter 1 / Limits and Continuit 1.5 CONTINUITY A thrown baseball cannot vanish at some point and reappear someplace else to continue its motion. Thus, we perceive the path of the ball as an unbroken

More information

Chapter 13. Overview. The Quadratic Formula. Overview. The Quadratic Formula. The Quadratic Formula. Lewinter & Widulski 1. The Quadratic Formula

Chapter 13. Overview. The Quadratic Formula. Overview. The Quadratic Formula. The Quadratic Formula. Lewinter & Widulski 1. The Quadratic Formula Chapter 13 Overview Some More Math Before You Go The Quadratic Formula The iscriminant Multiplication of Binomials F.O.I.L. Factoring Zero factor propert Graphing Parabolas The Ais of Smmetr, Verte and

More information

MATHEMATICS LEVEL 2. MATHEMATICS LEVEL 2 Continued GO ON TO THE NEXT PAGE USE THIS SPACE FOR SCRATCHWORK. 1. If xy 0 and 3x = 0.

MATHEMATICS LEVEL 2. MATHEMATICS LEVEL 2 Continued GO ON TO THE NEXT PAGE USE THIS SPACE FOR SCRATCHWORK. 1. If xy 0 and 3x = 0. MATHEMATICS LEVEL For each of the following problems, decide which is the BEST of the choices given. If the eact numerical value is not one of the choices, select the choice that best approimates this

More information

Computed Tomography Notes, Part 1. The equation that governs the image intensity in projection imaging is:

Computed Tomography Notes, Part 1. The equation that governs the image intensity in projection imaging is: Noll 6 CT Notes : Page Compute Tomograph Notes Part Challenges with Projection X-ra Sstems The equation that governs the image intensit in projection imaging is: z I I ep μ z Projection -ra sstems are

More information

Algebra/Pre-calc Review

Algebra/Pre-calc Review Algebra/Pre-calc Review The following pages contain various algebra and pre-calculus topics that are used in the stud of calculus. These pages were designed so that students can refresh their knowledge

More information