The Big Deal with the Little Higgs

Size: px
Start display at page:

Download "The Big Deal with the Little Higgs"

Transcription

1 The Big Deal with the Little Higgs Jürgen Reuter DESY Theory Group, Hamburg Seminar Dresden, 16.Dec.2005

2 Outline Hierarchy Problem, Goldstone-Bosons and Little Higgs Higgs as Pseudo-Goldstone Boson Nambu-Goldstone Bosons The Little Higgs mechanism Examples of Models Phenomenology For example: Littlest Higgs Neutrino masses Effective Field Theories Electroweak Precision Observables Direct Searches Reconstruction of Little Higgs Models Pseudo Axions in LHM T parity and Dark Matter Conclusions

3 Outline Hierarchy Problem, Goldstone-Bosons and Little Higgs Higgs as Pseudo-Goldstone Boson Nambu-Goldstone Bosons The Little Higgs mechanism Examples of Models Phenomenology For example: Littlest Higgs Neutrino masses Effective Field Theories Electroweak Precision Observables Direct Searches Reconstruction of Little Higgs Models Pseudo Axions in LHM T parity and Dark Matter Conclusions

4 The Higgs Mechanism in the Standard Model Electroweak Theory: SU(2) U(1) gauge theory Q L U = exp[igθ a τ a /2], V = exp[ig θ Y Y/2] ( ) u UQ L, f R f R, W µ UW µ U + i d g ( µu)u L

5 The Higgs Mechanism in the Standard Model Electroweak Theory: SU(2) U(1) gauge theory Q L U = exp[igθ a τ a /2], V = exp[ig θ Y Y/2] ( ) u UQ L, f R f R, W µ UW µ U + i d g ( µu)u L Problem: Mass terms for W, Z and fermions not gauge invariant

6 The Higgs Mechanism in the Standard Model Electroweak Theory: SU(2) U(1) gauge theory Q L U = exp[igθ a τ a /2], V = exp[ig θ Y Y/2] ( ) u UQ L, f R f R, W µ UW µ U + i d g ( µu)u L Problem: Mass terms for W, Z and fermions not gauge invariant Solution: Introduction of a field which absorbs the mismatch of transformation laws: Higgs field

7 The Higgs Mechanism in the Standard Model Electroweak Theory: SU(2) U(1) gauge theory Q L U = exp[igθ a τ a /2], V = exp[ig θ Y Y/2] ( ) u UQ L, f R f R, W µ UW µ U + i d g ( µu)u L Problem: Mass terms for W, Z and fermions not gauge invariant Solution: Introduction of a field which absorbs the mismatch of transformation laws: Higgs field Spontaneous symmetry breaking: Higgs gets a Vacuum Expectation value (VEV): ( ) 0 V(Φ) = µ 2 Φ Φ + λ(φ Φ) 2, Φ exp[iπ/v] v + H D µ Φ M 2 W W 2 a, Y d Q L Φd R m d d L d R

8 Hierarchy Problem M h [GeV] Λ[GeV]

9 Hierarchy Problem M h [GeV] Λ[GeV] Motivation: Hierarchy Problem Effective theories below a scale Λ

10 Hierarchy Problem M h [GeV] Λ[GeV] Motivation: Hierarchy Problem Effective theories below a scale Λ Loop integration cut off at order Λ: Λ 2

11 Hierarchy Problem M h [GeV] Λ[GeV] Motivation: Hierarchy Problem Effective theories below a scale Λ Loop integration cut off at order Λ: Λ 2 Problem: Naturally, m h O(Λ 2 ): m 2 h = m Λ 2 (loop factors) Light Higgs favoured by EW precision observables (m h < 0.5 TeV) m h Λ Fine-Tuning!? Solution: Mechanism for eliminating loop contributions

12 Higgs as Pseudo-Goldstone Boson Invent (approximate) symmetry to protect particle mass Traditional (SUSY): Spin-Statistics = Loops of bosons and fermions

13 Higgs as Pseudo-Goldstone Boson Invent (approximate) symmetry to protect particle mass Traditional (SUSY): Spin-Statistics = Loops of bosons and fermions Little Higgs: Gauge group structure/global Symmetries = Loops of particles of like statistics

14 Higgs as Pseudo-Goldstone Boson Invent (approximate) symmetry to protect particle mass Traditional (SUSY): Spin-Statistics = Loops of bosons and fermions Little Higgs: Gauge group structure/global Symmetries = Loops of particles of like statistics Old Idea: Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984 Light Higgs as Pseudo-Goldstone boson spontaneously broken (approximate) global symmetry; non-linear sigma model w/o Fine-Tuning: v Λ/4π

15 Higgs as Pseudo-Goldstone Boson Invent (approximate) symmetry to protect particle mass Traditional (SUSY): Spin-Statistics = Loops of bosons and fermions Little Higgs: Gauge group structure/global Symmetries = Loops of particles of like statistics Old Idea: Georgi/Pais, 1974; Georgi/Dimopoulos/Kaplan, 1984 Light Higgs as Pseudo-Goldstone boson spontaneously broken (approximate) global symmetry; non-linear sigma model w/o Fine-Tuning: v Λ/4π New Ingredience: Arkani-Hamed/Cohen/Georgi/..., 2001 Collective Symmetry Breaking eliminates quadratic 1-loop level = 3-scale model

16 The Nambu-Goldstone-Theorem Nambu-Goldstone Theorem: For each spontaneously broken global symmetry generator there is a massless boson in the spectrum.

17 The Nambu-Goldstone-Theorem Nambu-Goldstone Theorem: For each spontaneously broken global symmetry generator there is a massless boson in the spectrum. π i iθ a T a ikπ k V π i T a ijπ j = 0 2 V π i π j Tjkf a k + V f π j Tji a = 0 v }{{}}{{} =(m 2 ) ij =0

18 The Nambu-Goldstone-Theorem Nambu-Goldstone Theorem: For each spontaneously broken global symmetry generator there is a massless boson in the spectrum. π i iθ a T a ikπ k V π i T a ijπ j = 0 Nonlinear Realization (Example SU(3) SU(2)): V(Φ) = ( f 2 (Φ Φ) ) [ ( 2 i Φ = exp f 2 V π i π j Tjkf a k + V f π j Tji a = 0 v }{{}}{{} =(m 2 ) ij =0 0 π π π 0 )] ( ) 0 e iπ Φ 0 f + σ

19 The Nambu-Goldstone-Theorem Nambu-Goldstone Theorem: For each spontaneously broken global symmetry generator there is a massless boson in the spectrum. π i iθ a T a ikπ k V π i T a ijπ j = 0 Nonlinear Realization (Example SU(3) SU(2)): V(Φ) = ( f 2 (Φ Φ) ) [ ( 2 i Φ = exp f 2 V π i π j Tjkf a k + V f π j Tji a = 0 v }{{}}{{} =(m 2 ) ij =0 0 π π π 0 Φ U 2 Φ = (U 2 ΦU 2 )U 2Φ 0 = e i(u2πu 2 ) Φ 0 U 2 = )] ( ) 0 e iπ Φ 0 f + σ ) (Û π Û2 π, π 0 π 0 π fundamental SU(2) rep., π 0 singlet

20 Construction of a Little Higgs model π h??

21 Construction of a Little Higgs model π h?? Let s try!

22 Construction of a Little Higgs model π h?? Let s try! Lagrangian has translational symmetry: π π + a (exact) Goldstones have only derivative interactions

23 Construction of a Little Higgs model π h?? Let s try! Lagrangian has translational symmetry: π π + a (exact) Goldstones have only derivative interactions Gauge and Yukawa interactions? Expanding the kinetic term: f 2 Φ 2 = h f 2 (h h) h h h 1 f 2 Λ 2 16π

24 Construction of a Little Higgs model π h?? Let s try! Lagrangian has translational symmetry: π π + a (exact) Goldstones have only derivative interactions Gauge and Yukawa interactions? Expanding the kinetic term: f 2 Φ 2 = h f 2 (h h) h h Theory becomes stronlgy interacting at Λ = 4πf. h 1 f 2 Λ 2 16π Bad news Easy attempts: no potential or quadratic divergences again Collective Symmetry breaking: Two ways of model building: 1. simple Higgs representation, doubled gauge group 2. simple gauge group, doubled Higgs representation

25 Prime Example: Simple Group Model enlarged gauge group: SU(3) U(1); globally U(3) U(2) Two nonlinear Φ representations L = D µ Φ D µ Φ 2 2 [ Φ 1/2 = exp ±i f ] 2/1 Θ f 1/2 0 0 f 1/2 Θ = 1 f f2 2 η 0 0 η h T h η

26 Prime Example: Simple Group Model enlarged gauge group: SU(3) U(1); globally U(3) U(2) Two nonlinear Φ representations L = D µ Φ D µ Φ 2 2 [ Φ 1/2 = exp ±i f ] 2/1 Θ f 1/2 0 0 f 1/2 Θ = 1 f f2 2 η 0 0 η h T h η Coleman-Weinberg mechanism: Radiative generation of potential + = g2 ( 16π 2 Λ2 Φ Φ 2 2) g2 16π 2 f 2

27 Prime Example: Simple Group Model enlarged gauge group: SU(3) U(1); globally U(3) U(2) Two nonlinear Φ representations L = D µ Φ D µ Φ 2 2 [ Φ 1/2 = exp ±i f ] 2/1 Θ f 1/2 0 0 f 1/2 Θ = 1 f f2 2 η 0 0 η h T h η Coleman-Weinberg mechanism: Radiative generation of potential + = g2 ( 16π 2 Λ2 Φ Φ 2 2) g2 16π 2 f 2 but: Φ 1 Φ 1 Φ 2 Φ 2 = g4 16π 2 log ( Λ 2 µ 2 ) Φ 1 Φ 2 2 g4 16π 2 log ( Λ 2 µ 2 ) f 2 (h h)

28 Yukawa interactions and heavy Top Simplest Little Higgs ( µ Model ) Schmaltz (2004), Kilian/Rainwater/JR (2004) Field content (SU(3) c SU(3) w U(1) X quantum numbers) Φ 1,2 : (1, 3) 1 3 Ψ Q : (3, 3) 1 3 Ψ l : (1, 3) 1 3 d c : ( 3, 1) 1 3 c u 1,2 : ( 3, 1) 2 3 e c, n c : (1, 1) 1,0

29 Yukawa interactions and heavy Top Simplest Little Higgs ( µ Model ) Schmaltz (2004), Kilian/Rainwater/JR (2004) Field content (SU(3) c SU(3) w U(1) X quantum numbers) Φ 1,2 : (1, 3) 1 3 Ψ Q : (3, 3) 1 3 Ψ l : (1, 3) 1 3 d c : ( 3, 1) 1 3 c u 1,2 : ( 3, 1) 2 3 e c, n c : (1, 1) 1,0 Lagrangian L = L kin. + L Yuk. + L pot. Ψ Q,L = (u, d, U) L, Ψ l = (ν, l, N) L : L Yuk. = λ u 1u 1,R Φ 1 Ψ T,L λ u 2u 2,R Φ 2 Ψ T,L λd Λ ɛijk d b RΦ i 1Φ j 2 Ψk T,L λ n n 1,R Φ 1 Ψ Q,L λe Λ ɛijk e R Φ i 1Φ j 2 Ψk Q,L + h.c.,

30 Yukawa interactions and heavy Top Simplest Little Higgs ( µ Model ) Schmaltz (2004), Kilian/Rainwater/JR (2004) Field content (SU(3) c SU(3) w U(1) X quantum numbers) Φ 1,2 : (1, 3) 1 3 Ψ Q : (3, 3) 1 3 Ψ l : (1, 3) 1 3 d c : ( 3, 1) 1 3 c u 1,2 : ( 3, 1) 2 3 e c, n c : (1, 1) 1,0 Lagrangian L = L kin. + L Yuk. + L pot. Ψ Q,L = (u, d, U) L, Ψ l = (ν, l, N) L : L Yuk. = λ u 1u 1,R Φ 1 Ψ T,L λ u 2u 2,R Φ 2 Ψ T,L λd Λ ɛijk d b RΦ i 1Φ j 2 Ψk T,L λ n n 1,R Φ 1 Ψ Q,L λe Λ ɛijk e R Φ i 1Φ j 2 Ψk Q,L + h.c., L pot. = µ 2 Φ 1 Φ 2 + h.c.

31 Yukawa interactions and heavy Top Simplest Little Higgs ( µ Model ) Schmaltz (2004), Kilian/Rainwater/JR (2004) Field content (SU(3) c SU(3) w U(1) X quantum numbers) Φ 1,2 : (1, 3) 1 3 Ψ Q : (3, 3) 1 3 Ψ l : (1, 3) 1 3 d c : ( 3, 1) 1 3 c u 1,2 : ( 3, 1) 2 3 e c, n c : (1, 1) 1,0 Lagrangian L = L kin. + L Yuk. + L pot. Ψ Q,L = (u, d, U) L, Ψ l = (ν, l, N) L : L Yuk. = λ u 1u 1,R Φ 1 Ψ T,L λ u 2u 2,R Φ 2 Ψ T,L λd Λ ɛijk d b RΦ i 1Φ j 2 Ψk T,L λ n n 1,R Φ 1 Ψ Q,L λe Λ ɛijk e R Φ i 1Φ j 2 Ψk Q,L + h.c., L pot. = µ 2 Φ 1 Φ 2 + h.c. Hypercharge embedding (remember: diag(1, 1, 2)/(2 3)): Y = X T 8 / 3 D µ Φ = ( µ 1 3 g XB X µ Φ + igw w µ )Φ

32 Cancellations of Divergencies in Yukawa sector λ t λ t + λt λ T + λ T /f

33 Cancellations of Divergencies in Yukawa sector + + λ t λ t λt λ T λ T /f d 4 k 1 { (2π) 4 k 2 (k 2 m 2 T ) λ 2 t (k 2 m 2 T ) + k 2 λ 2 T m T F λ T k 2}

34 Cancellations of Divergencies in Yukawa sector + + λ t λ t λt λ T λ T /f d 4 k 1 { (2π) 4 k 2 (k 2 m 2 T ) λ 2 t (k 2 m 2 T ) + k 2 λ 2 T m T F λ T k 2} Little Higgs global symmetry imposes relation m T F = λ2 t + λ 2 T λ T

35 Cancellations of Divergencies in Yukawa sector + + λ t λ t λt λ T λ T /f d 4 k 1 { (2π) 4 k 2 (k 2 m 2 T ) λ 2 t (k 2 m 2 T ) + k 2 λ 2 T m T F λ T k 2} Little Higgs global symmetry imposes relation m T F = λ2 t + λ 2 T λ T = Quadratic divergence cancels

36 Cancellations of Divergencies in Yukawa sector + + λ t λ t λt λ T λ T /f d 4 k 1 { (2π) 4 k 2 (k 2 m 2 T ) λ 2 t (k 2 m 2 T ) + k 2 λ 2 T m T F λ T k 2} Little Higgs global symmetry imposes relation m T F = λ2 t + λ 2 T λ T = Quadratic divergence cancels Collective Symm. breaking: λ t λ 1 λ 2, λ 1 = 0 Φ 1 Φ 2 or λ 2 = 0 SU(3) Ψ Q Ψ Q λ2 1λ 2 2 [SU(3)] 2 16π 2 log Φ 1 Φ 1 u c 1 u c 2 ( Λ 2 µ 2 ) Φ 1 Φ 2 2

37 Scales and Masses µ O(10 TeV) O(1 TeV) O(250 GeV) F v Λ Scale Λ: global SB, new dynamics, UV embedding Scale F : Pseudo-Goldstone bosons, new vector bosons and fermions Scale v: Higgs, W ±, Z, l ±,...

38 Scales and Masses µ O(10 TeV) O(1 TeV) O(250 GeV) F v Λ Scale Λ: global SB, new dynamics, UV embedding Scale F : Pseudo-Goldstone bosons, new vector bosons and fermions Scale v: Higgs, W ±, Z, l ±,... Boson masses radiative (Coleman-Weinberg), but: Higgs protected by symmetries against quadratic 1-loop level

39 Scales and Masses µ O(10 TeV) O(1 TeV) O(250 GeV) F v Λ Scale Λ: global SB, new dynamics, UV embedding Scale F : Pseudo-Goldstone bosons, new vector bosons and fermions Scale v: Higgs, W ±, Z, l ±,... H H 0 Boson masses radiative (Coleman-Weinberg), but: Higgs protected by symmetries against quadratic 1-loop level G 1 G 1 [H G 2 G 1 1, H 2 ] 0 g 1 0 g 2 0 /H 1 H /H 2 H M H g 1 g 2 Λ/16π 2

40 Generic properties Extended scalar (Higgs-) sector Extended global symmetry

41 Generic properties Extended scalar (Higgs-) sector Extended global symmetry Specific form of the potential: V(h, Φ) = C 1 F 2 Φ + i 2 F h h + C 2 F 2 Φ i 2 F h h h 1-loop level, h = v, M h v, M Φ F, i Φ v 2 /F h and Φ mix

42 Generic properties Extended scalar (Higgs-) sector Extended global symmetry Specific form of the potential: V(h, Φ) = C 1 F 2 Φ + i 2 F h h + C 2 F 2 Φ i 2 F h h h 1-loop level, h = v, M h v, M Φ F, i Φ v 2 /F h and Φ mix Extended Gauge Sector : B, Z, W ± (Hypercharge singlets & triplets)

43 Generic properties Extended scalar (Higgs-) sector Extended global symmetry Specific form of the potential: V(h, Φ) = C 1 F 2 Φ + i 2 F h h + C 2 F 2 Φ i 2 F h h h 1-loop level, h = v, M h v, M Φ F, i Φ v 2 /F h and Φ mix Extended Gauge Sector : B, Z, W ± (Hypercharge singlets & triplets) Extended top sector: new heavy quarks, t, t loops M 2 h < 0 EWSB

44 Outline Hierarchy Problem, Goldstone-Bosons and Little Higgs Higgs as Pseudo-Goldstone Boson Nambu-Goldstone Bosons The Little Higgs mechanism Examples of Models Phenomenology For example: Littlest Higgs Neutrino masses Effective Field Theories Electroweak Precision Observables Direct Searches Reconstruction of Little Higgs Models Pseudo Axions in LHM T parity and Dark Matter Conclusions

45 Little Higgs Models Plethora of Little Higgs Models in 3 categories: Moose Models Orig. Moose (Arkani-Hamed/Cohen/Georgi, ) Simple Moose (Arkani-Hamed/Cohen/Katz/Nelson/Gregoire/Wacker, ) Linear Moose (Casalbuoni/De Curtis/Dominici, ) Simple (Goldstone) Representation Models Littlest Higgs (Arkani-Hamed/Cohen/Katz/Nelson, ) Antisymmetric Little Higgs (Low/Skiba/Smith, ) Custodial SU(2) Little Higgs (Chang/Wacker, ) Littlest Custodial Higgs (Chang, ) Little SUSY (Birkedal/Chacko/Gaillard, ) Simple (Gauge) Group Models Orig. Simple Group Model (Kaplan/Schmaltz, ) Holographic Little Higgs (Contino/Nomura/Pomarol, ) Simplest Little Higgs (Schmaltz, ) Simplest Little SUSY (Roy/Schmaltz, ) Simplest T parity (Kilian/Rainwater/JR/Schmaltz,...)

46 Varieties of Particle spectra H = SU(5) [SU(2) U(1)]2, G = SO(5) SU(2) U(1) Arkani-Hamed/Cohen/Katz/Nelson, 2002 m Φ Φ ± Φ ±± Z W ± T Φ P B h W ± Z t

47 Varieties of Particle spectra H = SU(5) [SU(2) U(1)]2, G = SO(5) SU(2) U(1) Arkani-Hamed/Cohen/Katz/Nelson, 2002 H = SO(6) [SU(2) U(1)]2, G = Sp (6) SU(2) U(1) Low/Skiba/Smith, 2002 m Φ Φ ± Φ ±± Z W ± T m Φ Φ P Z W ± B T h Φ P B W ± Z t H ± h A H W ± Z t

48 Varieties of Particle spectra H = SU(5) [SU(2) U(1)]2, G = SO(5) SU(2) U(1) Arkani-Hamed/Cohen/Katz/Nelson, 2002 H = SO(6) [SU(2) U(1)]2, G = Sp (6) SU(2) U(1) Low/Skiba/Smith, 2002 m Φ Φ ± Φ ±± Z W ± T m Φ Φ P Z B W ± T h Φ P B W ± H = [SU(3)]2 SU(3) U(1), G = [SU(2)] 2 SU(2) U(1) Schmaltz, 2004 [SU(4)] 4 [SU(3)] 4 Z t m = H ± h A H Z X 0 /Y 0 W ± Z t ± W T U, C Kaplan/Schmaltz, HDM, h 1/2, Φ 1,2,3, Φ P 1,2,3, Z 1,...,8, W ± 1,2, q, l h η W ± Z t

49 Outline Hierarchy Problem, Goldstone-Bosons and Little Higgs Higgs as Pseudo-Goldstone Boson Nambu-Goldstone Bosons The Little Higgs mechanism Examples of Models Phenomenology For example: Littlest Higgs Neutrino masses Effective Field Theories Electroweak Precision Observables Direct Searches Reconstruction of Little Higgs Models Pseudo Axions in LHM T parity and Dark Matter Conclusions

50 The Littlest Higgs Model Setup Symmetry breaking: SU(5) SO(5) (global) [SU(2) U(1)] 2 SU(2) L U(1) Y (local) 1 heavy triplet X µ, 1 heavy singlet Y µ

51 The Littlest Higgs Model Setup Symmetry breaking: SU(5) SO(5) (global) [SU(2) U(1)] 2 SU(2) L U(1) Y (local) The unbroken Lagrangian: L = L (3) 0 + L (1) 0 + L G 0. 1 heavy triplet X µ, 1 heavy singlet Y µ L (3) 0 = 1 2g1 2 Tr A 1µν A µν 1 1 2g2 2 Tr A 2µν A µν 2 2 tr A µ 1 J (3) µ L (1) 0 = 1 2g 2 1 Gauge group generators: T1 a = 1 τ a 0, T2 a = Tr B 1µν B µν 1 1 2g 2 2 Tr B 2µν B µν 2 B µ 1 J (1) µ. 0 τ a, Y 1 = 1 10 diag(3, 3, 2, 2, 2) Y 2 = 1 10 diag(2, 2, 2, 3, 3)

52 The Littlest Higgs Model Setup Symmetry breaking: SU(5) SO(5) (global) [SU(2) U(1)] 2 SU(2) L U(1) Y (local) The unbroken Lagrangian: L = L (3) 0 + L (1) 0 + L G 0. 1 heavy triplet X µ, 1 heavy singlet Y µ L (3) 0 = 1 2g1 2 Tr A 1µν A µν 1 1 2g2 2 Tr A 2µν A µν 2 2 tr A µ 1 J (3) µ L (1) 0 = 1 2g 2 1 Gauge group generators: T1 a = 1 τ a 0, T2 a = Tr B 1µν B µν 1 1 2g 2 2 Tr B 2µν B µν 2 B µ 1 J (1) µ. 0 τ a, Y 1 = 1 10 diag(3, 3, 2, 2, 2) Y 2 = 1 10 diag(2, 2, 2, 3, 3) Triplet current: J (3) µ = J (3),a τ a µ 2 Singlet current: J (1) µ Couplings not unique, but: (Anomaly cancellation!)

53 L G 0 = F 2 ( 8 Tr(D µξ)(d µ Ξ), Ξ = exp 2i ) F Π Ξ 0, Ξ 0 = Π = 1 0 h φ ( ) h 0 h T 2 Φ ++ Φ +, φ = 2 φ h Φ +. Φ 0 + iφ 1 0

54 L G 0 = F 2 ( 8 Tr(D µξ)(d µ Ξ), Ξ = exp 2i ) F Π Ξ 0, Ξ 0 = Π = 1 0 h φ ( ) h 0 h T 2 Φ ++ Φ +, φ = 2 φ h Φ +. Φ 0 + iφ 1 0 Covariant derivative: D µ Ξ = µ Ξ + i k=1,2 [ ] (A µ k Ξ + Ξ(A µ k ) T ) + (B µ k Ξ + Ξ(B µ k ) T )

55 L G 0 = F 2 ( 8 Tr(D µξ)(d µ Ξ), Ξ = exp 2i ) F Π Ξ 0, Ξ 0 = Π = 1 0 h φ ( ) h 0 h T 2 Φ ++ Φ +, φ = 2 φ h Φ +. Φ 0 + iφ 1 0 Covariant derivative: D µ Ξ = µ Ξ + i k=1,2 [ ] (A µ k Ξ + Ξ(A µ k ) T ) + (B µ k Ξ + Ξ(B µ k ) T ) Chiral fields: Q R : b R, t R, T R, and Q L : q L = ( tl b L ), T L, L t = Q Qi /DQ + L Y λ 2 F ( T L T R + h.c.).

56 L G 0 = F 2 ( 8 Tr(D µξ)(d µ Ξ), Ξ = exp 2i ) F Π Ξ 0, Ξ 0 = Π = 1 0 h φ ( ) h 0 h T 2 Φ ++ Φ +, φ = 2 φ h Φ +. Φ 0 + iφ 1 0 Covariant derivative: D µ Ξ = µ Ξ + i k=1,2 [ ] (A µ k Ξ + Ξ(A µ k ) T ) + (B µ k Ξ + Ξ(B µ k ) T ) Chiral fields: Q R : b R, t R, T R, and Q L : q L = ( tl b L ), T L, L t = Q Qi /DQ + L Y λ 2 F ( T L T R + h.c.). Use a global SU(3) subsymmetry iτ 2 T L iq L 0 χ L = iq T L 0 0 L Y = λ 1 F t R Tr [ Ξ (it2 2 )Ξ ] ˆχ L + h.c

57 Neutrino masses Kilian/JR, 2003; del Aguila et al., 2004; Han/Logan/Wang, 2005 Naturalness does not require cancellation mechanism for light fermions Lepton-number violating interactions can generate neutrino masses (due to presence of triplet scalars)

58 Neutrino masses Kilian/JR, 2003; del Aguila et al., 2004; Han/Logan/Wang, 2005 Naturalness does not require cancellation mechanism for light fermions Lepton-number violating interactions can generate neutrino masses (due to presence of triplet scalars) Lagrangian invariant under full gauge symmetry L N = g N F ( L c ) T ΞL with L = (iτ 2 l L, 0, 0) T EWSB: Generation of neutrino masses m ν g N v 2 /F

59 Neutrino masses Kilian/JR, 2003; del Aguila et al., 2004; Han/Logan/Wang, 2005 Naturalness does not require cancellation mechanism for light fermions Lepton-number violating interactions can generate neutrino masses (due to presence of triplet scalars) Lagrangian invariant under full gauge symmetry L N = g N F ( L c ) T ΞL with L = (iτ 2 l L, 0, 0) T EWSB: Generation of neutrino masses m ν g N v 2 /F Caveat: m ν too large compared to observations g N small, e.g. F /Λ, where Λ : scale of lepton number breaking

60 Heavy Vector Fields Mixing of the gauge fields: A µ 1 = W µ + g X c 2 X µ, B µ 1 = B µ + g Y c 2 Y µ, A µ 2 = W µ g X s 2 X µ, B µ 2 = B µ g Y s 2 Y µ,

61 Heavy Vector Fields Mixing of the gauge fields: A µ 1 = W µ + g X c 2 X µ, B µ 1 = B µ + g Y c 2 Y µ, A µ 2 = W µ g X s 2 X µ, B µ 2 = B µ g Y s 2 Y µ, Expand the Goldstone Lagrangian L G 0 = MX 2 c 2 s 2 tr X X + g X tr[x V (3) ] M Y 2 c 2 s 2 Y Y + g Y Y V (1) tr(d µφ) (D µ φ) + (D µ h) (D µ h) 1 [ 6F 2 tr V (3) V (3)] +...,

62 Heavy Vector Fields Mixing of the gauge fields: A µ 1 = W µ + g X c 2 X µ, B µ 1 = B µ + g Y c 2 Y µ, A µ 2 = W µ g X s 2 X µ, B µ 2 = B µ g Y s 2 Y µ, Expand the Goldstone Lagrangian L G 0 = MX 2 c 2 s 2 tr X X + g X tr[x V (3) ] M Y 2 c 2 s 2 Y Y + g Y Y V (1) tr(d µφ) (D µ φ) + (D µ h) (D µ h) 1 [ 6F 2 tr V (3) V (3)] +..., Heavy vector masses: M X = g X F /2 M Y = g Y F /(2 5) Higgs current V µ = i [ h(d µ h) (D µ h)h ] 1 0 : V (1) = tr V, 3 0 : V (3) = V 1 2 tr V.

63 Effective Field Theories How to clearly separate effects of heavy degrees of freedom?

64 Effective Field Theories How to clearly separate effects of heavy degrees of freedom? Toy model: Two interacting scalar fields ϕ, Φ [ ( ) ] 1 Z[j, J] = D[Φ] D[ϕ] exp i dx 2 ( ϕ)2 1 2 Φ( +M 2 )Φ λϕ 2 Φ...+JΦ+jϕ Low-energy effective theory integrating out heavy degrees of freedom (DOF) in path integrals, set up Power Counting

65 Effective Field Theories How to clearly separate effects of heavy degrees of freedom? Toy model: Two interacting scalar fields ϕ, Φ [ ( ) ] 1 Z[j, J] = D[Φ] D[ϕ] exp i dx 2 ( ϕ)2 1 2 Φ( +M 2 )Φ λϕ 2 Φ...+JΦ+jϕ Low-energy effective theory integrating out heavy degrees of freedom (DOF) in path integrals, set up Power Counting Completing the square: Φ = Φ + λ ( ) 1 M M 2 ϕ ( Φ)2 1 2 M 2 Φ 2 λϕ 2 Φ = 1 ) 1 2 Φ (M )Φ + (1 λ2 2M 2 ϕ2 + 2 M 2 ϕ 2.

66 Integrating out Integrating out the X and Y vector fields L (1) + L (3) = L EW g,gf + f (3) JJ tr[j (3) J (3) ] + f (3) V J tr[v (3) J (3) ] + f (1) V V tr[v (3) V (3) ] + f (1) JJ J (1) J (1) + f (1) V J V (1) J (1) + f (1) V V V (1) V (1) In the Littlest Higgs e.g. f (3) V V = 1 (1 6F ) (c2 s 2 ) 2

67 Integrating out Integrating out the X and Y vector fields L (1) + L (3) = L EW g,gf + f (3) JJ tr[j (3) J (3) ] + f (3) V J tr[v (3) J (3) ] + f (1) V V tr[v (3) V (3) ] + f (1) JJ J (1) J (1) + f (1) V J V (1) J (1) + f (1) V V V (1) V (1) In the Littlest Higgs e.g. f (3) V V = 1 (1 6F ) (c2 s 2 ) 2 Coleman-Weinberg potential of the scalar 1-loop: L CW 0 = 1 2 M 2 φ tr[φφ ] + µ 2 (h h) λ 4 (h h) 2 λ 2φ i ( h φh h T φ h ) λ 2φφ tr[(φφ )(hh )] λ 4φ i(h h) ( h φh h T φ h ) λ 6 (h h) 3 Sensitive to UV completion, dimensionless parameters k and k. EWSB Constraints on k, k

68 Integrate out the heavy scalar (Power counting!) φ = φ 2iλ 2φ M 2 φ ( 1 + D2 M 2 φ ) 1 + 2λ ( 2φφ Mφ 2 hh 1 + λ ) 4φ h h hh T λ 2φ Higgs mass up to order v 4 /F 2 m 2 H = 2λeff 4 v2! = 2v 2 e 2 s + e2 k 2 w c2 c 2 w c 2 e 2 s 2 w s2 + e2 c 2 w s 2! e 2 s 2 w s2 c + e 2 2 c 2 w s 2 c 2 k + λ2 t c 2 k t! k + λ2 t c 2 k t (Remember µ 2 = m 2 H /2) EWSB λ eff 4 > 0 λ2 2φ M 4 φ < 1 8F 2

69 Equations of Motion (EOM) Couplings V J induce after SSB anom. couplings of W, Z to fermions Applying EOM eliminates corrections from field redefinitions

70 Equations of Motion (EOM) Couplings V J induce after SSB anom. couplings of W, Z to fermions Applying EOM eliminates corrections from field redefinitions Custodial-SU(2) Conserving Terms 0 = tr[v (3) δl µ ] = tr[v (3) V (3) ] 2 δw µ g 2 tr[v (3) µd ν W µν ] 2 tr[v (3) J (3) ] L (3) = L EW g,gf + f (3) JJ O(3) JJ + f V W O V W + f (3) V V O(3) V V O V W = tr V (3) µνw µν, O (3) JJ = tr J (3) J (3), O (3) V V = tr V (3) V (3)

71 Equations of Motion (EOM) Couplings V J induce after SSB anom. couplings of W, Z to fermions Applying EOM eliminates corrections from field redefinitions Custodial-SU(2) Conserving Terms 0 = tr[v (3) δl µ ] = tr[v (3) V (3) ] 2 δw µ g 2 tr[v (3) µd ν W µν ] 2 tr[v (3) J (3) ] L (3) = L EW g,gf + f (3) JJ O(3) JJ + f V W O V W + f (3) V V O(3) V V O V W = tr V (3) µνw µν, O (3) JJ = tr J (3) J (3), O (3) V V = tr V (3) V (3) Custodial-SU(2) Violating Terms L (1) = L EW g,gf + f (1) JJ O(1) JJ + f V B O V B + f (1) V V O(1) V V

72 Effective Dim. 6 Operators O (I) JJ = 1 F 2 tr[j (I) J (I) ] O h,1 = 1 F 2 ( (Dh) h ) (h (D h ) ) v2 2 Dh 2 O hh = 1 F 2 (h h v 2 /2) (Dh) (Dh) O h,3 = 1 F (h h v 2 /2) 3

73 O W W = 1 F (h h v 2 /2) tr W µν W µν O B = 1 F 2 i 2 (D µh) (D ν h)b µν O BB = 1 F (h h v 2 /2)B µν B µν O V q = 1 qh( /Dh)q F 2

74 Oblique Corrections: S, T, U All low-energy effects order v 2 /F 2 Low-energy observables parameterized by S, T, 2 parameters for contact interactions (no U here) O V W, O V B Change in gauge couplings g and g g = e s w [ 1 + M 2 W (f V W + 2f V B ) ] g = e c w [ 1 + [M 2 Z M 2 W ](f V W + 2f V B ) ]

75 Oblique Corrections: S, T, U All low-energy effects order v 2 /F 2 Low-energy observables parameterized by S, T, 2 parameters for contact interactions (no U here) O V W, O V B Change in gauge couplings g and g g = e s w [ 1 + M 2 W (f V W + 2f V B ) ] g = e c w [ 1 + [M 2 Z M 2 W ](f V W + 2f V B ) ] S parameter (O V W, O V B ) SU(2) c -violating sector (O h,1 ) S = 8πv 2 (f V W + 2f V B ) α T = M 2 W /M 2 W = 2v 2 f (1) V V 2v2 λ 2 2φ M 4 φ

76 Shift in physical vector masses: ( ) 2 ( ) 2 ev ev MW 2 = (1 + x) MZ 2 = (1 + y) 2s w 2s w c w x = α ( S/(4s 2 w) + T ) y = α S/(4s 2 wc 2 w)

77 Shift in physical vector masses: ( ) 2 ( ) 2 ev ev MW 2 = (1 + x) MZ 2 = (1 + y) 2s w 2s w c w x = α ( S/(4s 2 w) + T ) y = α S/(4s 2 wc 2 w) Very low energies Fermi theory Four-Fermion Interactions 2 GF = 1 v2 (1 + z) with z = α T v2 4 f (3) JJ.

78 Shift in physical vector masses: ( ) 2 ( ) 2 ev ev MW 2 = (1 + x) MZ 2 = (1 + y) 2s w 2s w c w x = α ( S/(4s 2 w) + T ) y = α S/(4s 2 wc 2 w) Very low energies Fermi theory Four-Fermion Interactions 2 GF = 1 v2 (1 + z) with z = α T v2 4 f (3) JJ. G F -M Z -α scheme (muon decay, LEP I, Bhabha), define the parameters ˆv 0 and ŝ 0 by s 2 w = ŝ 2 0 ˆv 0 = ( 2 G F ) 1/2 and M Z = eˆv 0 = 2ŝ 0 ĉ 0 ( ) ( ) 1 + ĉ2 0 ĉ 2 0 (y + z) c 2 ŝ2 w = ĉ ŝ2 0 0 ĉ 2 0 (y + z) ŝ2 0

79 Constraints on LHM Constraints from contact IA: ( f (3) JJ, f (1) JJ ) c2 F /4.5 TeV c 2 F /10 TeV Constraints evaded c, c 1 B, Z, W, ± superheavy (O(Λ)) decouple from fermions

80 Constraints on LHM Constraints from contact IA: ( f (3) JJ, f (1) JJ ) c2 F /4.5 TeV c 2 F /10 TeV Constraints evaded c, c 1 B, Z, W, ± superheavy (O(Λ)) decouple from fermions S, T in the Littlest Higgs model, violation of Custodial SU(2): Csáki et al., 2002; Hewett et al., 2002; Han et al., 2003; Kilian/JR, 2003 Mixing of (Z, B, Z ) and (W ±, W ± ) S [ 8π = c 2 (c 2 s 2 ) g +5 c 2 (c 2 s 2 ) 2 ] v 2 g 2 F 2 0 α T 5 4 v 2 F 2v2 λ 2 2φ 2 Mφ 4 v2 F 2

81 Constraints on LHM Constraints from contact IA: ( f (3) JJ, f (1) JJ ) c2 F /4.5 TeV c 2 F /10 TeV Constraints evaded c, c 1 B, Z, W, ± superheavy (O(Λ)) decouple from fermions S, T in the Littlest Higgs model, violation of Custodial SU(2): Csáki et al., 2002; Hewett et al., 2002; Han et al., 2003; Kilian/JR, 2003 Mixing of (Z, B, Z ) and (W ±, W ± ) S [ 8π = c 2 (c 2 s 2 ) g +5 c 2 (c 2 s 2 ) 2 ] v 2 g 2 F 2 0 α T 5 4 v 2 F 2v2 λ 2 2φ 2 Mφ 4 v2 F 2 General models Triplet sector: (almost) identical to Littlest Higgs ( S only) More freedom in U(1) sector: ( T )

82 EW Precision Observables T 0.6 LHM F = 3.5 TeV Higgs mass variable (Coleman-Weinberg, UV completion) m H = 700 GeV 400 GeV 250 GeV 120 GeV SM LHM F = 4.5 TeV S S = 1 12π ln m2 H m 2 0 T = 3 16πc 2 ln m2 H w m 2 0 Peskin/Takeuchi, 1992; Hagiwara et al., 1992 Making the Higgs heavier reduces amount of fine-tuning

83 Direct Searches Heavy Gauge Bosons: Detection: Resonance in e + e f f, Drell-Yan Tevatron: M B 650 GeV

84 Direct Searches Heavy Gauge Bosons: Detection: Resonance in e + e f f, Drell-Yan Tevatron: M B 650 GeV Branching ratios Z BR(Z ->ll) BR(Z ->qq) BR(Z ->WW,Zh) Total width Z, fixed M Z : Γ Z = g2 ( cot 2 2φ + 24 tan 2 φ ) M Z 96π Determination of F, c, s O(10 2 ) lepton LHC w. 300 fb 1

85 Heavy Scalars: Φ P : e + e, q q Φ P h, Φ P hz L Φ ± : e + e, q q Φ + W L, Φ± W LZ L Φ ±± : e e ννφ, Φ ±± W L W L Φ 0 : e + e, q q Z LΦ, Φ Z LZ L, hh, not W + W

86 Heavy Scalars: Φ P : e + e, q q Φ P h, Φ P hz L Φ ± : e + e, q q Φ + W L, Φ± W LZ L Φ ±± : e e ννφ, Φ ±± W L W L Φ 0 : e + e, q q Z LΦ, Φ Z LZ L, hh, not W + W Heavy Quarks: T LHC: bq T q Decay T W + L b, th, tz Perelstein/Peskin/Pierce, 2003 Total cross section BRs (limit g 0): Γ T = m T λ 2 T /(16π) Γ(T th) Γ(T tz) 1 2 Γ(T bw + ) m T λ 2 T 64π Determination of m T, λ T

87 Reconstruction of LHM Kilian/JR, 2003; Han et al., 2005 How to unravel the structure of colliders? Symmetry structure Quadr. Div. Cancell. Nonlinear Goldstone boson structure

88 Reconstruction of LHM Kilian/JR, 2003; Han et al., 2005 How to unravel the structure of colliders? Symmetry structure Quadr. Div. Cancell. Nonlinear Goldstone boson structure SIGNALS: Anom. Triple Gauge Couplings: W W Z, W W γ Anom. Higgs Coupl.: H(H)W W, H(H)ZZ Anom. Top Couplings: ttz, tbw

89 Reconstruction of LHM Kilian/JR, 2003; Han et al., 2005 How to unravel the structure of colliders? Symmetry structure Quadr. Div. Cancell. Nonlinear Goldstone boson structure SIGNALS: Anom. Triple Gauge Couplings: W W Z, W W γ Anom. Higgs Coupl.: H(H)W W, H(H)ZZ Anom. Top Couplings: ttz, tbw Direct Search (LHC) M V, F, c, c Vectors: ILC: Contact Terms e + e l + l, [ν νγ] M B 10[5] TeV Higgsstr., WW fusion: HZff, HW ff angular distr./energy dependence f (1/3) V J Check from TGC (ILC: per mil precision), GigaZ f (3) JJ Combining Determination of all coefficients in the gauge sector

90 Scalars: Affected by scalars and vectors T, f (1) V V, B known (λ 2φ /M 2 φ) 2 Higgsstr., W W fusion Higgs coupl., f (3) V V Higgs BRs f (1) V V, f (3) V V ; (take care of t) Goldstone contr. Evidence for nonlinear nature f (3) V V HH production f h,3 (difficult!) LHC ILC 1-2 % Higgs measurements Reconstruction of scalar sector up to F 2 TeV

91 Scalars: Affected by scalars and vectors T, f (1) V V, B known (λ 2φ /M 2 φ) 2 Higgsstr., W W fusion Higgs coupl., f (3) V V Higgs BRs f (1) V V, f (3) V V ; (take care of t) Goldstone contr. Evidence for nonlinear nature f (3) V V HH production f h,3 (difficult!) LHC ILC 1-2 % Higgs measurements Reconstruction of scalar sector up to F 2 TeV Direct LHC Top: t t production f V q, v t, a t; accuracy 1-2 % tbw from t decays, single t production g tth/g bbh anom. Yukawa coupl. f hq, nonlin. structure w. 2.5% accuracy

92 Scalars: Affected by scalars and vectors T, f (1) V V, B known (λ 2φ /M 2 φ) 2 Higgsstr., W W fusion Higgs coupl., f (3) V V Higgs BRs f (1) V V, f (3) V V ; (take care of t) Goldstone contr. Evidence for nonlinear nature f (3) V V HH production f h,3 (difficult!) LHC ILC 1-2 % Higgs measurements Reconstruction of scalar sector up to F 2 TeV Direct LHC Top: t t production f V q, v t, a t; accuracy 1-2 % tbw from t decays, single t production g tth/g bbh anom. Yukawa coupl. f hq, nonlin. structure w. 2.5% accuracy Include all observables in a combined fit if Little Higgs signals are found (sufficient data from LHC and ILC)

93 Pseudo Axions in LHM Kilian/Rainwater/JR, 2004 broken diagonal generator: η in QCD; couples to fermions as a pseudoscalar, behaves as a axion analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion

94 Pseudo Axions in LHM Kilian/Rainwater/JR, 2004 broken diagonal generator: η in QCD; couples to fermions as a pseudoscalar, behaves as a axion analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion QCD-(PQ) axion: α s L Ax. = 1 Λ 8π A 2 g ηg Gµν µν, Gµν = 1 2 ɛµνρσ G ρσ Anomalous U(1) η :

95 Pseudo Axions in LHM Kilian/Rainwater/JR, 2004 broken diagonal generator: η in QCD; couples to fermions as a pseudoscalar, behaves as a axion analogous particles: techni-axion, topcolor-axion, (N)MSSM-axion QCD-(PQ) axion: α s L Ax. = 1 Λ 8π A 2 g ηg Gµν µν, Gµν = 1 2 ɛµνρσ G ρσ Anomalous U(1) η : explicit symmetry breaking m η and g ηγγ independent axion bounds not applicable no new hierarchy problem m η v 250 GeV η EW singlet, couplings an to SM particles v/f suppressed

96 Example: Simple Group Model Scalar Potential: µφ 1 Φ 2 + h.c. + Coleman-Weinberg pot.: m η = κ µ 2 µ m 2 H = 2(δm 2 + m 2 η)

97 Example: Simple Group Model Scalar Potential: µφ 1 Φ 2 + h.c. + Coleman-Weinberg pot.: m η = κ µ 2 µ m 2 H = 2(δm 2 + m 2 η) 1 b b BR [η] new Higgs decays (H Zη, H ηη) 0.1 τ + τ BR(H ηη) < 10 4 [ 5 10% OSG] c c gg γγ µ + µ Zh m η [GeV] m H [GeV] m η [GeV] BR(Zη) % % % % % %

98 Pseudo Axions at LHC and ILC LHC: Gluon Fusion (axial U(1) η anomaly), Peak in diphoton spectrum

99 Pseudo Axions at LHC and ILC LHC: Gluon Fusion (axial U(1) η anomaly), Peak in diphoton spectrum ILC: associated production σ tot [fb] e + e t tη s = 1 TeV Problem: Cross section vs. bkgd e e + t tb b #evt/2 GeV s = 800 GeV L = 1 ab 1 g ttη = g ttη = m η = 50 GeV m η [GeV] M inv (b b) [GeV] Possibility: Z Hη (analogous to A in 2HDM) Kilian/JR/Rainwater (in prep.)

100 Pseudo Axions at the Photon Collider Photon Collider as precision machine for Higgs physics (s channel resonance, anomaly coupling) S/B analogous to LC η in the µ model with (almost) identical parameters as A in MSSM ( Mühlleitner et al. (2001) )

101 Pseudo Axions at the Photon Collider Photon Collider as precision machine for Higgs physics (s channel resonance, anomaly coupling) 10 1 σ eff (γγ η, H) [pb] 0.1 S/B analogous to LC η in the µ model with (almost) identical parameters as A in MSSM ( Mühlleitner et al. (2001) ) H (SM) H (with T) η [T] η [1 complete heavy gen.] η [3 gen. of heavy quarks] η [3 complete heavy gen.] m H, m η [GeV]

102 g bbη = 0.4 g bbh m η Γ γγ [kev] γγ (H, η) b b #evt/2 GeV m η = 100 GeV see = 200 GeV Lee = 400 fb 1 cos(θ) T < 0.76 p z / s ee < M inv (b b) [GeV] γγ (H, η) b b #evt/2 GeV see = 500 GeV Lee = 1 ab 1 cos(θ) T < 0.76 p z / s ee < 0.04 m η = 200 GeV M inv (b b) [GeV]

103 T parity and Dark Matter Cheng/Low, 2003; Hubisz/Meade, 2005 T parity: T a T a, X a X a, automorphism of coset space analogous to R parity in SUSY, KK parity Bounds on f relaxed, but: pair production! Lightest T -odd particle (LTP) Candidate for Cold Dark Matter

104 T parity and Dark Matter Cheng/Low, 2003; Hubisz/Meade, 2005 T parity: T a T a, X a X a, automorphism of coset space analogous to R parity in SUSY, KK parity Bounds on f relaxed, but: pair production! Lightest T -odd particle (LTP) Candidate for Cold Dark Matter Littlest Higgs: A LTP W, Z 650 GeV Φ 1 TeV T, T TeV Annihilation: A A h W W, ZZ, hh M H (GeV) f M A (GeV) H /10/50/70/ f (GeV)

105 T parity and Dark Matter Cheng/Low, 2003; Hubisz/Meade, 2005 T parity: T a T a, X a X a, automorphism of coset space analogous to R parity in SUSY, KK parity Bounds on f relaxed, but: pair production! Lightest T -odd particle (LTP) Candidate for Cold Dark Matter Littlest Higgs: A LTP W, Z 650 GeV Φ 1 TeV T, T TeV Annihilation: A A h W W, ZZ, hh M H (GeV) f M A (GeV) H /10/50/70/ f (GeV) T parity Simple Group model: Pseudo-Axion η LTP Kilian/Rainwater/JR/Schmaltz

106 Outline Hierarchy Problem, Goldstone-Bosons and Little Higgs Higgs as Pseudo-Goldstone Boson Nambu-Goldstone Bosons The Little Higgs mechanism Examples of Models Phenomenology For example: Littlest Higgs Neutrino masses Effective Field Theories Electroweak Precision Observables Direct Searches Reconstruction of Little Higgs Models Pseudo Axions in LHM T parity and Dark Matter Conclusions

107 Conclusions Little Higgs elegant alternative to SUSY structure stabilizes EW scale Gauge/Global Symmetry Generics: new heavy gauge bosons, scalars, quarks Little Higgs in accord w EW precision observ. w/o Fine Tuning (M H!) New developments: Pseudo-Axions, T -parity, LH Dark Matter UV embedding, GUT, Flavor? Clear experimental signatures: direct search [Gauge & Top sector, LHC (ILC)] precision observables [Gauge, Scalar, Top sector ILC (LHC)] Strategy for Reconstruction by Complementarity of ILC & LHC

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

Physics at TeV Energy Scale

Physics at TeV Energy Scale Physics at TeV Energy Scale Yu-Ping Kuang (Tsinghua University) HEP Society Conference, April 26, 2008, Nanjing I. Why TeV Scale Is Specially Important? SM is SU(3) c SU(2) U(1) gauge theory. M g, M γ

More information

New Phenomenology of Littlest Higgs Model with T-parity

New Phenomenology of Littlest Higgs Model with T-parity New Phenomenology of Littlest Higgs Model with T-parity Alexander Belyaev Michigan State University A.B., C.-R. Chen, K. Tobe, C.-P. Yuan hep-ph/0609179 A.B., A. Pukhov, C.-P. Yuan hep-ph/07xxxxx UW-Madison,

More information

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Rutgers University, December 8, 2009 Preview Found a SUSY model, where: Weird higgs decays

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Hunting New Physics in the Higgs Sector

Hunting New Physics in the Higgs Sector HS Hunting New Physics in the Higgs Sector SM Higgs Sector - Test of the Higgs Mechanism Oleg Kaikov KIT, Seminar WS 2015/16 Prof. Dr. M. Margarete Mühlleitner, Dr. Roger Wolf, Dr. Hendrik Mantler Advisor:

More information

Radiative corrections to the Higgs potential in the Littlest Higgs model

Radiative corrections to the Higgs potential in the Littlest Higgs model Little. results a Little. Radiative corrections to the potential in the Littlest model Cheluci In collaboration with Dr. Antonio Dobado González and Dra. Siannah Peñaranda Rivas Departamento de Física

More information

+ µ 2 ) H (m 2 H 2

+ µ 2 ) H (m 2 H 2 I. THE HIGGS POTENTIAL AND THE LIGHT HIGGS BOSON In the previous chapter, it was demonstrated that a negative mass squared in the Higgs potential is generated radiatively for a large range of boundary

More information

Inverse See-saw in Supersymmetry

Inverse See-saw in Supersymmetry Inverse See-saw in Supersymmetry Kai Wang IPMU, the University of Tokyo Cornell Particle Theory Seminar September 15, 2010 hep-ph/10xx.xxxx with Seong-Chan Park See-saw is perhaps the most elegant mechanism

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

The bestest little Higgs

The bestest little Higgs The bestest little Higgs The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Schmaltz, Martin, Daniel

More information

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G and Signatures of D-Type Gauge Mediation Ken Hsieh Michigan State Univeristy KH, Ph. D. Thesis (2007) ArXiv:0708.3970 [hep-ph] Other works with M. Luty and Y. Cai (to appear) MSU HEP Seminar November 6,

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

Little Higgs Models Status and Concepts

Little Higgs Models Status and Concepts 1/32 J. R. Reuter Little Higgs Models Heräus Seminar "Understanding the LHC", Bad Honnef, 14.02.2017 Little Higgs Models Status and Concepts Jürgen Reuter DESY JRR/Shim, in preparation; JRR/Tonini/de Vries,

More information

Low Scale Flavor Gauge Symmetries

Low Scale Flavor Gauge Symmetries Low Scale Flavor Gauge Symmetries Michele Redi CERN in collaboration with Benjamin Grinstein and Giovanni Villadoro arxiv:1009.2049[hep-ph] Padova, 20 October Outline Flavor Problem Gauging the Flavor

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Carleton University, Ottawa University of Freiburg W. Kilian, J. Reuter, PLB B642 (2006), 81, and work in progress (with

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Solutions to gauge hierarchy problem. SS 10, Uli Haisch

Solutions to gauge hierarchy problem. SS 10, Uli Haisch Solutions to gauge hierarchy problem SS 10, Uli Haisch 1 Quantum instability of Higgs mass So far we considered only at RGE of Higgs quartic coupling (dimensionless parameter). Higgs mass has a totally

More information

Hidden Higgs boson in extended supersymmetric scenarios at the LHC

Hidden Higgs boson in extended supersymmetric scenarios at the LHC Hidden Higgs boson in extended supersymmetric scenarios at the LHC Priyotosh Bandyopadhyay INFN Lecce & University of Salento, Lecce arxiv:1512.09241, arxiv:1512.08651, JHEP 1512 (2015) 127, JHEP 1509

More information

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC Jürgen Reuter Albert-Ludwigs-Universität Freiburg W. Kilian, JR, PLB B642 (2006), 81; and work in progress (with F. Deppisch, W. Kilian)

More information

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle

Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Electroweak-scale Right-handed Neutrino Model And 126 GeV Higgs-like Particle Ajinkya S. Kamat ask4db@virginia.edu http://people.virginia.edu/ ask4db With Prof. P. Q. Hung and Vinh Van Hoang (paper in

More information

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Twin Higgs Theories Z. Chacko, University of Arizona H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez Precision electroweak data are in excellent agreement with the Standard Model with a Higgs mass

More information

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group

New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group New Physics from Vector-Like Technicolor: Roman Pasechnik Lund University, THEP group CP3 Origins, September 16 th, 2013 At this seminar I will touch upon... σ 2 Issues of the Standard Model Dramatically

More information

Light generations partners at the LHC

Light generations partners at the LHC Light generations partners at the LHC Giuliano Panico CERN IPNL Lyon 21 March 2014 based on C. Delaunay, T. Flacke, J. Gonzales, S. Lee, G. P. and G. Perez 1311.2072 [hep-ph] Introduction Introduction

More information

The Super-little Higgs

The Super-little Higgs The Super-little Higgs Csaba Csaki (Cornell) with Guido Marandella (UC Davis) Yuri Shirman (Los Alamos) Alessandro Strumia (Pisa) hep-ph/0510294, Phys.Rev.D73:035006,2006 Padua University, July 4, 2006

More information

Light Pseudoscalar Higgs boson in NMSSM

Light Pseudoscalar Higgs boson in NMSSM K. Cheung 1 Light Pseudoscalar Higgs boson in NMSSM Kingman Cheung NTHU, December 2006 (with Abdesslam Arhrib, Tie-Jiun Hou, Kok-Wee Song, hep-ph/0606114 K. Cheung 2 Outline Motivations for NMSSM The scenario

More information

T -Parity in Little Higgs Models a

T -Parity in Little Higgs Models a T -Parity in Little Higgs Models a David Krohn a Based on arxiv:0803.4202 [hep-ph] with Itay Yavin, and work in progress with I.Y., Lian-Tao Wang, and Hsin-Chia Cheng Outline Review of little Higgs models

More information

Introduction to Supersymmetry

Introduction to Supersymmetry Introduction to Supersymmetry I. Antoniadis Albert Einstein Center - ITP Lecture 5 Grand Unification I. Antoniadis (Supersymmetry) 1 / 22 Grand Unification Standard Model: remnant of a larger gauge symmetry

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

Triplet Higgs Scenarios

Triplet Higgs Scenarios Triplet Higgs Scenarios Jack Gunion U.C. Davis Grenoble Higgs Workshop, March 2, 203 Higgs-like LHC Signal Fits with MVA CMS suggest we are heading towards the SM, but it could simply be a decoupling limit

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Finding the Higgs boson

Finding the Higgs boson Finding the Higgs boson Sally Dawson, BN XIII Mexican School of Particles and Fields ecture 1, Oct, 008 Properties of the Higgs boson Higgs production at the Tevatron and HC Discovery vs spectroscopy Collider

More information

Introduction to the SM (5)

Introduction to the SM (5) Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 1 Introduction to the SM (5) Yuval Grossman Cornell Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 2 Yesterday... Yesterday: Symmetries Today SSB the

More information

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki Charged Higgs Beyond the MSSM at the LHC Katri Huitu University of Helsinki Outline: Mo;va;on Charged Higgs in MSSM Charged Higgs in singlet extensions H ± à aw ± Charged Higgs in triplet extensions H

More information

Electroweak physics and the LHC an introduction to the Standard Model

Electroweak physics and the LHC an introduction to the Standard Model Electroweak physics and the LHC an introduction to the Standard Model Paolo Gambino INFN Torino LHC School Martignano 12-18 June 2006 Outline Prologue on weak interactions Express review of gauge theories

More information

General Composite Higgs Models

General Composite Higgs Models General Composite Higgs Models Marco Serone, SISSA, Trieste In collaboration with David Marzocca and Jing Shu, based on 1205.0770 1 The Higgs hunt at the LHC is quickly coming to an end A SM Higgs is ruled

More information

Electroweak and Higgs Physics

Electroweak and Higgs Physics Electroweak and Higgs Physics Lecture 2 : Higgs Mechanism in the Standard and Supersymmetric Models Alexei Raspereza DESY Summer Student Program Hamburg August 2017 Standard Model (Summary) Building blocks

More information

Little Higgs at the LHC: Status and Prospects

Little Higgs at the LHC: Status and Prospects Little Higgs at the LHC: Status and Prospects Marco Tonini DESY Theory Group (Hamburg) based on: Reuter/MT, JHEP 1302, 077 (2013) Reuter/MT/de Vries, hep-ph/1307.5010 Reuter/MT/de Vries, DESY-13-123 (in

More information

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises SM, EWSB & Higgs MITP Summer School 017 Joint Challenges for Cosmology and Colliders Homework & Exercises Ch!"ophe Grojean Ch!"ophe Grojean DESY (Hamburg) Humboldt University (Berlin) ( christophe.grojean@desy.de

More information

Higgs Boson Physics, Part II

Higgs Boson Physics, Part II Higgs Boson Physics, Part II Laura Reina TASI 004, Boulder Outline of Part II What do we know about the Standard Model Higgs boson? indirect bounds on M H from the theoretical consistency of the Standard

More information

Particle Physics Today, Tomorrow and Beyond. John Ellis

Particle Physics Today, Tomorrow and Beyond. John Ellis Particle Physics Today, Tomorrow and Beyond John Ellis Summary of the Standard Model Particles and SU(3) SU(2) U(1) quantum numbers: Lagrangian: gauge interactions matter fermions Yukawa interactions Higgs

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

Composite Higgs and Flavor

Composite Higgs and Flavor Composite Higgs and Flavor Xiaohong Wu East China University of Science and Technology Seminar @ ICTS, Jun. 6, 2013 125GeV SM-like Higgs Discovered p 0 5 3-3 -5-7 -9 1 3 Combined observed γγ observed llll

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Radovan Dermíšek Institute for Advanced Study, Princeton R.D. and J. F. Gunion, hep-ph/0502105 R.D. and J. F. Gunion, hep-ph/0510322

More information

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data

Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Discovery potential of toppartners in a realistic composite Higgs model with early LHC data Günther Dissertori, Elisabetta Furlan, Filip Moortgat, JHEP09(20)019 Kick-off Meeting Of The LHCPhenoNet Initial

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Beyond the SM: SUSY. Marina Cobal University of Udine

Beyond the SM: SUSY. Marina Cobal University of Udine Beyond the SM: SUSY Marina Cobal University of Udine Why the SM is not enough The gauge hierarchy problem Characteristic energy of the SM: M W ~100 GeV Characteristic energy scale of gravity: M P ~ 10

More information

Higgs boson(s) in the NMSSM

Higgs boson(s) in the NMSSM Higgs boson(s) in the NMSSM U. Ellwanger, LPT Orsay Supersymmetry had a bad press recently: No signs for squarks/gluino/charginos/neutralinos... at the LHC Conflict (?) between naturalness and the Higgs

More information

The Higgs Boson and Electroweak Symmetry Breaking

The Higgs Boson and Electroweak Symmetry Breaking The Higgs Boson and Electroweak Symmetry Breaking 1. Minimal Standard Model M. E. Peskin Chiemsee School September 2014 The Higgs boson has an odd position in the Standard Model of particle physics. On

More information

Composite Higgs/ Extra Dimensions

Composite Higgs/ Extra Dimensions Composite Higgs/ Extra Dimensions Eduardo Pontón Instituto de Física Teórica -UNESP & ICTP-SAIFR Snowmass on the Pacific, KITP May 30, 2013 Fundamental Question raised by the SM How and why is the Electroweak

More information

Beyond the Higgs. new ideas on electroweak symmetry breaking

Beyond the Higgs. new ideas on electroweak symmetry breaking E = mc 2 Beyond the Higgs new ideas on electroweak symmetry breaking Higgs mechanism. The Higgs as a UV moderator of EW interactions. Needs for New Physics beyond the Higgs. Dynamics of EW symmetry breaking

More information

Composite Higgs Overview

Composite Higgs Overview Composite Higgs Overview Tony Gherghetta Fundamental Composite Dynamics, IBS CTPU, Daejeon, Korea, December 6, 2017 1 IBS Daejeon - 6 December 2017 Composite Higgs New strong force with coupling, g s g

More information

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC)

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC) 2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC) hep-th/0606045 Success of 2T-physics for particles on worldlines. Field theory version of 2T-physics. Standard Model in 4+2 dimensions.

More information

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov Gauge coupling unification without leptoquarks Mikhail Shaposhnikov March 9, 2017 Work with Georgios Karananas, 1703.02964 Heidelberg, March 9, 2017 p. 1 Outline Motivation Gauge coupling unification without

More information

Effective Theory for Electroweak Doublet Dark Matter

Effective Theory for Electroweak Doublet Dark Matter Effective Theory for Electroweak Doublet Dark Matter University of Ioannina, Greece 3/9/2016 In collaboration with Athanasios Dedes and Vassilis Spanos ArXiv:1607.05040 [submitted to PhysRevD] Why dark

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

Higgs couplings in the Composite Higgs Models

Higgs couplings in the Composite Higgs Models Higgs couplings in the Composite Higgs Models Aleksandr Azatov Dipartimento di Fisica, Università di Roma La Sapienza and INFN Sezione di Roma University of Padova 6/12/2012 Composite Higgs setup Models

More information

IX. Electroweak unification

IX. Electroweak unification IX. Electroweak unification The problem of divergence A theory of weak interactions only by means of W ± bosons leads to infinities e + e - γ W - W + e + W + ν e ν µ e - W - µ + µ Divergent integrals Figure

More information

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA In collaboration with F. del Águila and M. Pérez-Victoria Phys. Rev. D78: 013010, 2008 Depto. de Física Teórica y del Cosmos Universidad de Granada

More information

Photon Coupling with Matter, u R

Photon Coupling with Matter, u R 1 / 16 Photon Coupling with Matter, u R Consider the up quark. We know that the u R has electric charge 2 3 e (where e is the proton charge), and that the photon A is a linear combination of the B and

More information

Basics of Higgs Physics

Basics of Higgs Physics Basics of iggs Physics Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007

More information

U(1) Gauge Extensions of the Standard Model

U(1) Gauge Extensions of the Standard Model U(1) Gauge Extensions of the Standard Model Ernest Ma Physics and Astronomy Department University of California Riverside, CA 92521, USA U(1) Gauge Extensions of the Standard Model (int08) back to start

More information

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model

Lecture 03. The Standard Model of Particle Physics. Part III Extensions of the Standard Model Lecture 03 The Standard Model of Particle Physics Part III Extensions of the Standard Model Where the SM Works Excellent description of 3 of the 4 fundamental forces Explains nuclear structure, quark confinement,

More information

Phenomenology of a light singlet-like scalar in NMSSM

Phenomenology of a light singlet-like scalar in NMSSM Phenomenology of a light singlet-like scalar in NMSSM Institute of Theoretical Physics, University of Warsaw Corfu Summer Institute, 12 September 2014 based on: MB, M. Olechowski and S. Pokorski, JHEP

More information

Magnetic moment (g 2) µ and new physics

Magnetic moment (g 2) µ and new physics Dresden Lepton Moments, July 2010 Introduction A 3σ deviation for a exp µ a SM µ has been established! Currently: a exp µ a SM µ = (255 ± 63 ± 49) 10 11 Expected with new Fermilab exp. (and th. progress):

More information

Explaining the LHC 750 GeV Diphoton Excess via Photon Fusion

Explaining the LHC 750 GeV Diphoton Excess via Photon Fusion Explaining the LHC 750 GeV Diphoton Excess via Photon Fusion Neil D. Barrie CoEPP, University of Sydney, Australia May 26, 2016 Based on: 750 GeV Composite Axion as the LHC Diphoton Resonance N. D. Barrie,

More information

Top quark effects in composite vector pair production at the LHC

Top quark effects in composite vector pair production at the LHC Top quark effects in composite vector pair production at the LHC Antonio Enrique Cárcamo Hernández. Universidad Tecnica Federico Santa Maria. SILAFAE 01, 10th-14th of December of 01. Based on: A. E. Cárcamo

More information

Higgs Physics, after July 2012

Higgs Physics, after July 2012 Higgs Physics, after July 2012 C.-P. Yuan Michigan State University, USA July 10, 2013 @ IHEP July 4, 2012 Scientists at CERN say they've found a new particle consistent with the Standard Model Higgs boson

More information

What Precision Electroweak Physics Says About the SU(6)/Sp(6) Little Higgs

What Precision Electroweak Physics Says About the SU(6)/Sp(6) Little Higgs HUTP-03/A022 MIT-CTP-3377 hep-ph/0305275 What Precision Electroweak Physics Says About the SU(6)/Sp(6) Little Higgs Thomas Gregoire (a), David R. Smith (b) and Jay G. Wacker (a) (a) Jefferson Physical

More information

Discovery of the Higgs Boson

Discovery of the Higgs Boson Discovery of the Higgs Boson Seminar: Key Experiments in Particle Physics Martin Vogrin Munich, 22. July 2016 Outline Theoretical part Experiments Results Open problems Motivation The SM is really two

More information

Split Supersymmetry A Model Building Approach

Split Supersymmetry A Model Building Approach Split Supersymmetry A Model Building Approach Kai Wang Phenomenology Institute Department of Physics the University of Wisconsin Madison UC Riverside HEP Seminar In Collaboration with Ilia Gogoladze (Notre

More information

Double Higgs production via gluon fusion (gg hh) in composite models

Double Higgs production via gluon fusion (gg hh) in composite models Double Higgs production via gluon fusion (gg hh) in composite models Ennio Salvioni CERN and University of Padova based on work in collaboration with C.Grojean (CERN), M.Gillioz (Zürich), R.Gröber and

More information

New Physics Scales to be Lepton Colliders (CEPC)

New Physics Scales to be Lepton Colliders (CEPC) New Physics Scales to be Probed @ Lepton Colliders (CEPC) Shao-Feng Ge (gesf02@gmail.com) Max-Planck-Institut für Kernphysik, Heidelberg, Germany 2016-1-11 Contribution to CEPC precdr & CDR Collaboration

More information

HUNTING FOR THE HIGGS

HUNTING FOR THE HIGGS Univ. of Sci. and Tech. of China Dec. 16th, 2011 HUNTING FOR THE HIGGS Tao Liu UC@ Santa Barbara Why Higgs Mechanism? Two mysteries in the Electroweak (EW) theory : The cause of the EW symmetry breaking

More information

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN Teoria e fenomenologia dei modelli di Higgs composto Roberto Contino - CERN Part I: Quick review of the Composite Higgs Composite Higgs models [Georgi & Kaplan, `80s] EWSB sector H G G _ _ Aµ (G SM ) ψ

More information

Searching for Beyond Standard Model Physics with Top Quarks at the ATLAS Detector

Searching for Beyond Standard Model Physics with Top Quarks at the ATLAS Detector Searching for Beyond Standard Model Physics with Top Quarks at the ATLAS Detector (University of Hong Kong) Topical Mini-Workshop of the New Physics at the TeraScale @ Tsung-Dao Lee Institute, SJTU Introduction

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

Higgs phenomenology & new physics. Shinya KANEMURA (Univ. of Toyama)

Higgs phenomenology & new physics. Shinya KANEMURA (Univ. of Toyama) Higgs phenomenology & new physics Shinya KANEMURA (Univ. of Toyama) KEKTH07, Dec. 13. 2007 Content of talk Introduction Electroweak Symmetry Breaking Physics of Higgs self-coupling Self-coupling measurement

More information

Mirror World and Improved Naturalness

Mirror World and Improved Naturalness Mirror World and Improved Naturalness Thomas Grégoire Boston University Based on hep-ph/0509242 R. Barbieri, T.G., L. Hall Mirror Worlds Motivations Originally introduced to restore parity Dark Matter

More information

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Potential Discoveries at the Large Hadron Collider. Chris Quigg Potential Discoveries at the Large Hadron Collider Chris Quigg Fermilab quigg@fnal.gov XXIII Taiwan Spring School Tainan 31 March - 3 April 2010 Electroweak theory successes Theoretical Physics Department,

More information

Mono Vector-Quark Production at the LHC

Mono Vector-Quark Production at the LHC Mono Vector-Quark Production at the LHC Haiying Cai Department of Physics, Peking University arxiv: 1210.5200 Particle Physics and Cosmology KIAS, November 5-9, 2012 Introduction Vector-like quark exists

More information

Probing Two Higgs Doublet Models with LHC and EDMs

Probing Two Higgs Doublet Models with LHC and EDMs Probing Two Higgs Doublet Models with LHC and EDMs Satoru Inoue, w/ M. Ramsey-Musolf and Y. Zhang (Caltech) ACFI LHC Lunch, March 13, 2014 Outline 1 Motivation for 2HDM w/ CPV 2 Introduction to 2HDM 3

More information

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07

Golden SUSY, Boiling Plasma, and Big Colliders. M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Golden SUSY, Boiling Plasma, and Big Colliders M. Perelstein, Cornell University IPMU LHC Workshop talk, 12/18/07 Outline Part I: Supersymmetric Golden Region and its Collider Signature (with Christian

More information

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses UCRHEP-T565 April 2016 arxiv:1604.01148v1 [hep-ph] 5 Apr 2016 Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses Corey Kownacki 1 and Ernest Ma 1,2,3 1 Department of Physics and Astronomy, University

More information

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31 1 / 31 Axions Kerstin Helfrich Seminar on Theoretical Particle Physics, 06.07.06 2 / 31 Structure 1 Introduction 2 Repetition: Instantons Formulae The θ-vacuum 3 The U(1) and the strong CP problem The

More information

Jürgen R. Reuter, DESY. BSM Physics at High-Energy ee Colliders

Jürgen R. Reuter, DESY. BSM Physics at High-Energy ee Colliders BSM Physics at + High-Energy e e Colliders Jürgen R. Reuter, DESY J.R.Reuter BSM Physics at High-Energy ee Colliders CLIC 2015, CERN, 28.1.2015 Physics at High-Energy e+ e- Colliders High-energy e+ e-

More information

SUPERSYMETRY FOR ASTROPHYSICISTS

SUPERSYMETRY FOR ASTROPHYSICISTS Dark Matter: From the Cosmos to the Laboratory SUPERSYMETRY FOR ASTROPHYSICISTS Jonathan Feng University of California, Irvine 29 Jul 1 Aug 2007 SLAC Summer Institute 30 Jul 1 Aug 07 Feng 1 Graphic: N.

More information

The Shadow of a Scale-Invariant Hidden U(1)

The Shadow of a Scale-Invariant Hidden U(1) The Shadow of a Scale-Invariant Hidden U1) We-Fu Chang Feb. 26, 2008 at APCTP 2008 with John Ng and Jackson Wu) PRD74:095005,75:115016 Motivation Model Coleman-Weinberg Phenomenology and U1) We-Fu Chang,

More information

Higgs physics at the ILC

Higgs physics at the ILC Higgs physics at the ILC Klaus Desch University of Bonn Second Linear Collider Physics School Ambleside,UK, 15/09/06 Disclaimers + Announcements Focus will be on experimental possibilities + studies with

More information

Elementary Particles II

Elementary Particles II Elementary Particles II S Higgs: A Very Short Introduction Higgs Field, Higgs Boson, Production, Decays First Observation 1 Reminder - I Extend Abelian Higgs model to non-abelian gauge symmetry: ( x) +

More information

The Standard Model Part. II

The Standard Model Part. II Our Story Thus Far The Standard Model Part. II!!We started with QED (and!)!!we extended this to the Fermi theory of weak interactions! Adding G F!!Today we will extended this to Glashow-Weinberg-Salam

More information

Searching for the Higgs at the LHC

Searching for the Higgs at the LHC Searching for the Higgs at the LHC Philip Lawson Boston University - PY 898 - Special Topics in LHC Physics 3/16/2009 1 Outline Theory & Background of Higgs Mechanism Production Modes Decay Modes - Discovery

More information

Lepton non-universality at LEP and charged Higgs

Lepton non-universality at LEP and charged Higgs Lepton non-universality at LEP and charged Higgs Jae-hyeon Park TU Dresden Institutsseminar TU Dresden, 13.10.2011 Standard Model L SM = 1 4 F F+ ψi/dψ [H ψ L Y ψ R+ h.c.] + g2 θ 32π 2 F F+ DH 2 V(H) Omitted:

More information