Confidence is epistemic probability

Size: px
Start display at page:

Download "Confidence is epistemic probability"

Transcription

1 Confidence is epistemic probability Tore Schweder Dept of Economics University of Oslo Oslo Workshop, 11. May 2015 Oslo Workshop, 11. May /

2 Overview 1662 Confidence is epistemic probability Confidence distributions Confidence distributions do not obey the laws of probability Neyman-Pearson for confidence distributions Example: Fieller confidence Example: Combining two independent posteriors for climate sensitivity Example: What to add to nothing? A mathematical theory of confidence? Confidence distribution - the Fisherian synthesis Oslo Workshop, 11. May /

3 1662 Probability from the Latin probabilitas, a measure of the authority worthy of approbation (Hacking 1975). Wahrscheinlichkeit: Gewissheit von Vorhersagen, Sannsynlig: what seems true, earlier from what the authorities claim. By authority: before 1662 By (mathematical) reason after 1662 Oslo Workshop, 11. May /

4 Epistemic and aleatory probability Liber de ludo aleae (Book on games of chance, Girolamo Cardano 1663) An aleatory probability is a property of frequency in nature or society Epistemic: according to knowledge. The 95% confidence interval for the Newtonian gravitational constant G based on the CODATA 2010 is (6.6723, ) in appropriate units (Milyukov and Fan, 2012). is an epistemic probability. P( G ) = 0.95 Oslo Workshop, 11. May /

5 Confidence distributions (CD) Definition (Dimension 1) C(θ; X ) is cdf of a CD when C(θ; x) is a cdf in θ for all x and C(θ 0 ; X ) U(0, 1) when X f θ0 confidence curve cc(θ) = 2C(θ) 1 : cc(θ 0, X ) U Definition (Dimension 1) cc(θ; X ) is a confidence curve of a CD when min(cc(θ)) = 0, cc(θ; x) : θ [0, 1] for all x and cc(θ 0 ; X ) U(0, 1) when X f θ0 the level curve at β, {θ : cc(θ) β} is a confidence region of level β the mutinormal CD has many different confidence curves: ellipsoidic K p ((µ ˆµ) t Σ 1 (µ ˆµ)), rectangular in eigen-directions,... Oslo Workshop, 11. May /

6 Confidence curves for the probability of baby being small. Smoking mothers full line, non-smoking red dashed. Oslo Workshop, 11. May /

7 Loss, risk and optimality of CDs The less dispersed a CD is the more informative it is. Measure dispersion of C(ψ, y) by convex functions Γ(ψ) 0, Γ(0) = 0: loss: lo(ψ, C, x) = Γ(ψ ψ)c(dψ, x) risk: R(ψ, C) = E[lo(ψ, C, X )] Theorem (Neyman-Pearson for confidence distributions) A confidence distribution C based on a sufficient statistic in which the likelihood ratio is everywhere increasing, is uniformly optimal: P(lo(ψ, C, X ) lo(psi, C, X )) = 1 for all C and all Γ Lemma (Otimality of conditional CD in exponential families) When l(θ) = θ t s + k(θ), θ t = (ψ, θ 2,, θ d ) the conditional CD based on S 1 given S 2,, S d is uniformly optimal. Oslo Workshop, 11. May /

8 Confidence distributions do not in general obey Kolmogorov s laws of probability Length problem, d = 1: X N(µ, 1), C(µ) = Φ(µ X ). For ψ = µ, the derived distribution F (ψ; X ) = Φ(ψ X ) Φ( ψ X ) is not a CD since e.g. F (1; X ) is not uniformly distributed when X N(1, 1). length problem d > 1: X N d (µ, I ). Then N d (X, I ) is the confidence distribution for µ and K d (ψ; ncp = X 2 ) is the derived distribution for ψ = µ 2, the non-central chi-sq. K d (ψ, X 2 ) < U(0, 1) stochastically. Distributions for derived parameters ψ = g(µ, σ) are obtained from the natural confidence distribution from a normal sample for (µ, σ) by integration. Only for linear parameters ψ = aµ + bσ are these confidence distributions (Pedersen 1978). Oslo Workshop, 11. May /

9 Example: The Fieller confidence distribution for a ratio â N(a, σ1 2), ˆb N(b, σ2 2 ). The profile deviance for the ratio ψ = a/b is D = (â ψˆb) 2, V (ψ) = σ1 2 + ψ 2 σ2 2 : V (ψ) cc(ψ) = K(D(ψ); df = 1) For â = 1.333, ˆb =.333, ˆψ = 4.003, σ 1 = σ 2 = 1 Oslo Workshop, 11. May /

10 Example: Combining two independent posterior distributions of the climate sensitivity Nicholas Lewis 2015 The climate sensitivity ψ is the increase in global surface temperature resulting from doubling the amount of carbon dioxide in the atmosphere. IPCC Fifth Assessment Report gives Bayesian posteriors, p 1 (ψ) based on paleo-data and p 2 (ψ) based on direct measurements. Independent! ψ is really a ratio a/b. If estimated from independent normals, the posterior (flat priors for a, b): p(ψ) = ˆbσ âσ2 2 ψ V (ψ) 3/2 φ( â ψˆb V (ψ) 1/2 ) Lewis found this to fit both the paleo posterior and the instrument posterior (4 parameters). Oslo Workshop, 11. May /

11 Figure 10-20b in IPCC-AR5, posteriors for climate sensitivity Oslo Workshop, 11. May /

12 Profile deviances and combined confidence curve The recovered profile deviances are D i (ψ) = (â i ψˆb i ) 2, i = paleo, instr. ˆV i (ψ) This is also the implied likelihood of Efron (1993), L = exp( 1 2 (Φ 1 (C(ψ))) 2 ). Combined deviance D comb (ψ) = D paleo + D instr min (D paleo + D instr ) resulting in the confidence curve cc(ψ) = K 1 (D comb (ψ)). Oslo Workshop, 11. May /

13 Example: More heart attacks when using an antidiabetic drug? Nissen and Wolski (2007) considered 48 independent trials with Y i,treated deaths out of m i,treated and Y i,control deaths out of m i,control, i = 1,, 48. Binomial model, p i,control p i,treated θ i = log( ), θ i + ψ = log( ) 1 p i,control 1 p i,treated Exponential family model with Optimal CD S 1 = Y i,treated, S i+1 = Y i,treated + Y i,control. C(ψ) = P ψ (S 1 > s 1,obs s 2,obs,, s 49,obs )+ 1 2 P ψ(s 1 = s 1,obs s 2,obs,, s 49,obs 8 of the 48 triasl had Y treated = Y control = 0. They drop out of the CD. You should add nothing to nothing (Sweeting et. al (2004))! Oslo Workshop, 11. May /

14 40 individual CDs for ψ and an optimally combined CD Oslo Workshop, 11. May /

15 A mathematical theory of confidence (fiducial probability)? Two attempts Pitman (1939,1957) suggested to restrict the sets over which a confidence distribution can be integrated for the result to be a confidence Hacking (1965) suggested two principles The Frequency Principle: support for a statement is the probability of the statement being true. The Principle of Irrelevance: irrelevant information should not alter the support for a proposition. Implying that only models that can be transformed to location form can yield a confidence distribution. Oslo Workshop, 11. May /

16 Conclusion Confidence distribution is the appropriate concept of epistemic probability for empirical science. It is the Fisherian compromise between Bayesianisme and frequentisme. Oslo Workshop, 11. May /

17 Conclusion Confidence distribution is the appropriate concept of epistemic probability for empirical science. It is the Fisherian compromise between Bayesianisme and frequentisme. Efron (1998): My actual guess is that the old Fisher will have a very good 21st century. The world of applied statistics seems to need an effective compromise between Bayesian and frequentist ideas, and right now there is no substitute in sight for the Fisherian synthesis. Oslo Workshop, 11. May /

18 Conclusion Confidence distribution is the appropriate concept of epistemic probability for empirical science. It is the Fisherian compromise between Bayesianisme and frequentisme. Efron (1998): My actual guess is that the old Fisher will have a very good 21st century. The world of applied statistics seems to need an effective compromise between Bayesian and frequentist ideas, and right now there is no substitute in sight for the Fisherian synthesis. But a mathematical theory for epistemic probability calculus for empirical science is needed. The math of epistemic probability has been neglected! (Fine 1977 when reviewing Shafer 1977). Oslo Workshop, 11. May /

19 References Hacking, I. M.(1975, 2006). The Emergence of Probability: A Philosophical Study of Early Ideas About Probability, Induction and Statistical Inference. Cambridge University Press, Cambridge. This is the third edition of the book, with an extended preface. Efron, B. (1998). R.A. Fisher in the 21st century [with discussion and a rejoinder]. Statistical Science, 13: Fine, T. L. (1977). Book review of Shafer: A mathematical theory of evidence. Bulletin of the American Statistical Society, 83: Hacking, I. M. (1965). Logic of Statistical Inference. Cambridge University Press, Cambridge. Lewis, N. (2015). Objectively combining instrumental period and paleoclimate sensitivity evidence. Unpublished Milyukov, V. and Fan, S.-H. (2012). The Newtonian gravitational constant: Modern status of measurement and the new CODATA value. Gravitation and Cosmology, 18: Nissen, S. E. and Wolski, K. (2007). Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. The New England Journal of Medicine, 356: Pedersen, J. G. (1978). Fiducial inference. International Statistical Review, 146: Pitman, E. J. G. (1939). The estimation of location and scale parameters of a continuous population of any given form. Biometrika, 30: Pitman, E. J. G. (1957). Statistics and science. Journal of the American Statistical Association, 52: Schweder, T. and Hjort, N. L. (2015). Confidence, Likelihood, Probability: Statistical inference with confidence distributions. Cambridge University Press. Forthcoming Sweeting, M. J., Sutton, A. J., and Lambert, P. C. (2004). What to add to nothing? Use and avoidance of continuity corrections in meta-analysis of sparse data. Statistics in Medicine, 23: Oslo Workshop, 11. May 2015 /

Combining diverse information sources with the II-CC-FF paradigm

Combining diverse information sources with the II-CC-FF paradigm Combining diverse information sources with the II-CC-FF paradigm Céline Cunen (joint work with Nils Lid Hjort) University of Oslo 18/07/2017 1/25 The Problem - Combination of information We have independent

More information

Data Fusion with Confidence Curves: The II-CC-FF Paradigm

Data Fusion with Confidence Curves: The II-CC-FF Paradigm 1/23 Data Fusion with Confidence Curves: The II-CC-FF Paradigm Nils Lid Hjort (with Céline Cunen) Department of Mathematics, University of Oslo BFF4, Harvard, May 2017 2/23 The problem: Combining information

More information

Topic 19 Extensions on the Likelihood Ratio

Topic 19 Extensions on the Likelihood Ratio Topic 19 Extensions on the Likelihood Ratio Two-Sided Tests 1 / 12 Outline Overview Normal Observations Power Analysis 2 / 12 Overview The likelihood ratio test is a popular choice for composite hypothesis

More information

Confidence Distribution

Confidence Distribution Confidence Distribution Xie and Singh (2013): Confidence distribution, the frequentist distribution estimator of a parameter: A Review Céline Cunen, 15/09/2014 Outline of Article Introduction The concept

More information

BFF Four: Are we Converging?

BFF Four: Are we Converging? BFF Four: Are we Converging? Nancy Reid May 2, 2017 Classical Approaches: A Look Way Back Nature of Probability BFF one to three: a look back Comparisons Are we getting there? BFF Four Harvard, May 2017

More information

The Jeffreys Prior. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) The Jeffreys Prior MATH / 13

The Jeffreys Prior. Yingbo Li MATH Clemson University. Yingbo Li (Clemson) The Jeffreys Prior MATH / 13 The Jeffreys Prior Yingbo Li Clemson University MATH 9810 Yingbo Li (Clemson) The Jeffreys Prior MATH 9810 1 / 13 Sir Harold Jeffreys English mathematician, statistician, geophysicist, and astronomer His

More information

Confidence distributions in statistical inference

Confidence distributions in statistical inference Confidence distributions in statistical inference Sergei I. Bityukov Institute for High Energy Physics, Protvino, Russia Nikolai V. Krasnikov Institute for Nuclear Research RAS, Moscow, Russia Motivation

More information

Unobservable Parameter. Observed Random Sample. Calculate Posterior. Choosing Prior. Conjugate prior. population proportion, p prior:

Unobservable Parameter. Observed Random Sample. Calculate Posterior. Choosing Prior. Conjugate prior. population proportion, p prior: Pi Priors Unobservable Parameter population proportion, p prior: π ( p) Conjugate prior π ( p) ~ Beta( a, b) same PDF family exponential family only Posterior π ( p y) ~ Beta( a + y, b + n y) Observed

More information

My talk concerns estimating a fixed but unknown, continuously valued parameter, linked to data by a statistical model. I focus on contrasting

My talk concerns estimating a fixed but unknown, continuously valued parameter, linked to data by a statistical model. I focus on contrasting 1 My talk concerns estimating a fixed but unknown, continuously valued parameter, linked to data by a statistical model. I focus on contrasting Subjective and Objective Bayesian parameter estimation methods

More information

Irr. Statistical Methods in Experimental Physics. 2nd Edition. Frederick James. World Scientific. CERN, Switzerland

Irr. Statistical Methods in Experimental Physics. 2nd Edition. Frederick James. World Scientific. CERN, Switzerland Frederick James CERN, Switzerland Statistical Methods in Experimental Physics 2nd Edition r i Irr 1- r ri Ibn World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI CHENNAI CONTENTS

More information

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes

Hypothesis Test. The opposite of the null hypothesis, called an alternative hypothesis, becomes Neyman-Pearson paradigm. Suppose that a researcher is interested in whether the new drug works. The process of determining whether the outcome of the experiment points to yes or no is called hypothesis

More information

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio Estimation of reliability parameters from Experimental data (Parte 2) This lecture Life test (t 1,t 2,...,t n ) Estimate θ of f T t θ For example: λ of f T (t)= λe - λt Classical approach (frequentist

More information

Principles of Statistical Inference

Principles of Statistical Inference Principles of Statistical Inference Nancy Reid and David Cox August 30, 2013 Introduction Statistics needs a healthy interplay between theory and applications theory meaning Foundations, rather than theoretical

More information

Principles of Statistical Inference

Principles of Statistical Inference Principles of Statistical Inference Nancy Reid and David Cox August 30, 2013 Introduction Statistics needs a healthy interplay between theory and applications theory meaning Foundations, rather than theoretical

More information

A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling

A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling A union of Bayesian, frequentist and fiducial inferences by confidence distribution and artificial data sampling Min-ge Xie Department of Statistics, Rutgers University Workshop on Higher-Order Asymptotics

More information

Derivation of Monotone Likelihood Ratio Using Two Sided Uniformly Normal Distribution Techniques

Derivation of Monotone Likelihood Ratio Using Two Sided Uniformly Normal Distribution Techniques Vol:7, No:0, 203 Derivation of Monotone Likelihood Ratio Using Two Sided Uniformly Normal Distribution Techniques D. A. Farinde International Science Index, Mathematical and Computational Sciences Vol:7,

More information

Likelihood inference in the presence of nuisance parameters

Likelihood inference in the presence of nuisance parameters Likelihood inference in the presence of nuisance parameters Nancy Reid, University of Toronto www.utstat.utoronto.ca/reid/research 1. Notation, Fisher information, orthogonal parameters 2. Likelihood inference

More information

Theory of Probability Sir Harold Jeffreys Table of Contents

Theory of Probability Sir Harold Jeffreys Table of Contents Theory of Probability Sir Harold Jeffreys Table of Contents I. Fundamental Notions 1.0 [Induction and its relation to deduction] 1 1.1 [Principles of inductive reasoning] 8 1.2 [Axioms for conditional

More information

Frequentist-Bayesian Model Comparisons: A Simple Example

Frequentist-Bayesian Model Comparisons: A Simple Example Frequentist-Bayesian Model Comparisons: A Simple Example Consider data that consist of a signal y with additive noise: Data vector (N elements): D = y + n The additive noise n has zero mean and diagonal

More information

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn

Parameter estimation and forecasting. Cristiano Porciani AIfA, Uni-Bonn Parameter estimation and forecasting Cristiano Porciani AIfA, Uni-Bonn Questions? C. Porciani Estimation & forecasting 2 Temperature fluctuations Variance at multipole l (angle ~180o/l) C. Porciani Estimation

More information

8: Hypothesis Testing

8: Hypothesis Testing Some definitions 8: Hypothesis Testing. Simple, compound, null and alternative hypotheses In test theory one distinguishes between simple hypotheses and compound hypotheses. A simple hypothesis Examples:

More information

Symmetric Probability Theory

Symmetric Probability Theory Symmetric Probability Theory Kurt Weichselberger, Munich I. The Project p. 2 II. The Theory of Interval Probability p. 4 III. The Logical Concept of Probability p. 6 IV. Inference p. 11 Kurt.Weichselberger@stat.uni-muenchen.de

More information

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1,

Economics 520. Lecture Note 19: Hypothesis Testing via the Neyman-Pearson Lemma CB 8.1, Economics 520 Lecture Note 9: Hypothesis Testing via the Neyman-Pearson Lemma CB 8., 8.3.-8.3.3 Uniformly Most Powerful Tests and the Neyman-Pearson Lemma Let s return to the hypothesis testing problem

More information

Fiducial Inference and Generalizations

Fiducial Inference and Generalizations Fiducial Inference and Generalizations Jan Hannig Department of Statistics and Operations Research The University of North Carolina at Chapel Hill Hari Iyer Department of Statistics, Colorado State University

More information

Lecture 20 May 18, Empirical Bayes Interpretation [Efron & Morris 1973]

Lecture 20 May 18, Empirical Bayes Interpretation [Efron & Morris 1973] Stats 300C: Theory of Statistics Spring 2018 Lecture 20 May 18, 2018 Prof. Emmanuel Candes Scribe: Will Fithian and E. Candes 1 Outline 1. Stein s Phenomenon 2. Empirical Bayes Interpretation of James-Stein

More information

14.30 Introduction to Statistical Methods in Economics Spring 2009

14.30 Introduction to Statistical Methods in Economics Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 4.0 Introduction to Statistical Methods in Economics Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Controlling Bayes Directional False Discovery Rate in Random Effects Model 1

Controlling Bayes Directional False Discovery Rate in Random Effects Model 1 Controlling Bayes Directional False Discovery Rate in Random Effects Model 1 Sanat K. Sarkar a, Tianhui Zhou b a Temple University, Philadelphia, PA 19122, USA b Wyeth Pharmaceuticals, Collegeville, PA

More information

Hypothesis Testing. BS2 Statistical Inference, Lecture 11 Michaelmas Term Steffen Lauritzen, University of Oxford; November 15, 2004

Hypothesis Testing. BS2 Statistical Inference, Lecture 11 Michaelmas Term Steffen Lauritzen, University of Oxford; November 15, 2004 Hypothesis Testing BS2 Statistical Inference, Lecture 11 Michaelmas Term 2004 Steffen Lauritzen, University of Oxford; November 15, 2004 Hypothesis testing We consider a family of densities F = {f(x; θ),

More information

Charles Geyer University of Minnesota. joint work with. Glen Meeden University of Minnesota.

Charles Geyer University of Minnesota. joint work with. Glen Meeden University of Minnesota. Fuzzy Confidence Intervals and P -values Charles Geyer University of Minnesota joint work with Glen Meeden University of Minnesota http://www.stat.umn.edu/geyer/fuzz 1 Ordinary Confidence Intervals OK

More information

Bayesian parameter estimation with weak data and when combining evidence: the case of climate sensitivity

Bayesian parameter estimation with weak data and when combining evidence: the case of climate sensitivity Bayesian parameter estimation with weak data and when combining evidence: the case of climate sensitivity Nicholas Lewis Independent climate scientist CliMathNet 5 July 2016 Main areas to be discussed

More information

Nuisance parameters and their treatment

Nuisance parameters and their treatment BS2 Statistical Inference, Lecture 2, Hilary Term 2008 April 2, 2008 Ancillarity Inference principles Completeness A statistic A = a(x ) is said to be ancillary if (i) The distribution of A does not depend

More information

A simple analysis of the exact probability matching prior in the location-scale model

A simple analysis of the exact probability matching prior in the location-scale model A simple analysis of the exact probability matching prior in the location-scale model Thomas J. DiCiccio Department of Social Statistics, Cornell University Todd A. Kuffner Department of Mathematics, Washington

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models SCHOOL OF MATHEMATICS AND STATISTICS Linear and Generalised Linear Models Autumn Semester 2017 18 2 hours Attempt all the questions. The allocation of marks is shown in brackets. RESTRICTED OPEN BOOK EXAMINATION

More information

New Bayesian methods for model comparison

New Bayesian methods for model comparison Back to the future New Bayesian methods for model comparison Murray Aitkin murray.aitkin@unimelb.edu.au Department of Mathematics and Statistics The University of Melbourne Australia Bayesian Model Comparison

More information

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015

STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots. March 8, 2015 STAT 135 Lab 6 Duality of Hypothesis Testing and Confidence Intervals, GLRT, Pearson χ 2 Tests and Q-Q plots March 8, 2015 The duality between CI and hypothesis testing The duality between CI and hypothesis

More information

Topic 12 Overview of Estimation

Topic 12 Overview of Estimation Topic 12 Overview of Estimation Classical Statistics 1 / 9 Outline Introduction Parameter Estimation Classical Statistics Densities and Likelihoods 2 / 9 Introduction In the simplest possible terms, the

More information

Harvard University. Harvard University Biostatistics Working Paper Series

Harvard University. Harvard University Biostatistics Working Paper Series Harvard University Harvard University Biostatistics Working Paper Series Year 2008 Paper 94 The Highest Confidence Density Region and Its Usage for Inferences about the Survival Function with Censored

More information

Modern Likelihood-Frequentist Inference. Donald A Pierce, OHSU and Ruggero Bellio, Univ of Udine

Modern Likelihood-Frequentist Inference. Donald A Pierce, OHSU and Ruggero Bellio, Univ of Udine Modern Likelihood-Frequentist Inference Donald A Pierce, OHSU and Ruggero Bellio, Univ of Udine Shortly before 1980, important developments in frequency theory of inference were in the air. Strictly, this

More information

Lecture 15. Hypothesis testing in the linear model

Lecture 15. Hypothesis testing in the linear model 14. Lecture 15. Hypothesis testing in the linear model Lecture 15. Hypothesis testing in the linear model 1 (1 1) Preliminary lemma 15. Hypothesis testing in the linear model 15.1. Preliminary lemma Lemma

More information

Approximating models. Nancy Reid, University of Toronto. Oxford, February 6.

Approximating models. Nancy Reid, University of Toronto. Oxford, February 6. Approximating models Nancy Reid, University of Toronto Oxford, February 6 www.utstat.utoronto.reid/research 1 1. Context Likelihood based inference model f(y; θ), log likelihood function l(θ; y) y = (y

More information

Introduction to Bayesian Methods

Introduction to Bayesian Methods Introduction to Bayesian Methods Jessi Cisewski Department of Statistics Yale University Sagan Summer Workshop 2016 Our goal: introduction to Bayesian methods Likelihoods Priors: conjugate priors, non-informative

More information

1. Introduction and non-bayesian inference

1. Introduction and non-bayesian inference 1. Introduction and non-bayesian inference Objective Introduce the different objective and subjective interpretations of probability. Examine the various non-bayesian treatments of statistical inference

More information

Reports of the Institute of Biostatistics

Reports of the Institute of Biostatistics Reports of the Institute of Biostatistics No 02 / 2008 Leibniz University of Hannover Natural Sciences Faculty Title: Properties of confidence intervals for the comparison of small binomial proportions

More information

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics Table of Preface page xi PART I INTRODUCTION 1 1 The meaning of probability 3 1.1 Classical definition of probability 3 1.2 Statistical definition of probability 9 1.3 Bayesian understanding of probability

More information

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring

A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring Lecture 8 A6523 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Spring 2015 http://www.astro.cornell.edu/~cordes/a6523 Applications: Bayesian inference: overview and examples Introduction

More information

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes:

Practice Exam 1. (A) (B) (C) (D) (E) You are given the following data on loss sizes: Practice Exam 1 1. Losses for an insurance coverage have the following cumulative distribution function: F(0) = 0 F(1,000) = 0.2 F(5,000) = 0.4 F(10,000) = 0.9 F(100,000) = 1 with linear interpolation

More information

Brief Review on Estimation Theory

Brief Review on Estimation Theory Brief Review on Estimation Theory K. Abed-Meraim ENST PARIS, Signal and Image Processing Dept. abed@tsi.enst.fr This presentation is essentially based on the course BASTA by E. Moulines Brief review on

More information

The dark energ ASTR509 - y 2 puzzl e 2. Probability ASTR509 Jasper Wal Fal term

The dark energ ASTR509 - y 2 puzzl e 2. Probability ASTR509 Jasper Wal Fal term The ASTR509 dark energy - 2 puzzle 2. Probability ASTR509 Jasper Wall Fall term 2013 1 The Review dark of energy lecture puzzle 1 Science is decision - we must work out how to decide Decision is by comparing

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2009 Prof. Gesine Reinert Our standard situation is that we have data x = x 1, x 2,..., x n, which we view as realisations of random

More information

HANDBOOK OF APPLICABLE MATHEMATICS

HANDBOOK OF APPLICABLE MATHEMATICS HANDBOOK OF APPLICABLE MATHEMATICS Chief Editor: Walter Ledermann Volume VI: Statistics PART A Edited by Emlyn Lloyd University of Lancaster A Wiley-Interscience Publication JOHN WILEY & SONS Chichester

More information

Frequentist Accuracy of Bayesian Estimates

Frequentist Accuracy of Bayesian Estimates Frequentist Accuracy of Bayesian Estimates Bradley Efron Stanford University RSS Journal Webinar Objective Bayesian Inference Probability family F = {f µ (x), µ Ω} Parameter of interest: θ = t(µ) Prior

More information

PhD Qualifying Examination Department of Statistics, University of Florida

PhD Qualifying Examination Department of Statistics, University of Florida PhD Qualifying xamination Department of Statistics, University of Florida January 24, 2003, 8:00 am - 12:00 noon Instructions: 1 You have exactly four hours to answer questions in this examination 2 There

More information

Module 22: Bayesian Methods Lecture 9 A: Default prior selection

Module 22: Bayesian Methods Lecture 9 A: Default prior selection Module 22: Bayesian Methods Lecture 9 A: Default prior selection Peter Hoff Departments of Statistics and Biostatistics University of Washington Outline Jeffreys prior Unit information priors Empirical

More information

Primer on statistics:

Primer on statistics: Primer on statistics: MLE, Confidence Intervals, and Hypothesis Testing ryan.reece@gmail.com http://rreece.github.io/ Insight Data Science - AI Fellows Workshop Feb 16, 018 Outline 1. Maximum likelihood

More information

Mathematical Statistics

Mathematical Statistics Mathematical Statistics MAS 713 Chapter 8 Previous lecture: 1 Bayesian Inference 2 Decision theory 3 Bayesian Vs. Frequentist 4 Loss functions 5 Conjugate priors Any questions? Mathematical Statistics

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) T In 2 2 tables, statistical independence is equivalent to a population

More information

Conditional Inference by Estimation of a Marginal Distribution

Conditional Inference by Estimation of a Marginal Distribution Conditional Inference by Estimation of a Marginal Distribution Thomas J. DiCiccio and G. Alastair Young 1 Introduction Conditional inference has been, since the seminal work of Fisher (1934), a fundamental

More information

STAT 425: Introduction to Bayesian Analysis

STAT 425: Introduction to Bayesian Analysis STAT 425: Introduction to Bayesian Analysis Marina Vannucci Rice University, USA Fall 2017 Marina Vannucci (Rice University, USA) Bayesian Analysis (Part 1) Fall 2017 1 / 10 Lecture 7: Prior Types Subjective

More information

Uncertain Inference and Artificial Intelligence

Uncertain Inference and Artificial Intelligence March 3, 2011 1 Prepared for a Purdue Machine Learning Seminar Acknowledgement Prof. A. P. Dempster for intensive collaborations on the Dempster-Shafer theory. Jianchun Zhang, Ryan Martin, Duncan Ermini

More information

A Very Brief Summary of Statistical Inference, and Examples

A Very Brief Summary of Statistical Inference, and Examples A Very Brief Summary of Statistical Inference, and Examples Trinity Term 2008 Prof. Gesine Reinert 1 Data x = x 1, x 2,..., x n, realisations of random variables X 1, X 2,..., X n with distribution (model)

More information

4 Hypothesis testing. 4.1 Types of hypothesis and types of error 4 HYPOTHESIS TESTING 49

4 Hypothesis testing. 4.1 Types of hypothesis and types of error 4 HYPOTHESIS TESTING 49 4 HYPOTHESIS TESTING 49 4 Hypothesis testing In sections 2 and 3 we considered the problem of estimating a single parameter of interest, θ. In this section we consider the related problem of testing whether

More information

Objective Bayesian Statistical Inference

Objective Bayesian Statistical Inference Objective Bayesian Statistical Inference James O. Berger Duke University and the Statistical and Applied Mathematical Sciences Institute London, UK July 6-8, 2005 1 Preliminaries Outline History of objective

More information

Propagation of Uncertainties in Measurements: Generalized/ Fiducial Inference

Propagation of Uncertainties in Measurements: Generalized/ Fiducial Inference Propagation of Uncertainties in Measurements: Generalized/ Fiducial Inference Jack Wang & Hari Iyer NIST, USA NMIJ-BIPM Workshop, AIST-Tsukuba, Japan, May 18-20, 2005 p. 1/31 Frameworks for Quantifying

More information

Spring 2012 Math 541B Exam 1

Spring 2012 Math 541B Exam 1 Spring 2012 Math 541B Exam 1 1. A sample of size n is drawn without replacement from an urn containing N balls, m of which are red and N m are black; the balls are otherwise indistinguishable. Let X denote

More information

Mathematical foundations of Econometrics

Mathematical foundations of Econometrics Mathematical foundations of Econometrics G.Gioldasis, UniFe & prof. A.Musolesi, UniFe March 13, 2016.Gioldasis, UniFe & prof. A.Musolesi, UniFe Mathematical foundations of Econometrics March 13, 2016 1

More information

Bootstrap and Parametric Inference: Successes and Challenges

Bootstrap and Parametric Inference: Successes and Challenges Bootstrap and Parametric Inference: Successes and Challenges G. Alastair Young Department of Mathematics Imperial College London Newton Institute, January 2008 Overview Overview Review key aspects of frequentist

More information

Detection Theory. Composite tests

Detection Theory. Composite tests Composite tests Chapter 5: Correction Thu I claimed that the above, which is the most general case, was captured by the below Thu Chapter 5: Correction Thu I claimed that the above, which is the most general

More information

Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits

Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits Statistical Methods for Particle Physics Lecture 4: discovery, exclusion limits www.pp.rhul.ac.uk/~cowan/stat_aachen.html Graduierten-Kolleg RWTH Aachen 10-14 February 2014 Glen Cowan Physics Department

More information

Hypothesis Testing Chap 10p460

Hypothesis Testing Chap 10p460 Hypothesis Testing Chap 1p46 Elements of a statistical test p462 - Null hypothesis - Alternative hypothesis - Test Statistic - Rejection region Rejection Region p462 The rejection region (RR) specifies

More information

Discussion of Dempster by Shafer. Dempster-Shafer is fiducial and so are you.

Discussion of Dempster by Shafer. Dempster-Shafer is fiducial and so are you. Fourth Bayesian, Fiducial, and Frequentist Conference Department of Statistics, Harvard University, May 1, 2017 Discussion of Dempster by Shafer (Glenn Shafer at Rutgers, www.glennshafer.com) Dempster-Shafer

More information

STA 732: Inference. Notes 2. Neyman-Pearsonian Classical Hypothesis Testing B&D 4

STA 732: Inference. Notes 2. Neyman-Pearsonian Classical Hypothesis Testing B&D 4 STA 73: Inference Notes. Neyman-Pearsonian Classical Hypothesis Testing B&D 4 1 Testing as a rule Fisher s quantification of extremeness of observed evidence clearly lacked rigorous mathematical interpretation.

More information

Bayesian Inference. STA 121: Regression Analysis Artin Armagan

Bayesian Inference. STA 121: Regression Analysis Artin Armagan Bayesian Inference STA 121: Regression Analysis Artin Armagan Bayes Rule...s! Reverend Thomas Bayes Posterior Prior p(θ y) = p(y θ)p(θ)/p(y) Likelihood - Sampling Distribution Normalizing Constant: p(y

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Julien Berestycki Department of Statistics University of Oxford MT 2016 Julien Berestycki (University of Oxford) SB2a MT 2016 1 / 20 Lecture 6 : Bayesian Inference

More information

Parameter estimation! and! forecasting! Cristiano Porciani! AIfA, Uni-Bonn!

Parameter estimation! and! forecasting! Cristiano Porciani! AIfA, Uni-Bonn! Parameter estimation! and! forecasting! Cristiano Porciani! AIfA, Uni-Bonn! Questions?! C. Porciani! Estimation & forecasting! 2! Cosmological parameters! A branch of modern cosmological research focuses

More information

Lecture 2: Statistical Decision Theory (Part I)

Lecture 2: Statistical Decision Theory (Part I) Lecture 2: Statistical Decision Theory (Part I) Hao Helen Zhang Hao Helen Zhang Lecture 2: Statistical Decision Theory (Part I) 1 / 35 Outline of This Note Part I: Statistics Decision Theory (from Statistical

More information

Detection and Estimation Chapter 1. Hypothesis Testing

Detection and Estimation Chapter 1. Hypothesis Testing Detection and Estimation Chapter 1. Hypothesis Testing Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2015 1/20 Syllabus Homework:

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 11 January 7, 2013 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline How to communicate the statistical uncertainty

More information

simple if it completely specifies the density of x

simple if it completely specifies the density of x 3. Hypothesis Testing Pure significance tests Data x = (x 1,..., x n ) from f(x, θ) Hypothesis H 0 : restricts f(x, θ) Are the data consistent with H 0? H 0 is called the null hypothesis simple if it completely

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) (b) (c) (d) (e) In 2 2 tables, statistical independence is equivalent

More information

O1 History of Mathematics Lecture XV Probability, geometry, and number theory. Monday 28th November 2016 (Week 8)

O1 History of Mathematics Lecture XV Probability, geometry, and number theory. Monday 28th November 2016 (Week 8) O1 History of Mathematics Lecture XV Probability, geometry, and number theory Monday 28th November 2016 (Week 8) Summary Early probability theory Probability theory in the 18th century Euclid s Elements

More information

Estimation of Quantiles

Estimation of Quantiles 9 Estimation of Quantiles The notion of quantiles was introduced in Section 3.2: recall that a quantile x α for an r.v. X is a constant such that P(X x α )=1 α. (9.1) In this chapter we examine quantiles

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00 Two Hours MATH38052 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER GENERALISED LINEAR MODELS 26 May 2016 14:00 16:00 Answer ALL TWO questions in Section

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

Swarthmore Honors Exam 2012: Statistics

Swarthmore Honors Exam 2012: Statistics Swarthmore Honors Exam 2012: Statistics 1 Swarthmore Honors Exam 2012: Statistics John W. Emerson, Yale University NAME: Instructions: This is a closed-book three-hour exam having six questions. You may

More information

3 Joint Distributions 71

3 Joint Distributions 71 2.2.3 The Normal Distribution 54 2.2.4 The Beta Density 58 2.3 Functions of a Random Variable 58 2.4 Concluding Remarks 64 2.5 Problems 64 3 Joint Distributions 71 3.1 Introduction 71 3.2 Discrete Random

More information

Hypothesis Testing. Part I. James J. Heckman University of Chicago. Econ 312 This draft, April 20, 2006

Hypothesis Testing. Part I. James J. Heckman University of Chicago. Econ 312 This draft, April 20, 2006 Hypothesis Testing Part I James J. Heckman University of Chicago Econ 312 This draft, April 20, 2006 1 1 A Brief Review of Hypothesis Testing and Its Uses values and pure significance tests (R.A. Fisher)

More information

Testing Statistical Hypotheses

Testing Statistical Hypotheses E.L. Lehmann Joseph P. Romano Testing Statistical Hypotheses Third Edition 4y Springer Preface vii I Small-Sample Theory 1 1 The General Decision Problem 3 1.1 Statistical Inference and Statistical Decisions

More information

Chapter 5. Bayesian Statistics

Chapter 5. Bayesian Statistics Chapter 5. Bayesian Statistics Principles of Bayesian Statistics Anything unknown is given a probability distribution, representing degrees of belief [subjective probability]. Degrees of belief [subjective

More information

Parameter Estimation, Sampling Distributions & Hypothesis Testing

Parameter Estimation, Sampling Distributions & Hypothesis Testing Parameter Estimation, Sampling Distributions & Hypothesis Testing Parameter Estimation & Hypothesis Testing In doing research, we are usually interested in some feature of a population distribution (which

More information

HIERARCHICAL MODELS IN EXTREME VALUE THEORY

HIERARCHICAL MODELS IN EXTREME VALUE THEORY HIERARCHICAL MODELS IN EXTREME VALUE THEORY Richard L. Smith Department of Statistics and Operations Research, University of North Carolina, Chapel Hill and Statistical and Applied Mathematical Sciences

More information

Advanced Probability Theory (Math541)

Advanced Probability Theory (Math541) Advanced Probability Theory (Math541) Instructor: Kani Chen (Classic)/Modern Probability Theory (1900-1960) Instructor: Kani Chen (HKUST) Advanced Probability Theory (Math541) 1 / 17 Primitive/Classic

More information

Theory and Methods of Statistical Inference. PART I Frequentist likelihood methods

Theory and Methods of Statistical Inference. PART I Frequentist likelihood methods PhD School in Statistics XXV cycle, 2010 Theory and Methods of Statistical Inference PART I Frequentist likelihood methods (A. Salvan, N. Sartori, L. Pace) Syllabus Some prerequisites: Empirical distribution

More information

ST3241 Categorical Data Analysis I Generalized Linear Models. Introduction and Some Examples

ST3241 Categorical Data Analysis I Generalized Linear Models. Introduction and Some Examples ST3241 Categorical Data Analysis I Generalized Linear Models Introduction and Some Examples 1 Introduction We have discussed methods for analyzing associations in two-way and three-way tables. Now we will

More information

Clinical Trials. Olli Saarela. September 18, Dalla Lana School of Public Health University of Toronto.

Clinical Trials. Olli Saarela. September 18, Dalla Lana School of Public Health University of Toronto. Introduction to Dalla Lana School of Public Health University of Toronto olli.saarela@utoronto.ca September 18, 2014 38-1 : a review 38-2 Evidence Ideal: to advance the knowledge-base of clinical medicine,

More information

Today. HW 1: due February 4, pm. Aspects of Design CD Chapter 2. Continue with Chapter 2 of ELM. In the News:

Today. HW 1: due February 4, pm. Aspects of Design CD Chapter 2. Continue with Chapter 2 of ELM. In the News: Today HW 1: due February 4, 11.59 pm. Aspects of Design CD Chapter 2 Continue with Chapter 2 of ELM In the News: STA 2201: Applied Statistics II January 14, 2015 1/35 Recap: data on proportions data: y

More information

STAT 830 Hypothesis Testing

STAT 830 Hypothesis Testing STAT 830 Hypothesis Testing Richard Lockhart Simon Fraser University STAT 830 Fall 2018 Richard Lockhart (Simon Fraser University) STAT 830 Hypothesis Testing STAT 830 Fall 2018 1 / 30 Purposes of These

More information

Generalized linear mixed models (GLMMs) for dependent compound risk models

Generalized linear mixed models (GLMMs) for dependent compound risk models Generalized linear mixed models (GLMMs) for dependent compound risk models Emiliano A. Valdez, PhD, FSA joint work with H. Jeong, J. Ahn and S. Park University of Connecticut Seminar Talk at Yonsei University

More information

Introduction to Bayes

Introduction to Bayes Introduction to Bayes Alan Heavens September 3, 2018 ICIC Data Analysis Workshop Alan Heavens Introduction to Bayes September 3, 2018 1 / 35 Overview 1 Inverse Problems 2 The meaning of probability Probability

More information

Logistic Regression - problem 6.14

Logistic Regression - problem 6.14 Logistic Regression - problem 6.14 Let x 1, x 2,, x m be given values of an input variable x and let Y 1,, Y m be independent binomial random variables whose distributions depend on the corresponding values

More information

Recall the Basics of Hypothesis Testing

Recall the Basics of Hypothesis Testing Recall the Basics of Hypothesis Testing The level of significance α, (size of test) is defined as the probability of X falling in w (rejecting H 0 ) when H 0 is true: P(X w H 0 ) = α. H 0 TRUE H 1 TRUE

More information