Time Series Solutions HT Let fx t g be the ARMA(1, 1) process, where jffij < 1 and j j < 1. Show that the autocorrelation function of

Size: px
Start display at page:

Download "Time Series Solutions HT Let fx t g be the ARMA(1, 1) process, where jffij < 1 and j j < 1. Show that the autocorrelation function of"

Transcription

1 ffi ; ρ(h) =ffih 1 ρ(1) for h > 1: Time Series Solutions HT Let fx t g be the ARMA(1, 1) process, X t ffix t 1 = ffl t + ffl t 1 ; fffl t gοwn(0;ff 2 ); where jffij < 1 and j j < 1. Show that the autocorrelation function of fx t g is given by (1 + ffi )(ffi + ) ρ(1) = 1

2 X t = ffix t 1 + ffl t + ffl t 1 = ffi[ffix t 2 + ffl t 1 + ffl t 2 ]+ffl t + ffl t 1 = ffi 2 X t 2 + ffiffl t 1 + ffi ffl t 2 + ffl t + ffl t 1 Solution. Taking E(X expectations )=ffie(x t 1 t ), and ffi<1 using and stationarity we E(X get )=E(X t 1 t )=0. k > For 2: multiplying t = ffix t 1 + ffl t + ffl t 1 X X by t k and taking expectations we fl get = ffifl k 1 k, and hence k = ffi k 1 fl 1 for k > 2. fl Multiplying the same equation X by t and taking expectations we get and fl 0 = ffifl 1 + E[X t (ffl t + ffl t 1 )] 2

3 fl 0 = ffifl 1 + E[(ffi 2 X t 2 + ffiffl t 1 + ffi ffl t 2 + ffl t + ffl t 1 )(ffl t + ffl t 1 )] fl 1 = E(X t X t+1 ) so Also = ffifl 1 + ff 2 [ffi ]: = E[X t (ffix t + ffl t+1 + ffl t )] = ffifl 0 + E[(ffiX t 1 + ffl t + ffl t 1 )(ffl t+1 + ffl t )] = ffifl 0 + ff 2 : We can now solve the two equations involving fl 0 ;fl 1, and then find fl k, and hence ρ k, as required. 3

4 2. Consider a process consisting of a linear trend plus an additive noise term, that is, X t = fi 0 + fi 1 t + ffl t where fi 0 and fi 1 are fixed constants, and where the ffl t are independent random variables with zero means and variances ff 2. Show that X t is non-stationary, but that the first difference series rx t = X t X t 1 is second-order stationary, and find the acf of rx t. 4

5 Y t = fi 0 + fi 1 t + ffl t ffi 0 + fi 1 (t 1) + ffl t 1 g cov(y t ;Y t+k )=cov(ffl t ffl t 1 ;ffl t+k ffl t+k 1 ) >< 2ff 2 k =0 Solution. E(X t )=E(fi 0 + fi 1 t + ffl t )=fi 0 + fi 1 t which depends on t, hence X t is non-stationary. Let Y t = rx t = X t X t 1. Then So = fi 1 + ffl t ffl t 1 : = E(ffl t ffl t+k ffl t 1 ffl t+k ffl t ffl t+k 1 + ffl t 1 ffl t+k 1 ) 8 = ff 2 k =1 >: 0 k > 2: 5

6 ρ k == >< Hence Y t is stationary and its acf is 8 1 k =0 1 2 k =1 >: 0 k > 2: 6

7 3. Let fs t ;t =0; 1; 2;:::g be the random walk with constant drift μ, defined by S 0 =0and S t = μ + S t 1 + ffl t ; t =1; 2;:::; where ffl 1 ;ffl 2 ;::: are independent and identically distributed random variables with mean 0 and variance ff 2. Compute the mean of S t and the autocovariance of the process fs t g. Show that frs t g is stationary and compute its mean and autocovariance function. 7

8 S t = ffl t + μ + S t 1 = ffl t + μ + ffl t 1 + μ + S t 2 = ffl t + ffl t 1 +2μ + S t 2 ffl t j + tμ + S 0 Solution. = ::: Xt 1 = So E(S t )=0+tμ +0=tμ. j=0 8

9 E[fS t tμgfs t+k (t + k)μg] =E( = tff 2 E(ffl t j ffl t j ) ffl t+k i ) For the autocovariance of S t, the autocovariance at lag k is Xt 1 t+k 1 X t j ffl j=0 i=0 Xt 1 = j=0 since, when moving from the first line to the second line of the above display, E(ffl t j ffl t+k i )=0unless i = j + k. t = rs t = S t S t 1 = μ + ffl t, which is clearly stationary. Y t )=μ. E(Y 9

10 For the autocovariance of Y t, note Y t μ = ffl t, and similarly 0 μ = ffl t t 0, and so t 6= t for each Y 0 t depends on a ffl different t, Y and therefore ;Y t t 0)=0for t 6= t all. So the autocovariance function cov(y 0 is at lag 0, and is zero at all other lags. 2 ff 10

11 cos ff cos fi = If X t = a cos( t) +ffl t where ffl t ο WN(0;ff 2 ), and where a and are constants, show that fx t g is not stationary. Now consider the process X t = a cos( t + ) where is uniformly distributed on (0; 2ß), and where a and are constants. Is this process stationary? Find the autocorrelations and the spectrum of X t. [To find the autocorrelations you may want to use the identity + fi) + cos(ff fi)g.] fcos(ff 11

12 t )=ae(cos( t + )) E(X 2ß Z a = 2ß a = [sin( t + )]2ß 0 2ß Solution. E(X t )=E(a cos( t) +ffl t )=a cos( t), which depends on t, so X t is not stationary. Now for X t = a cos( t + )we need to consider the joint distributions of (X(t 1 );:::;X(t k )) and of (X(t 1 + fi );:::;X(t k + fi )). Since shifting time by t is equivalent to shifting by t, and since is uniform on (0; 2ß), these two joint distributions are the same, and so X t is stationary. cos( t + ) d 0 =0 12

13 fl t = E(X t X 0 )=a 2 E(cos( ) cos( t + )) = a2» 1 Z 2ß 2 cos( t) = a 2 E 2 fcos( t + 2 ) + cos( t)g a2 = [ 1 2 cos( t +2 ) + cos( t) d ] 2ß 0 So ρ t =cos( t). R ß F The fl spectrum = ß is df where t (!). Try the discrete eit! distribution F ( ) =F ( ) for, =c, F (!) a constant, F =0otherwise. 13

14 Then fl t = e it c + e it c = c[cos(t ) +i sin(t ) + cos(t ) i sin(t )] =2c cos( t): So we want 2c = a 2 =2,orc = a 2 =4. SoF ( ) =F ( ) =a 2 =4. 14

15 k = ρ jkj 5. Find the Yule-Walker equations for the AR(2) process X t = 1 3 X t X t 2 + ffl t where ffl t ο WN(0;ff 2 ). Hence show that this process has autocorrelation function 1 : 3 jkj [To solve an equation of the aρ form + bρ k 1 + cρ k 2 k =0, try ρ k = A k for some constants A and : solve the resulting quadratic equation for and deduce that ρ k is of the form ρ k = A k 1 + B k 2 where A and B are constants.] 15

16 k = ( 2 3 )k ( 1 3 )k : ρ Solution. The Yule-Walker equations are k = 1 3 ρ k ρ k 2: ρ So as in the hint, to solve ρ k 1 3 ρ k ρ k 2 =0 try ρ k = A k. Substituting this into the above equation, and cancelling a factor of k 2, we get =0 which has roots = 2 3 and = 1 3,soρ k = A( 2 3 )k + B( 1 3 )k. We ρ also require ρ 0 = =1and ρ 1 1. Hence we can solve A for 3 A = and B: and.so B =

17 6. Let fy t g be a stationary process with mean zero and let a and b be constants. (a) If X t = a + bt + s t + Y t where s t is a seasonal component with period 12, show that rr 12 X t =(1 B)(1 B 12 )X t is stationary. (b) If X t =(a + bt)s t + Y t where s t is again a seasonal component with period 12, show that r 2 12X t =(1 B 12 )(1 B 12 )X t is stationary. 17

18 rx t = a + bt + s t + Y t [a + b(t 1) + s t 1 + Y t 1 ] = b + s t s t 1 + Y t Y t 1 rr 12 X t = b + s t s t 1 + Y t Y t 1 = Y t Y t 1 Y t 12 + Y t 13 Solution. (a) [b + s t 12 s t 13 + Y t 12 Y t 13 ] and this is a stationary process since Y t is stationary. (We have used the fact that s t = s t 12 for all t.) 18

19 = Y t +12bs t 12 Y t 12 r 2 12X t = Y t +12bs t 12 Y t 12 = Y t 2Y t 12 + Y t 24 (b) r 12 X t =(a + bt)s t + Y t [(a + b(t 12))s t 12 + Y t 12 ] [Y t bs t 24 Y t 24 ] and this is stationary since Y t is stationary (again using s t = s t 12 for all t.) 19

20 7. Consider the univariate state-space model given by state conditions X 0 = W 0, X t = X t 1 + W t, and observations Y t = X t + V t, =1; 2;:::, where t W and t are independent, Gaussian, white t noise V processes with and 2 V var(w t)=ff 2 W t. Show that the data )=ff var(v follow an ARIMA(0,1,1) ry model, that is, t follows an MA(1) model. Include in your answer an expression for the autocorrelation function of t in terms of and. 2 ff2 W V ff ry 20

21 ry t = Y t Y t 1 =(X t + V t ) (X t 1 + V t 1 ) = X t X t 1 + V t V t 1 = W t + V t V t 1 fl 0 = Var(rY t ) Solution. and so ry t is an MA(1). As V t, V t 1 and W t are independent, = ff 2 W +2ff2 V : 21

22 fl 1 = Cov(rY t ; ry t+1 ) ρ 1 = ff 2 V Furthermore, = Cov(W t + V t V t 1 ;W t+1 + V t+1 V t ) = ff 2 V ; and, from the independence, fl k =0for jkj 2. Hence the acf is ρ 0 =1, and ρ k =0for jkj 2. ff 2 W +2ff2 V ; 22

Time Series Solutions HT 2009

Time Series Solutions HT 2009 Time Series Solutions HT 2009 1. Let {X t } be the ARMA(1, 1) process, X t φx t 1 = ɛ t + θɛ t 1, {ɛ t } WN(0, σ 2 ), where φ < 1 and θ < 1. Show that the autocorrelation function of {X t } is given by

More information

Time Series HILARY TERM 2008 PROF. GESINE REINERT

Time Series HILARY TERM 2008 PROF. GESINE REINERT Time Series HILARY TERM 2008 PROF. GESINE REINERT http://www.stats.ox.ac.uk/ reinert 1 Overview Chapter 1: What are time series? Types of data, examples, objectives. ffl Definitions, stationarity and autocovariances.

More information

Some Time-Series Models

Some Time-Series Models Some Time-Series Models Outline 1. Stochastic processes and their properties 2. Stationary processes 3. Some properties of the autocorrelation function 4. Some useful models Purely random processes, random

More information

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends Reliability and Risk Analysis Stochastic process The sequence of random variables {Y t, t = 0, ±1, ±2 } is called the stochastic process The mean function of a stochastic process {Y t} is the function

More information

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0

Pure Random process Pure Random Process or White Noise Process: is a random process {X t, t 0} which has: { σ 2 if k = 0 0 if k 0 MODULE 9: STATIONARY PROCESSES 7 Lecture 2 Autoregressive Processes 1 Moving Average Process Pure Random process Pure Random Process or White Noise Process: is a random process X t, t 0} which has: E[X

More information

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MAS451/MTH451 Time Series Analysis TIME ALLOWED: 2 HOURS

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION MAS451/MTH451 Time Series Analysis TIME ALLOWED: 2 HOURS NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER II EXAMINATION 2012-2013 MAS451/MTH451 Time Series Analysis May 2013 TIME ALLOWED: 2 HOURS INSTRUCTIONS TO CANDIDATES 1. This examination paper contains FOUR (4)

More information

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity.

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series {X t } is a series of observations taken sequentially over time: x t is an observation

More information

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation

University of Oxford. Statistical Methods Autocorrelation. Identification and Estimation University of Oxford Statistical Methods Autocorrelation Identification and Estimation Dr. Órlaith Burke Michaelmas Term, 2011 Department of Statistics, 1 South Parks Road, Oxford OX1 3TG Contents 1 Model

More information

3 Theory of stationary random processes

3 Theory of stationary random processes 3 Theory of stationary random processes 3.1 Linear filters and the General linear process A filter is a transformation of one random sequence {U t } into another, {Y t }. A linear filter is a transformation

More information

Chapter 4: Models for Stationary Time Series

Chapter 4: Models for Stationary Time Series Chapter 4: Models for Stationary Time Series Now we will introduce some useful parametric models for time series that are stationary processes. We begin by defining the General Linear Process. Let {Y t

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 II. Basic definitions A time series is a set of observations X t, each

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

For a stochastic process {Y t : t = 0, ±1, ±2, ±3, }, the mean function is defined by (2.2.1) ± 2..., γ t,

For a stochastic process {Y t : t = 0, ±1, ±2, ±3, }, the mean function is defined by (2.2.1) ± 2..., γ t, CHAPTER 2 FUNDAMENTAL CONCEPTS This chapter describes the fundamental concepts in the theory of time series models. In particular, we introduce the concepts of stochastic processes, mean and covariance

More information

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design

Marcel Dettling. Applied Time Series Analysis SS 2013 Week 05. ETH Zürich, March 18, Institute for Data Analysis and Process Design Marcel Dettling Institute for Data Analysis and Process Design Zurich University of Applied Sciences marcel.dettling@zhaw.ch http://stat.ethz.ch/~dettling ETH Zürich, March 18, 2013 1 Basics of Modeling

More information

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn }

{ } Stochastic processes. Models for time series. Specification of a process. Specification of a process. , X t3. ,...X tn } Stochastic processes Time series are an example of a stochastic or random process Models for time series A stochastic process is 'a statistical phenomenon that evolves in time according to probabilistic

More information

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 )

Covariance Stationary Time Series. Example: Independent White Noise (IWN(0,σ 2 )) Y t = ε t, ε t iid N(0,σ 2 ) Covariance Stationary Time Series Stochastic Process: sequence of rv s ordered by time {Y t } {...,Y 1,Y 0,Y 1,...} Defn: {Y t } is covariance stationary if E[Y t ]μ for all t cov(y t,y t j )E[(Y t μ)(y

More information

Univariate Time Series Analysis; ARIMA Models

Univariate Time Series Analysis; ARIMA Models Econometrics 2 Fall 24 Univariate Time Series Analysis; ARIMA Models Heino Bohn Nielsen of4 Outline of the Lecture () Introduction to univariate time series analysis. (2) Stationarity. (3) Characterizing

More information

STA 6857 Autocorrelation and Cross-Correlation & Stationary Time Series ( 1.4, 1.5)

STA 6857 Autocorrelation and Cross-Correlation & Stationary Time Series ( 1.4, 1.5) STA 6857 Autocorrelation and Cross-Correlation & Stationary Time Series ( 1.4, 1.5) Outline 1 Announcements 2 Autocorrelation and Cross-Correlation 3 Stationary Time Series 4 Homework 1c Arthur Berg STA

More information

Stochastic Processes. Monday, November 14, 11

Stochastic Processes. Monday, November 14, 11 Stochastic Processes 1 Definition and Classification X(, t): stochastic process: X : T! R (, t) X(, t) where is a sample space and T is time. {X(, t) is a family of r.v. defined on {, A, P and indexed

More information

Statistics of stochastic processes

Statistics of stochastic processes Introduction Statistics of stochastic processes Generally statistics is performed on observations y 1,..., y n assumed to be realizations of independent random variables Y 1,..., Y n. 14 settembre 2014

More information

Time Series Analysis

Time Series Analysis Time Series Analysis hm@imm.dtu.dk Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby 1 Outline of the lecture Chapter 9 Multivariate time series 2 Transfer function

More information

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong

STAT 443 Final Exam Review. 1 Basic Definitions. 2 Statistical Tests. L A TEXer: W. Kong STAT 443 Final Exam Review L A TEXer: W Kong 1 Basic Definitions Definition 11 The time series {X t } with E[X 2 t ] < is said to be weakly stationary if: 1 µ X (t) = E[X t ] is independent of t 2 γ X

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

Ch 4. Models For Stationary Time Series. Time Series Analysis

Ch 4. Models For Stationary Time Series. Time Series Analysis This chapter discusses the basic concept of a broad class of stationary parametric time series models the autoregressive moving average (ARMA) models. Let {Y t } denote the observed time series, and {e

More information

Time Series Analysis. Solutions to problems in Chapter 5 IMM

Time Series Analysis. Solutions to problems in Chapter 5 IMM Time Series Analysis Solutions to problems in Chapter 5 IMM Solution 5.1 Question 1. [ ] V [X t ] = V [ǫ t + c(ǫ t 1 + ǫ t + )] = 1 + c 1 σǫ = The variance of {X t } is not limited and therefore {X t }

More information

Time Series Examples Sheet

Time Series Examples Sheet Lent Term 2001 Richard Weber Time Series Examples Sheet This is the examples sheet for the M. Phil. course in Time Series. A copy can be found at: http://www.statslab.cam.ac.uk/~rrw1/timeseries/ Throughout,

More information

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley

Time Series Models and Inference. James L. Powell Department of Economics University of California, Berkeley Time Series Models and Inference James L. Powell Department of Economics University of California, Berkeley Overview In contrast to the classical linear regression model, in which the components of the

More information

Lecture 2: Univariate Time Series

Lecture 2: Univariate Time Series Lecture 2: Univariate Time Series Analysis: Conditional and Unconditional Densities, Stationarity, ARMA Processes Prof. Massimo Guidolin 20192 Financial Econometrics Spring/Winter 2017 Overview Motivation:

More information

Discrete time processes

Discrete time processes Discrete time processes Predictions are difficult. Especially about the future Mark Twain. Florian Herzog 2013 Modeling observed data When we model observed (realized) data, we encounter usually the following

More information

Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models

Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models Stat 248 Lab 2: Stationarity, More EDA, Basic TS Models Tessa L. Childers-Day February 8, 2013 1 Introduction Today s section will deal with topics such as: the mean function, the auto- and cross-covariance

More information

Chapter 3 - Temporal processes

Chapter 3 - Temporal processes STK4150 - Intro 1 Chapter 3 - Temporal processes Odd Kolbjørnsen and Geir Storvik January 23 2017 STK4150 - Intro 2 Temporal processes Data collected over time Past, present, future, change Temporal aspect

More information

Minitab Project Report Assignment 3

Minitab Project Report Assignment 3 3.1.1 Simulation of Gaussian White Noise Minitab Project Report Assignment 3 Time Series Plot of zt Function zt 1 0. 0. zt 0-1 0. 0. -0. -0. - -3 1 0 30 0 50 Index 0 70 0 90 0 1 1 1 1 0 marks The series

More information

Minitab Project Report - Assignment 6

Minitab Project Report - Assignment 6 .. Sunspot data Minitab Project Report - Assignment Time Series Plot of y Time Series Plot of X y X 7 9 7 9 The data have a wavy pattern. However, they do not show any seasonality. There seem to be an

More information

Time Series Analysis

Time Series Analysis Time Series Analysis Christopher Ting http://mysmu.edu.sg/faculty/christophert/ christopherting@smu.edu.sg Quantitative Finance Singapore Management University March 3, 2017 Christopher Ting Week 9 March

More information

STAT 248: EDA & Stationarity Handout 3

STAT 248: EDA & Stationarity Handout 3 STAT 248: EDA & Stationarity Handout 3 GSI: Gido van de Ven September 17th, 2010 1 Introduction Today s section we will deal with the following topics: the mean function, the auto- and crosscovariance

More information

SOME BASICS OF TIME-SERIES ANALYSIS

SOME BASICS OF TIME-SERIES ANALYSIS SOME BASICS OF TIME-SERIES ANALYSIS John E. Floyd University of Toronto December 8, 26 An excellent place to learn about time series analysis is from Walter Enders textbook. For a basic understanding of

More information

Advanced Econometrics

Advanced Econometrics Advanced Econometrics Marco Sunder Nov 04 2010 Marco Sunder Advanced Econometrics 1/ 25 Contents 1 2 3 Marco Sunder Advanced Econometrics 2/ 25 Music Marco Sunder Advanced Econometrics 3/ 25 Music Marco

More information

Homework 4. 1 Data analysis problems

Homework 4. 1 Data analysis problems Homework 4 1 Data analysis problems This week we will be analyzing a number of data sets. We are going to build ARIMA models using the steps outlined in class. It is also a good idea to read section 3.8

More information

Statistics 349(02) Review Questions

Statistics 349(02) Review Questions Statistics 349(0) Review Questions I. Suppose that for N = 80 observations on the time series { : t T} the following statistics were calculated: _ x = 10.54 C(0) = 4.99 In addition the sample autocorrelation

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Time Series 2. Robert Almgren. Sept. 21, 2009

Time Series 2. Robert Almgren. Sept. 21, 2009 Time Series 2 Robert Almgren Sept. 21, 2009 This week we will talk about linear time series models: AR, MA, ARMA, ARIMA, etc. First we will talk about theory and after we will talk about fitting the models

More information

STAT 520: Forecasting and Time Series. David B. Hitchcock University of South Carolina Department of Statistics

STAT 520: Forecasting and Time Series. David B. Hitchcock University of South Carolina Department of Statistics David B. University of South Carolina Department of Statistics What are Time Series Data? Time series data are collected sequentially over time. Some common examples include: 1. Meteorological data (temperatures,

More information

A time series is called strictly stationary if the joint distribution of every collection (Y t

A time series is called strictly stationary if the joint distribution of every collection (Y t 5 Time series A time series is a set of observations recorded over time. You can think for example at the GDP of a country over the years (or quarters) or the hourly measurements of temperature over a

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 III. Stationary models 1 Purely random process 2 Random walk (non-stationary)

More information

Class 1: Stationary Time Series Analysis

Class 1: Stationary Time Series Analysis Class 1: Stationary Time Series Analysis Macroeconometrics - Fall 2009 Jacek Suda, BdF and PSE February 28, 2011 Outline Outline: 1 Covariance-Stationary Processes 2 Wold Decomposition Theorem 3 ARMA Models

More information

Forecasting locally stationary time series

Forecasting locally stationary time series Forecasting locally stationary time series Rebecca Killick r.killick@lancs.ac.uk Joint work with Idris Eckley (Lancaster), Marina Knight (York) & Guy Nason (Bristol) June 30, 2014 Rebecca Killick (Lancaster

More information

1 Linear Difference Equations

1 Linear Difference Equations ARMA Handout Jialin Yu 1 Linear Difference Equations First order systems Let {ε t } t=1 denote an input sequence and {y t} t=1 sequence generated by denote an output y t = φy t 1 + ε t t = 1, 2,... with

More information

3. ARMA Modeling. Now: Important class of stationary processes

3. ARMA Modeling. Now: Important class of stationary processes 3. ARMA Modeling Now: Important class of stationary processes Definition 3.1: (ARMA(p, q) process) Let {ɛ t } t Z WN(0, σ 2 ) be a white noise process. The process {X t } t Z is called AutoRegressive-Moving-Average

More information

Characteristics of Time Series

Characteristics of Time Series Characteristics of Time Series Al Nosedal University of Toronto January 12, 2016 Al Nosedal University of Toronto Characteristics of Time Series January 12, 2016 1 / 37 Signal and Noise In general, most

More information

MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS)

MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS) MAT 3379 (Winter 2016) FINAL EXAM (SOLUTIONS) 15 April 2016 (180 minutes) Professor: R. Kulik Student Number: Name: This is closed book exam. You are allowed to use one double-sided A4 sheet of notes.

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution. e z2 /2. f Z (z) = 1 2π. e z2 i /2

Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution. e z2 /2. f Z (z) = 1 2π. e z2 i /2 Next tool is Partial ACF; mathematical tools first. The Multivariate Normal Distribution Defn: Z R 1 N(0,1) iff f Z (z) = 1 2π e z2 /2 Defn: Z R p MV N p (0, I) if and only if Z = (Z 1,..., Z p ) (a column

More information

white noise Time moving average

white noise Time moving average 1.3 Time Series Statistical Models 13 white noise w 3 1 0 1 0 100 00 300 400 500 Time moving average v 1.5 0.5 0.5 1.5 0 100 00 300 400 500 Fig. 1.8. Gaussian white noise series (top) and three-point moving

More information

Module 4. Stationary Time Series Models Part 1 MA Models and Their Properties

Module 4. Stationary Time Series Models Part 1 MA Models and Their Properties Module 4 Stationary Time Series Models Part 1 MA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14, 2016 20h

More information

STAT 436 / Lecture 16: Key

STAT 436 / Lecture 16: Key STAT 436 / 536 - Lecture 16: Key Modeling Non-Stationary Time Series Many time series models are non-stationary. Recall a time series is stationary if the mean and variance are constant in time and the

More information

ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models

ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models ECON/FIN 250: Forecasting in Finance and Economics: Section 6: Standard Univariate Models Patrick Herb Brandeis University Spring 2016 Patrick Herb (Brandeis University) Standard Univariate Models ECON/FIN

More information

Classic Time Series Analysis

Classic Time Series Analysis Classic Time Series Analysis Concepts and Definitions Let Y be a random number with PDF f Y t ~f,t Define t =E[Y t ] m(t) is known as the trend Define the autocovariance t, s =COV [Y t,y s ] =E[ Y t t

More information

Problem set 1 - Solutions

Problem set 1 - Solutions EMPIRICAL FINANCE AND FINANCIAL ECONOMETRICS - MODULE (8448) Problem set 1 - Solutions Exercise 1 -Solutions 1. The correct answer is (a). In fact, the process generating daily prices is usually assumed

More information

Chapter 9: Forecasting

Chapter 9: Forecasting Chapter 9: Forecasting One of the critical goals of time series analysis is to forecast (predict) the values of the time series at times in the future. When forecasting, we ideally should evaluate the

More information

Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be ed to

Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be  ed to TIME SERIES Part III Example Sheet 1 - Solutions YC/Lent 2015 Comments and corrections should be emailed to Y.Chen@statslab.cam.ac.uk. 1. Let {X t } be a weakly stationary process with mean zero and let

More information

ESSE Mid-Term Test 2017 Tuesday 17 October :30-09:45

ESSE Mid-Term Test 2017 Tuesday 17 October :30-09:45 ESSE 4020 3.0 - Mid-Term Test 207 Tuesday 7 October 207. 08:30-09:45 Symbols have their usual meanings. All questions are worth 0 marks, although some are more difficult than others. Answer as many questions

More information

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

Ross Bettinger, Analytical Consultant, Seattle, WA

Ross Bettinger, Analytical Consultant, Seattle, WA ABSTRACT DYNAMIC REGRESSION IN ARIMA MODELING Ross Bettinger, Analytical Consultant, Seattle, WA Box-Jenkins time series models that contain exogenous predictor variables are called dynamic regression

More information

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before.

We will only present the general ideas on how to obtain. follow closely the AR(1) and AR(2) cases presented before. ACF and PACF of an AR(p) We will only present the general ideas on how to obtain the ACF and PACF of an AR(p) model since the details follow closely the AR(1) and AR(2) cases presented before. Recall that

More information

Chapter 6: Model Specification for Time Series

Chapter 6: Model Specification for Time Series Chapter 6: Model Specification for Time Series The ARIMA(p, d, q) class of models as a broad class can describe many real time series. Model specification for ARIMA(p, d, q) models involves 1. Choosing

More information

E 4101/5101 Lecture 6: Spectral analysis

E 4101/5101 Lecture 6: Spectral analysis E 4101/5101 Lecture 6: Spectral analysis Ragnar Nymoen 3 March 2011 References to this lecture Hamilton Ch 6 Lecture note (on web page) For stationary variables/processes there is a close correspondence

More information

FE570 Financial Markets and Trading. Stevens Institute of Technology

FE570 Financial Markets and Trading. Stevens Institute of Technology FE570 Financial Markets and Trading Lecture 5. Linear Time Series Analysis and Its Applications (Ref. Joel Hasbrouck - Empirical Market Microstructure ) Steve Yang Stevens Institute of Technology 9/25/2012

More information

Autoregressive Moving Average (ARMA) Models and their Practical Applications

Autoregressive Moving Average (ARMA) Models and their Practical Applications Autoregressive Moving Average (ARMA) Models and their Practical Applications Massimo Guidolin February 2018 1 Essential Concepts in Time Series Analysis 1.1 Time Series and Their Properties Time series:

More information

TIME SERIES AND FORECASTING. Luca Gambetti UAB, Barcelona GSE Master in Macroeconomic Policy and Financial Markets

TIME SERIES AND FORECASTING. Luca Gambetti UAB, Barcelona GSE Master in Macroeconomic Policy and Financial Markets TIME SERIES AND FORECASTING Luca Gambetti UAB, Barcelona GSE 2014-2015 Master in Macroeconomic Policy and Financial Markets 1 Contacts Prof.: Luca Gambetti Office: B3-1130 Edifici B Office hours: email:

More information

Introduction to ARMA and GARCH processes

Introduction to ARMA and GARCH processes Introduction to ARMA and GARCH processes Fulvio Corsi SNS Pisa 3 March 2010 Fulvio Corsi Introduction to ARMA () and GARCH processes SNS Pisa 3 March 2010 1 / 24 Stationarity Strict stationarity: (X 1,

More information

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test, March 2014

UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test, March 2014 UNIVERSITY OF TORONTO SCARBOROUGH Department of Computer and Mathematical Sciences Midterm Test, March 2014 STAD57H3 Time Series Analysis Duration: One hour and fifty minutes Last Name: First Name: Student

More information

Introduction to Stochastic processes

Introduction to Stochastic processes Università di Pavia Introduction to Stochastic processes Eduardo Rossi Stochastic Process Stochastic Process: A stochastic process is an ordered sequence of random variables defined on a probability space

More information

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models

Module 3. Descriptive Time Series Statistics and Introduction to Time Series Models Module 3 Descriptive Time Series Statistics and Introduction to Time Series Models Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W Q Meeker November 11, 2015

More information

1 Simulating normal (Gaussian) rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions

1 Simulating normal (Gaussian) rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions Copyright c 2007 by Karl Sigman 1 Simulating normal Gaussian rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions Fundamental to many applications

More information

Stochastic Modelling Solutions to Exercises on Time Series

Stochastic Modelling Solutions to Exercises on Time Series Stochastic Modelling Solutions to Exercises on Time Series Dr. Iqbal Owadally March 3, 2003 Solutions to Elementary Problems Q1. (i) (1 0.5B)X t = Z t. The characteristic equation 1 0.5z = 0 does not have

More information

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION

EASTERN MEDITERRANEAN UNIVERSITY ECON 604, FALL 2007 DEPARTMENT OF ECONOMICS MEHMET BALCILAR ARIMA MODELS: IDENTIFICATION ARIMA MODELS: IDENTIFICATION A. Autocorrelations and Partial Autocorrelations 1. Summary of What We Know So Far: a) Series y t is to be modeled by Box-Jenkins methods. The first step was to convert y t

More information

Time Series Analysis -- An Introduction -- AMS 586

Time Series Analysis -- An Introduction -- AMS 586 Time Series Analysis -- An Introduction -- AMS 586 1 Objectives of time series analysis Data description Data interpretation Modeling Control Prediction & Forecasting 2 Time-Series Data Numerical data

More information

On 1.9, you will need to use the facts that, for any x and y, sin(x+y) = sin(x) cos(y) + cos(x) sin(y). cos(x+y) = cos(x) cos(y) - sin(x) sin(y).

On 1.9, you will need to use the facts that, for any x and y, sin(x+y) = sin(x) cos(y) + cos(x) sin(y). cos(x+y) = cos(x) cos(y) - sin(x) sin(y). On 1.9, you will need to use the facts that, for any x and y, sin(x+y) = sin(x) cos(y) + cos(x) sin(y). cos(x+y) = cos(x) cos(y) - sin(x) sin(y). (sin(x)) 2 + (cos(x)) 2 = 1. 28 1 Characteristics of Time

More information

Introduction to Spectral and Time-Spectral Analysis with some Applications

Introduction to Spectral and Time-Spectral Analysis with some Applications Introduction to Spectral and Time-Spectral Analysis with some Applications A.INTRODUCTION Consider the following process X t = U cos[(=3)t] + V sin[(=3)t] Where *E[U] = E[V ] = 0 *E[UV ] = 0 *V ar(u) =

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 9 Jakub Mućk Econometrics of Panel Data Meeting # 9 1 / 22 Outline 1 Time series analysis Stationarity Unit Root Tests for Nonstationarity 2 Panel Unit Root

More information

Review Session: Econometrics - CLEFIN (20192)

Review Session: Econometrics - CLEFIN (20192) Review Session: Econometrics - CLEFIN (20192) Part II: Univariate time series analysis Daniele Bianchi March 20, 2013 Fundamentals Stationarity A time series is a sequence of random variables x t, t =

More information

Lecture 1: Fundamental concepts in Time Series Analysis (part 2)

Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Lecture 1: Fundamental concepts in Time Series Analysis (part 2) Florian Pelgrin University of Lausanne, École des HEC Department of mathematics (IMEA-Nice) Sept. 2011 - Jan. 2012 Florian Pelgrin (HEC)

More information

MCMC analysis of classical time series algorithms.

MCMC analysis of classical time series algorithms. MCMC analysis of classical time series algorithms. mbalawata@yahoo.com Lappeenranta University of Technology Lappeenranta, 19.03.2009 Outline Introduction 1 Introduction 2 3 Series generation Box-Jenkins

More information

Lecture 4a: ARMA Model

Lecture 4a: ARMA Model Lecture 4a: ARMA Model 1 2 Big Picture Most often our goal is to find a statistical model to describe real time series (estimation), and then predict the future (forecasting) One particularly popular model

More information

Financial Time Series Analysis Week 5

Financial Time Series Analysis Week 5 Financial Time Series Analysis Week 5 25 Estimation in AR moels Central Limit Theorem for µ in AR() Moel Recall : If X N(µ, σ 2 ), normal istribute ranom variable with mean µ an variance σ 2, then X µ

More information

Econometrics II Heij et al. Chapter 7.1

Econometrics II Heij et al. Chapter 7.1 Chapter 7.1 p. 1/2 Econometrics II Heij et al. Chapter 7.1 Linear Time Series Models for Stationary data Marius Ooms Tinbergen Institute Amsterdam Chapter 7.1 p. 2/2 Program Introduction Modelling philosophy

More information

STAT 153, FALL 2015 HOMEWORK 1 SOLUTIONS

STAT 153, FALL 2015 HOMEWORK 1 SOLUTIONS STAT 153, FALL 015 HOMEWORK 1 SOLUTIONS Problem 1 (a) A solution in R is provided in Figure 1. We conclude that if δ = 0 the process is a random walk without drift. When δ 0 there is a linear drift with

More information

at least 50 and preferably 100 observations should be available to build a proper model

at least 50 and preferably 100 observations should be available to build a proper model III Box-Jenkins Methods 1. Pros and Cons of ARIMA Forecasting a) need for data at least 50 and preferably 100 observations should be available to build a proper model used most frequently for hourly or

More information

18.S096 Problem Set 4 Fall 2013 Time Series Due Date: 10/15/2013

18.S096 Problem Set 4 Fall 2013 Time Series Due Date: 10/15/2013 18.S096 Problem Set 4 Fall 2013 Time Series Due Date: 10/15/2013 1. Covariance Stationary AR(2) Processes Suppose the discrete-time stochastic process {X t } follows a secondorder auto-regressive process

More information

Non-Stationary Time Series and Unit Root Testing

Non-Stationary Time Series and Unit Root Testing Econometrics II Non-Stationary Time Series and Unit Root Testing Morten Nyboe Tabor Course Outline: Non-Stationary Time Series and Unit Root Testing 1 Stationarity and Deviation from Stationarity Trend-Stationarity

More information

Stochastic Processes

Stochastic Processes Stochastic Processes Stochastic Process Non Formal Definition: Non formal: A stochastic process (random process) is the opposite of a deterministic process such as one defined by a differential equation.

More information

ARMA models with time-varying coefficients. Periodic case.

ARMA models with time-varying coefficients. Periodic case. ARMA models with time-varying coefficients. Periodic case. Agnieszka Wy lomańska Hugo Steinhaus Center Wroc law University of Technology ARMA models with time-varying coefficients. Periodic case. 1 Some

More information

Homework 2 Solutions

Homework 2 Solutions Math 506 Spring 201 Homework 2 Solutions 1. Textbook Problem 2.7: Since {Y t } is stationary, E[Y t ] = µ Y for all t and {Y t } has an autocovariance function γ Y. Therefore, (a) E[W t ] = E[Y t Y t 1

More information

Time Series Econometrics 4 Vijayamohanan Pillai N

Time Series Econometrics 4 Vijayamohanan Pillai N Time Series Econometrics 4 Vijayamohanan Pillai N Vijayamohan: CDS MPhil: Time Series 5 1 Autoregressive Moving Average Process: ARMA(p, q) Vijayamohan: CDS MPhil: Time Series 5 2 1 Autoregressive Moving

More information

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN SOLUTIONS

INSTITUTE AND FACULTY OF ACTUARIES. Curriculum 2019 SPECIMEN SOLUTIONS INSTITUTE AND FACULTY OF ACTUARIES Curriculum 09 SPECIMEN SOLUTIONS Subject CSA Risk Modelling and Survival Analysis Institute and Faculty of Actuaries Sample path A continuous time, discrete state process

More information

Empirical Macroeconomics

Empirical Macroeconomics Empirical Macroeconomics Francesco Franco Nova SBE April 21, 2015 Francesco Franco Empirical Macroeconomics 1/33 Growth and Fluctuations Supply and Demand Figure : US dynamics Francesco Franco Empirical

More information

Ch 6. Model Specification. Time Series Analysis

Ch 6. Model Specification. Time Series Analysis We start to build ARIMA(p,d,q) models. The subjects include: 1 how to determine p, d, q for a given series (Chapter 6); 2 how to estimate the parameters (φ s and θ s) of a specific ARIMA(p,d,q) model (Chapter

More information

Problem Set 1 Solution Sketches Time Series Analysis Spring 2010

Problem Set 1 Solution Sketches Time Series Analysis Spring 2010 Problem Set 1 Solution Sketches Time Series Analysis Spring 2010 1. Construct a martingale difference process that is not weakly stationary. Simplest e.g.: Let Y t be a sequence of independent, non-identically

More information

4. MA(2) +drift: y t = µ + ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2. Mean: where θ(l) = 1 + θ 1 L + θ 2 L 2. Therefore,

4. MA(2) +drift: y t = µ + ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2. Mean: where θ(l) = 1 + θ 1 L + θ 2 L 2. Therefore, 61 4. MA(2) +drift: y t = µ + ɛ t + θ 1 ɛ t 1 + θ 2 ɛ t 2 Mean: y t = µ + θ(l)ɛ t, where θ(l) = 1 + θ 1 L + θ 2 L 2. Therefore, E(y t ) = µ + θ(l)e(ɛ t ) = µ 62 Example: MA(q) Model: y t = ɛ t + θ 1 ɛ

More information