1 Priors, Contd. ISyE8843A, Brani Vidakovic Handout Nuisance Parameters

Size: px
Start display at page:

Download "1 Priors, Contd. ISyE8843A, Brani Vidakovic Handout Nuisance Parameters"

Transcription

1 ISyE8843A, Brani Vidakovic Handout 6 Priors, Contd.. Nuisance Parameters Assume that unknown parameter is θ, θ ) but we are interested only in θ. The parameter θ is called nuisance parameter. How do we handle nuisance parameters? Suppose πθ, θ ) is joint prior for θ, θ ). The posterior is πθ, θ x) fx θ, θ ) πθ, θ ). Marginal posterior of interest is obtained by averaging over the nuisance parameter, πθ x) = πθ, θ x)dθ, or πθ x) = πθ θ, x)πθ x)dθ. Example: Let X = X,..., X n ) be a sample from normal N µ, σ) distribution. Assume πµ, σ ) =. σ The posterior distribution is with slight abuse of notation) πµ, σ X) σ = e σ n n n i= X i µ) σ [n )s +n X µ) ], where s = n n i= X i X). Show that πσ X) is IGamma n, n )s ). This distribution is sometimes referred as scaled inverse χ, inv χ n, s ), see Handout 0. The joint posterior can be represented as πµ, σ X) = πµ σ, X) πσ X), πµ, σ X) n )s πσ σn+ /n )µ X) πσ /n e n/σ n )s n+ σ σ ) n e + IGamma n, n )s σ N X, σ /n) N X, σ /n) n )s ) N X, σ /n) Exercise: Derive prior and posterior predictive distributions for the above model. See page 76 of the text. Exercise: Consider the Normal Inverse Gamma prior. This prior is conjugate. Find the parameters of the

2 posterior. See the section 3.3 of the text, page 78. Example: What if the prior is πθ, σ ) = σ? ) This prior is noninformative independence prior since it is a product of non-informative, translation invariant priors for θ and σ. This prior, although not Jeffreys for the problem, was ultimately recommended by Jeffreys in his book from 96). For mathematically thirsty, the prior in ) is the right invariant Haar density for the problem, see Berger 985), Chapter 6. Recall that posterior for the parameter of interest was obtained by averaging over the nuisance parameter, πθ x) = πθ θ, x)πθ x)dθ, Alternativelly, one can first find the marginal likelihood, if this is convenient, and then use the prior on the parameter of interest to arrive to the same marginal posterior. Suppose πθ, θ ) = πθ )πθ θ ). The marginal likelihood is fx θ ) = fx θ, θ ) πθ θ )dθ. Θ Now, πθ x) fx θ )πθ ). Example: The following example is a simplification of a model from Vidakovic and Ruggeri 00). The observations denoted by d are observed wavelet coefficients. The model for d is normal, with the mean θ being the parameter of interest and variance σ being a nuisance parameter. If [d θ, σ ] Nθ, σ ) and the prior on σ is independent on θ, [σ ] Eµ), µ positive and known, with density fσ µ) = µe µσ, the resulting marginal likelihood is ) [d θ] DE θ,, with density fd θ) = µe µ µ d θ. Now, if the prior on θ is then the prior) predictive distribution of d is Find the posterior distribution for [θ d]. [θ] DE0, τ), τ known, [d] md) = τe d /τ µ e µ d τ. /µ

3 . MaxEnt Priors For a discrete probability distribution p,..., p n, i p i =, the entropy is defined as Ep) = i p i logp i ). Assume that the following restriction better said Information) on the prior π are available: E π [g k θ)] = i g k θ i )pθ i ) = µ k, k =,,..., m. The maxent prior is given by π θ i ) = exp{ k λ kg k θ i )} i exp{ k λ kg k θ i )}. The multipliers λ i are obtained by solving the optimization problem. Example: Assume Θ = {0,,,... }. Suppose that E π θ = 5. Here g θ) = θ and µ = 5. Thus, π θ) = e λ θ θ=0 eλ θ = eλ )e λ ) θ. This is Geome λ ) density and solving eλ e λ = 5 gives e λ = /6. Hence, maxent prior is Geom/6) If the problem requires continuous prior, the maxent approach becomes complicated. First, what should be the definition of entropy for continuous distribution π? Jaynes 968) argues that it should be defined via Kullback-Leibler divergence between π and some invariant noninformative prior for the problem, π 0, Eπ) = E π 0 [ log πθ) ] = π 0 θ) log πθ) π 0 θ) π 0θ)dθ. he maxent prior, under constraints as in the discrete case, is given by π θ) = exp{ k λ kg k θ i )}π 0 θ) exp{ k λ kg k θ i )}π 0 θ)dθ. The reference π 0 is thus instrumental in defining the maxent prior. Exercise: If E π θ = µ and π 0 is flat prior Lebesgue measure), show that the maxent solution is π θ) e λθ, which cannot be normalized to a proper density. If in addition V arθ) = σ, then the maxent solution is normal N µ, σ ) distribution..3 Multivariate Priors As a fundamentsl multvariate model we consider Multivariate Normal MVN) likelihood overview the MVN/MVN Bayes model. This model is not only important as educational example that mimics normal/normal case, but also as useful modeling tool. 3

4 Assume that X,..., X n and their location θ are p-dimensional, and distributed as MVN θ, Σ). The covariance matrix Σ is assumed known. The likelohood of θ based on X,..., X n is ) fx θ) = Σ n/ exp n x i θ) Σ x i θ) which after some matrix algebra becomes fx θ) = Σ n/ exp i= ) trσ S), ) and S = n i= x i θ)x i θ) is the sum-of-squares matrix. If the prior on θ is also multivariate normal MVN µ, Π), with vector µ and covariance matrix Π known, the posterior is [ n ]) πθ x) exp x i θ) Σ x i θ) + θ µ) Π θ µ), i= which, after standard matrix algebra becomes πθ x) exp ) θ µ ) Π θ µ ), i.e., MVN µ, Π ). The posterior parameters are matrix reformulations of the univariate case, µ = Π + nσ ) Π µ + nσ x), Π = Π + nσ ). As an illustration, we discuss the estimation of multivariate mean for the student test scores. The subjects are: mechanics, vectors, algebra, analysis, and statistics, and n = 88 records are available Data set and description in Mardia, Kent and Bibby, 979). The likelihood is MVN p θ, Σ), with Σ = 56I + 56J, where I is the identity matrix and J is the matrix of ones. Part of matlab code that calculates the Bayes estimator for the θ is Sigma = 56*eyep)+56*onesp,p); mu = 50*onesp,); Pi = 4* eyep)+ 4* onesp,p); mu_ = inv invpi) + n * invsigma)) *... invpi) * mu + n * invsigma) * meanscores)) ); Pi = inv invpi) + n * invsigma)); and the complete m-file producing the figure and containing the data set is bayes6.m. References [] Berger, J. 985). Statistical Decision Theory and Bayesian Analysis, Second Edition, Springer Verlag. [] Mardia, K.V., Kent, J.T., and Bibby, J.M. 979). Multivariate Analysis. London: Academic Press. [3] Robert, C. 00). Bayesian Choice, Second Edition, Springer Verlag. [4] Vidakovic, B. and Ruggeri, F. 00). BAMS Method: Theory and Simulations. Sankhyā, Series B, 63, Special Issue on Wavelets),

5 mechanics vectors algebra analysis statistics Figure : Multivariate Bayes estimator for the student scores from Mardia, Kent and Bibby, 979. The subjects are: mechanics, vectors, algebra, analysis, and statistics. 5

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet.

Stat 535 C - Statistical Computing & Monte Carlo Methods. Arnaud Doucet. Stat 535 C - Statistical Computing & Monte Carlo Methods Arnaud Doucet Email: arnaud@cs.ubc.ca 1 Suggested Projects: www.cs.ubc.ca/~arnaud/projects.html First assignement on the web: capture/recapture.

More information

A Very Brief Summary of Bayesian Inference, and Examples

A Very Brief Summary of Bayesian Inference, and Examples A Very Brief Summary of Bayesian Inference, and Examples Trinity Term 009 Prof Gesine Reinert Our starting point are data x = x 1, x,, x n, which we view as realisations of random variables X 1, X,, X

More information

Statistical Theory MT 2006 Problems 4: Solution sketches

Statistical Theory MT 2006 Problems 4: Solution sketches Statistical Theory MT 006 Problems 4: Solution sketches 1. Suppose that X has a Poisson distribution with unknown mean θ. Determine the conjugate prior, and associate posterior distribution, for θ. Determine

More information

Statistical Theory MT 2007 Problems 4: Solution sketches

Statistical Theory MT 2007 Problems 4: Solution sketches Statistical Theory MT 007 Problems 4: Solution sketches 1. Consider a 1-parameter exponential family model with density f(x θ) = f(x)g(θ)exp{cφ(θ)h(x)}, x X. Suppose that the prior distribution has the

More information

Invariant HPD credible sets and MAP estimators

Invariant HPD credible sets and MAP estimators Bayesian Analysis (007), Number 4, pp. 681 69 Invariant HPD credible sets and MAP estimators Pierre Druilhet and Jean-Michel Marin Abstract. MAP estimators and HPD credible sets are often criticized in

More information

Remarks on Improper Ignorance Priors

Remarks on Improper Ignorance Priors As a limit of proper priors Remarks on Improper Ignorance Priors Two caveats relating to computations with improper priors, based on their relationship with finitely-additive, but not countably-additive

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

Multivariate Bayesian Linear Regression MLAI Lecture 11

Multivariate Bayesian Linear Regression MLAI Lecture 11 Multivariate Bayesian Linear Regression MLAI Lecture 11 Neil D. Lawrence Department of Computer Science Sheffield University 21st October 2012 Outline Univariate Bayesian Linear Regression Multivariate

More information

Linear Models A linear model is defined by the expression

Linear Models A linear model is defined by the expression Linear Models A linear model is defined by the expression x = F β + ɛ. where x = (x 1, x 2,..., x n ) is vector of size n usually known as the response vector. β = (β 1, β 2,..., β p ) is the transpose

More information

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33

Hypothesis Testing. Econ 690. Purdue University. Justin L. Tobias (Purdue) Testing 1 / 33 Hypothesis Testing Econ 690 Purdue University Justin L. Tobias (Purdue) Testing 1 / 33 Outline 1 Basic Testing Framework 2 Testing with HPD intervals 3 Example 4 Savage Dickey Density Ratio 5 Bartlett

More information

1 Hierarchical Bayes and Empirical Bayes. MLII Method.

1 Hierarchical Bayes and Empirical Bayes. MLII Method. ISyE8843A, Brani Vidakovic Handout 8 Hierarchical Bayes and Empirical Bayes. MLII Method. Hierarchical Bayes and Empirical Bayes are related by their goals, but quite different by the methods of how these

More information

Multinomial Data. f(y θ) θ y i. where θ i is the probability that a given trial results in category i, i = 1,..., k. The parameter space is

Multinomial Data. f(y θ) θ y i. where θ i is the probability that a given trial results in category i, i = 1,..., k. The parameter space is Multinomial Data The multinomial distribution is a generalization of the binomial for the situation in which each trial results in one and only one of several categories, as opposed to just two, as in

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2 Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, 2010 Jeffreys priors Lecturer: Michael I. Jordan Scribe: Timothy Hunter 1 Priors for the multivariate Gaussian Consider a multivariate

More information

Divergence Based priors for the problem of hypothesis testing

Divergence Based priors for the problem of hypothesis testing Divergence Based priors for the problem of hypothesis testing gonzalo garcía-donato and susie Bayarri May 22, 2009 gonzalo garcía-donato and susie Bayarri () DB priors May 22, 2009 1 / 46 Jeffreys and

More information

USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL*

USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL* USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL* 3 Conditionals and marginals For Bayesian analysis it is very useful to understand how to write joint, marginal, and conditional distributions for the multivariate

More information

Parametric Techniques Lecture 3

Parametric Techniques Lecture 3 Parametric Techniques Lecture 3 Jason Corso SUNY at Buffalo 22 January 2009 J. Corso (SUNY at Buffalo) Parametric Techniques Lecture 3 22 January 2009 1 / 39 Introduction In Lecture 2, we learned how to

More information

ST 740: Linear Models and Multivariate Normal Inference

ST 740: Linear Models and Multivariate Normal Inference ST 740: Linear Models and Multivariate Normal Inference Alyson Wilson Department of Statistics North Carolina State University November 4, 2013 A. Wilson (NCSU STAT) Linear Models November 4, 2013 1 /

More information

Introduction to Bayesian Methods

Introduction to Bayesian Methods Introduction to Bayesian Methods Jessi Cisewski Department of Statistics Yale University Sagan Summer Workshop 2016 Our goal: introduction to Bayesian methods Likelihoods Priors: conjugate priors, non-informative

More information

On the Bayesianity of Pereira-Stern tests

On the Bayesianity of Pereira-Stern tests Sociedad de Estadística e Investigación Operativa Test (2001) Vol. 10, No. 2, pp. 000 000 On the Bayesianity of Pereira-Stern tests M. Regina Madruga Departamento de Estatística, Universidade Federal do

More information

arxiv: v1 [math.st] 10 Aug 2007

arxiv: v1 [math.st] 10 Aug 2007 The Marginalization Paradox and the Formal Bayes Law arxiv:0708.1350v1 [math.st] 10 Aug 2007 Timothy C. Wallstrom Theoretical Division, MS B213 Los Alamos National Laboratory Los Alamos, NM 87545 tcw@lanl.gov

More information

Harrison B. Prosper. CMS Statistics Committee

Harrison B. Prosper. CMS Statistics Committee Harrison B. Prosper Florida State University CMS Statistics Committee 08-08-08 Bayesian Methods: Theory & Practice. Harrison B. Prosper 1 h Lecture 3 Applications h Hypothesis Testing Recap h A Single

More information

General Bayesian Inference I

General Bayesian Inference I General Bayesian Inference I Outline: Basic concepts, One-parameter models, Noninformative priors. Reading: Chapters 10 and 11 in Kay-I. (Occasional) Simplified Notation. When there is no potential for

More information

7. Estimation and hypothesis testing. Objective. Recommended reading

7. Estimation and hypothesis testing. Objective. Recommended reading 7. Estimation and hypothesis testing Objective In this chapter, we show how the election of estimators can be represented as a decision problem. Secondly, we consider the problem of hypothesis testing

More information

Noninformative Priors for the Ratio of the Scale Parameters in the Inverted Exponential Distributions

Noninformative Priors for the Ratio of the Scale Parameters in the Inverted Exponential Distributions Communications for Statistical Applications and Methods 03, Vol. 0, No. 5, 387 394 DOI: http://dx.doi.org/0.535/csam.03.0.5.387 Noninformative Priors for the Ratio of the Scale Parameters in the Inverted

More information

Seminar über Statistik FS2008: Model Selection

Seminar über Statistik FS2008: Model Selection Seminar über Statistik FS2008: Model Selection Alessia Fenaroli, Ghazale Jazayeri Monday, April 2, 2008 Introduction Model Choice deals with the comparison of models and the selection of a model. It can

More information

Parametric Techniques

Parametric Techniques Parametric Techniques Jason J. Corso SUNY at Buffalo J. Corso (SUNY at Buffalo) Parametric Techniques 1 / 39 Introduction When covering Bayesian Decision Theory, we assumed the full probabilistic structure

More information

1 Hypothesis Testing and Model Selection

1 Hypothesis Testing and Model Selection A Short Course on Bayesian Inference (based on An Introduction to Bayesian Analysis: Theory and Methods by Ghosh, Delampady and Samanta) Module 6: From Chapter 6 of GDS 1 Hypothesis Testing and Model Selection

More information

Overall Objective Priors

Overall Objective Priors Overall Objective Priors Jim Berger, Jose Bernardo and Dongchu Sun Duke University, University of Valencia and University of Missouri Recent advances in statistical inference: theory and case studies University

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

STAT 830 Bayesian Estimation

STAT 830 Bayesian Estimation STAT 830 Bayesian Estimation Richard Lockhart Simon Fraser University STAT 830 Fall 2011 Richard Lockhart (Simon Fraser University) STAT 830 Bayesian Estimation STAT 830 Fall 2011 1 / 23 Purposes of These

More information

Part 6: Multivariate Normal and Linear Models

Part 6: Multivariate Normal and Linear Models Part 6: Multivariate Normal and Linear Models 1 Multiple measurements Up until now all of our statistical models have been univariate models models for a single measurement on each member of a sample of

More information

The binomial model. Assume a uniform prior distribution on p(θ). Write the pdf for this distribution.

The binomial model. Assume a uniform prior distribution on p(θ). Write the pdf for this distribution. The binomial model Example. After suspicious performance in the weekly soccer match, 37 mathematical sciences students, staff, and faculty were tested for the use of performance enhancing analytics. Let

More information

The Jeffreys Prior. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) The Jeffreys Prior MATH / 13

The Jeffreys Prior. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) The Jeffreys Prior MATH / 13 The Jeffreys Prior Yingbo Li Clemson University MATH 9810 Yingbo Li (Clemson) The Jeffreys Prior MATH 9810 1 / 13 Sir Harold Jeffreys English mathematician, statistician, geophysicist, and astronomer His

More information

Lecture 2. (See Exercise 7.22, 7.23, 7.24 in Casella & Berger)

Lecture 2. (See Exercise 7.22, 7.23, 7.24 in Casella & Berger) 8 HENRIK HULT Lecture 2 3. Some common distributions in classical and Bayesian statistics 3.1. Conjugate prior distributions. In the Bayesian setting it is important to compute posterior distributions.

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 32 Lecture 14 : Variational Bayes

More information

ST 740: Model Selection

ST 740: Model Selection ST 740: Model Selection Alyson Wilson Department of Statistics North Carolina State University November 25, 2013 A. Wilson (NCSU Statistics) Model Selection November 25, 2013 1 / 29 Formal Bayesian Model

More information

ICES REPORT Model Misspecification and Plausibility

ICES REPORT Model Misspecification and Plausibility ICES REPORT 14-21 August 2014 Model Misspecification and Plausibility by Kathryn Farrell and J. Tinsley Odena The Institute for Computational Engineering and Sciences The University of Texas at Austin

More information

Department of Statistics

Department of Statistics Research Report Department of Statistics Research Report Department of Statistics No. 208:4 A Classroom Approach to the Construction of Bayesian Credible Intervals of a Poisson Mean No. 208:4 Per Gösta

More information

COS513 LECTURE 8 STATISTICAL CONCEPTS

COS513 LECTURE 8 STATISTICAL CONCEPTS COS513 LECTURE 8 STATISTICAL CONCEPTS NIKOLAI SLAVOV AND ANKUR PARIKH 1. MAKING MEANINGFUL STATEMENTS FROM JOINT PROBABILITY DISTRIBUTIONS. A graphical model (GM) represents a family of probability distributions

More information

A noninformative Bayesian approach to domain estimation

A noninformative Bayesian approach to domain estimation A noninformative Bayesian approach to domain estimation Glen Meeden School of Statistics University of Minnesota Minneapolis, MN 55455 glen@stat.umn.edu August 2002 Revised July 2003 To appear in Journal

More information

The Expectation-Maximization Algorithm

The Expectation-Maximization Algorithm 1/29 EM & Latent Variable Models Gaussian Mixture Models EM Theory The Expectation-Maximization Algorithm Mihaela van der Schaar Department of Engineering Science University of Oxford MLE for Latent Variable

More information

Notes on the Multivariate Normal and Related Topics

Notes on the Multivariate Normal and Related Topics Version: July 10, 2013 Notes on the Multivariate Normal and Related Topics Let me refresh your memory about the distinctions between population and sample; parameters and statistics; population distributions

More information

Probability and Estimation. Alan Moses

Probability and Estimation. Alan Moses Probability and Estimation Alan Moses Random variables and probability A random variable is like a variable in algebra (e.g., y=e x ), but where at least part of the variability is taken to be stochastic.

More information

Introduction. Start with a probability distribution f(y θ) for the data. where η is a vector of hyperparameters

Introduction. Start with a probability distribution f(y θ) for the data. where η is a vector of hyperparameters Introduction Start with a probability distribution f(y θ) for the data y = (y 1,...,y n ) given a vector of unknown parameters θ = (θ 1,...,θ K ), and add a prior distribution p(θ η), where η is a vector

More information

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007 Bayesian inference Fredrik Ronquist and Peter Beerli October 3, 2007 1 Introduction The last few decades has seen a growing interest in Bayesian inference, an alternative approach to statistical inference.

More information

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017

Bayesian inference. Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark. April 10, 2017 Bayesian inference Rasmus Waagepetersen Department of Mathematics Aalborg University Denmark April 10, 2017 1 / 22 Outline for today A genetic example Bayes theorem Examples Priors Posterior summaries

More information

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline.

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline. Practitioner Course: Portfolio Optimization September 10, 2008 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y ) (x,

More information

Bayesian statistics, simulation and software

Bayesian statistics, simulation and software Module 4: Normal model, improper and conjugate priors Department of Mathematical Sciences Aalborg University 1/25 Another example: normal sample with known precision Heights of some Copenhageners in 1995:

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 20 Lecture 6 : Bayesian Inference

More information

Generative classifiers: The Gaussian classifier. Ata Kaban School of Computer Science University of Birmingham

Generative classifiers: The Gaussian classifier. Ata Kaban School of Computer Science University of Birmingham Generative classifiers: The Gaussian classifier Ata Kaban School of Computer Science University of Birmingham Outline We have already seen how Bayes rule can be turned into a classifier In all our examples

More information

A Bayesian Treatment of Linear Gaussian Regression

A Bayesian Treatment of Linear Gaussian Regression A Bayesian Treatment of Linear Gaussian Regression Frank Wood December 3, 2009 Bayesian Approach to Classical Linear Regression In classical linear regression we have the following model y β, σ 2, X N(Xβ,

More information

Integrating Correlated Bayesian Networks Using Maximum Entropy

Integrating Correlated Bayesian Networks Using Maximum Entropy Applied Mathematical Sciences, Vol. 5, 2011, no. 48, 2361-2371 Integrating Correlated Bayesian Networks Using Maximum Entropy Kenneth D. Jarman Pacific Northwest National Laboratory PO Box 999, MSIN K7-90

More information

Chapter 5. Bayesian Statistics

Chapter 5. Bayesian Statistics Chapter 5. Bayesian Statistics Principles of Bayesian Statistics Anything unknown is given a probability distribution, representing degrees of belief [subjective probability]. Degrees of belief [subjective

More information

Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models

Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models Matthew S. Johnson New York ASA Chapter Workshop CUNY Graduate Center New York, NY hspace1in December 17, 2009 December

More information

Bayesian Inference for Normal Mean

Bayesian Inference for Normal Mean Al Nosedal. University of Toronto. November 18, 2015 Likelihood of Single Observation The conditional observation distribution of y µ is Normal with mean µ and variance σ 2, which is known. Its density

More information

An Introduction to Bayesian Linear Regression

An Introduction to Bayesian Linear Regression An Introduction to Bayesian Linear Regression APPM 5720: Bayesian Computation Fall 2018 A SIMPLE LINEAR MODEL Suppose that we observe explanatory variables x 1, x 2,..., x n and dependent variables y 1,

More information

SOLUTION FOR HOMEWORK 6, STAT 6331

SOLUTION FOR HOMEWORK 6, STAT 6331 SOLUTION FOR HOMEWORK 6, STAT 633. Exerc.7.. It is given that X,...,X n is a sample from N(θ, σ ), and the Bayesian approach is used with Θ N(µ, τ ). The parameters σ, µ and τ are given. (a) Find the joinf

More information

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016

The Normal Linear Regression Model with Natural Conjugate Prior. March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior March 7, 2016 The Normal Linear Regression Model with Natural Conjugate Prior The plan Estimate simple regression model using Bayesian methods

More information

Variational Principal Components

Variational Principal Components Variational Principal Components Christopher M. Bishop Microsoft Research 7 J. J. Thomson Avenue, Cambridge, CB3 0FB, U.K. cmbishop@microsoft.com http://research.microsoft.com/ cmbishop In Proceedings

More information

The comparative studies on reliability for Rayleigh models

The comparative studies on reliability for Rayleigh models Journal of the Korean Data & Information Science Society 018, 9, 533 545 http://dx.doi.org/10.7465/jkdi.018.9..533 한국데이터정보과학회지 The comparative studies on reliability for Rayleigh models Ji Eun Oh 1 Joong

More information

A Derivation of the EM Updates for Finding the Maximum Likelihood Parameter Estimates of the Student s t Distribution

A Derivation of the EM Updates for Finding the Maximum Likelihood Parameter Estimates of the Student s t Distribution A Derivation of the EM Updates for Finding the Maximum Likelihood Parameter Estimates of the Student s t Distribution Carl Scheffler First draft: September 008 Contents The Student s t Distribution The

More information

Introduction to Bayesian Inference

Introduction to Bayesian Inference University of Pennsylvania EABCN Training School May 10, 2016 Bayesian Inference Ingredients of Bayesian Analysis: Likelihood function p(y φ) Prior density p(φ) Marginal data density p(y ) = p(y φ)p(φ)dφ

More information

Multivariate Normal & Wishart

Multivariate Normal & Wishart Multivariate Normal & Wishart Hoff Chapter 7 October 21, 2010 Reading Comprehesion Example Twenty-two children are given a reading comprehsion test before and after receiving a particular instruction method.

More information

Bayesian Inference for Regression Parameters

Bayesian Inference for Regression Parameters Bayesian Inference for Regression Parameters 1 Bayesian inference for simple linear regression parameters follows the usual pattern for all Bayesian analyses: 1. Form a prior distribution over all unknown

More information

Chapter 8: Sampling distributions of estimators Sections

Chapter 8: Sampling distributions of estimators Sections Chapter 8: Sampling distributions of estimators Sections 8.1 Sampling distribution of a statistic 8.2 The Chi-square distributions 8.3 Joint Distribution of the sample mean and sample variance Skip: p.

More information

Bayesian Inference for the Multivariate Normal

Bayesian Inference for the Multivariate Normal Bayesian Inference for the Multivariate Normal Will Penny Wellcome Trust Centre for Neuroimaging, University College, London WC1N 3BG, UK. November 28, 2014 Abstract Bayesian inference for the multivariate

More information

The exponential family: Conjugate priors

The exponential family: Conjugate priors Chapter 9 The exponential family: Conjugate priors Within the Bayesian framework the parameter θ is treated as a random quantity. This requires us to specify a prior distribution p(θ), from which we can

More information

Part III. A Decision-Theoretic Approach and Bayesian testing

Part III. A Decision-Theoretic Approach and Bayesian testing Part III A Decision-Theoretic Approach and Bayesian testing 1 Chapter 10 Bayesian Inference as a Decision Problem The decision-theoretic framework starts with the following situation. We would like to

More information

Curve Fitting Re-visited, Bishop1.2.5

Curve Fitting Re-visited, Bishop1.2.5 Curve Fitting Re-visited, Bishop1.2.5 Maximum Likelihood Bishop 1.2.5 Model Likelihood differentiation p(t x, w, β) = Maximum Likelihood N N ( t n y(x n, w), β 1). (1.61) n=1 As we did in the case of the

More information

Variational Bayes. A key quantity in Bayesian inference is the marginal likelihood of a set of data D given a model M

Variational Bayes. A key quantity in Bayesian inference is the marginal likelihood of a set of data D given a model M A key quantity in Bayesian inference is the marginal likelihood of a set of data D given a model M PD M = PD θ, MPθ Mdθ Lecture 14 : Variational Bayes where θ are the parameters of the model and Pθ M is

More information

I. Bayesian econometrics

I. Bayesian econometrics I. Bayesian econometrics A. Introduction B. Bayesian inference in the univariate regression model C. Statistical decision theory Question: once we ve calculated the posterior distribution, what do we do

More information

Homework 1: Solution

Homework 1: Solution University of California, Santa Cruz Department of Applied Mathematics and Statistics Baskin School of Engineering Classical and Bayesian Inference - AMS 3 Homework : Solution. Suppose that the number

More information

Lecture 8 October Bayes Estimators and Average Risk Optimality

Lecture 8 October Bayes Estimators and Average Risk Optimality STATS 300A: Theory of Statistics Fall 205 Lecture 8 October 5 Lecturer: Lester Mackey Scribe: Hongseok Namkoong, Phan Minh Nguyen Warning: These notes may contain factual and/or typographic errors. 8.

More information

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain

f(x θ)dx with respect to θ. Assuming certain smoothness conditions concern differentiating under the integral the integral sign, we first obtain 0.1. INTRODUCTION 1 0.1 Introduction R. A. Fisher, a pioneer in the development of mathematical statistics, introduced a measure of the amount of information contained in an observaton from f(x θ). Fisher

More information

Bayesian statistics, simulation and software

Bayesian statistics, simulation and software Module 10: Bayesian prediction and model checking Department of Mathematical Sciences Aalborg University 1/15 Prior predictions Suppose we want to predict future data x without observing any data x. Assume:

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 425: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 2017 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 1) Fall 2017 1 / 10 Lecture 7: Prior Types Subjective

More information

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator

Estimation Theory. as Θ = (Θ 1,Θ 2,...,Θ m ) T. An estimator Estimation Theory Estimation theory deals with finding numerical values of interesting parameters from given set of data. We start with formulating a family of models that could describe how the data were

More information

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference

Bayesian Estimation of DSGE Models 1 Chapter 3: A Crash Course in Bayesian Inference 1 The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System. Bayesian Estimation of DSGE

More information

10. Exchangeability and hierarchical models Objective. Recommended reading

10. Exchangeability and hierarchical models Objective. Recommended reading 10. Exchangeability and hierarchical models Objective Introduce exchangeability and its relation to Bayesian hierarchical models. Show how to fit such models using fully and empirical Bayesian methods.

More information

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition.

The Bayesian Choice. Christian P. Robert. From Decision-Theoretic Foundations to Computational Implementation. Second Edition. Christian P. Robert The Bayesian Choice From Decision-Theoretic Foundations to Computational Implementation Second Edition With 23 Illustrations ^Springer" Contents Preface to the Second Edition Preface

More information

Lecture 7 October 13

Lecture 7 October 13 STATS 300A: Theory of Statistics Fall 2015 Lecture 7 October 13 Lecturer: Lester Mackey Scribe: Jing Miao and Xiuyuan Lu 7.1 Recap So far, we have investigated various criteria for optimal inference. We

More information

Statistical Inference: Maximum Likelihood and Bayesian Approaches

Statistical Inference: Maximum Likelihood and Bayesian Approaches Statistical Inference: Maximum Likelihood and Bayesian Approaches Surya Tokdar From model to inference So a statistical analysis begins by setting up a model {f (x θ) : θ Θ} for data X. Next we observe

More information

Econ 2140, spring 2018, Part IIa Statistical Decision Theory

Econ 2140, spring 2018, Part IIa Statistical Decision Theory Econ 2140, spring 2018, Part IIa Maximilian Kasy Department of Economics, Harvard University 1 / 35 Examples of decision problems Decide whether or not the hypothesis of no racial discrimination in job

More information

The Bayesian Approach to Multi-equation Econometric Model Estimation

The Bayesian Approach to Multi-equation Econometric Model Estimation Journal of Statistical and Econometric Methods, vol.3, no.1, 2014, 85-96 ISSN: 2241-0384 (print), 2241-0376 (online) Scienpress Ltd, 2014 The Bayesian Approach to Multi-equation Econometric Model Estimation

More information

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30

Random Vectors 1. STA442/2101 Fall See last slide for copyright information. 1 / 30 Random Vectors 1 STA442/2101 Fall 2017 1 See last slide for copyright information. 1 / 30 Background Reading: Renscher and Schaalje s Linear models in statistics Chapter 3 on Random Vectors and Matrices

More information

Conjugate Predictive Distributions and Generalized Entropies

Conjugate Predictive Distributions and Generalized Entropies Conjugate Predictive Distributions and Generalized Entropies Eduardo Gutiérrez-Peña Department of Probability and Statistics IIMAS-UNAM, Mexico Padova, Italy. 21-23 March, 2013 Menu 1 Antipasto/Appetizer

More information

Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18)

Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18) Economics 240A, Section 3: Short and Long Regression (Ch. 17) and the Multivariate Normal Distribution (Ch. 18) MichaelR.Roberts Department of Economics and Department of Statistics University of California

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Chapter 7 Maximum Likelihood Estimation 7. Consistency If X is a random variable (or vector) with density or mass function f θ (x) that depends on a parameter θ, then the function f θ (X) viewed as a function

More information

Joint p.d.f. and Independent Random Variables

Joint p.d.f. and Independent Random Variables 1 Joint p.d.f. and Independent Random Variables Let X and Y be two discrete r.v. s and let R be the corresponding space of X and Y. The joint p.d.f. of X = x and Y = y, denoted by f(x, y) = P(X = x, Y

More information

An Extended BIC for Model Selection

An Extended BIC for Model Selection An Extended BIC for Model Selection at the JSM meeting 2007 - Salt Lake City Surajit Ray Boston University (Dept of Mathematics and Statistics) Joint work with James Berger, Duke University; Susie Bayarri,

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Partitioning the Parameter Space. Topic 18 Composite Hypotheses

Partitioning the Parameter Space. Topic 18 Composite Hypotheses Topic 18 Composite Hypotheses Partitioning the Parameter Space 1 / 10 Outline Partitioning the Parameter Space 2 / 10 Partitioning the Parameter Space Simple hypotheses limit us to a decision between one

More information

One-parameter models

One-parameter models One-parameter models Patrick Breheny January 22 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/17 Introduction Binomial data is not the only example in which Bayesian solutions can be worked

More information

Introduction to Bayesian Methods. Introduction to Bayesian Methods p.1/??

Introduction to Bayesian Methods. Introduction to Bayesian Methods p.1/?? to Bayesian Methods Introduction to Bayesian Methods p.1/?? We develop the Bayesian paradigm for parametric inference. To this end, suppose we conduct (or wish to design) a study, in which the parameter

More information

EXERCISES FOR SECTION 1 AND 2

EXERCISES FOR SECTION 1 AND 2 EXERCISES FOR SECTION AND Exercise. (Conditional probability). Suppose that if θ, then y has a normal distribution with mean and standard deviation σ, and if θ, then y has a normal distribution with mean

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 10 Alternatives to Monte Carlo Computation Since about 1990, Markov chain Monte Carlo has been the dominant

More information

Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed

Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed 18.466 Notes, March 4, 2013, R. Dudley Maximum likelihood estimation: actual or supposed 1. MLEs in exponential families Let f(x,θ) for x X and θ Θ be a likelihood function, that is, for present purposes,

More information

Machine learning - HT Maximum Likelihood

Machine learning - HT Maximum Likelihood Machine learning - HT 2016 3. Maximum Likelihood Varun Kanade University of Oxford January 27, 2016 Outline Probabilistic Framework Formulate linear regression in the language of probability Introduce

More information

Approximating mixture distributions using finite numbers of components

Approximating mixture distributions using finite numbers of components Approximating mixture distributions using finite numbers of components Christian Röver and Tim Friede Department of Medical Statistics University Medical Center Göttingen March 17, 2016 This project has

More information

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course

Bayesian Inference. Chris Mathys Wellcome Trust Centre for Neuroimaging UCL. London SPM Course Bayesian Inference Chris Mathys Wellcome Trust Centre for Neuroimaging UCL London SPM Course Thanks to Jean Daunizeau and Jérémie Mattout for previous versions of this talk A spectacular piece of information

More information