Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels

Size: px
Start display at page:

Download "Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels"

Transcription

1 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 DOI /s RSARCH Open Access Discrete frctionl differences with nonsingulr discrete Mittg-Leffler kernels Thbet Abdeljwd1 nd Dumitru Blenu2,3* * Correspondence: dumitru@cnky.edu.tr 2 Deprtment of Mthemtics, Çnky University, Ankr, 06530, Turkey 3 Institute of Spce Sciences, Mgurele-Buchrest, Romni Full list of uthor informtion is vilble t the end of the rticle Abstrct In this mnuscript we propose the discrete versions for the recently introduced frctionl derivtives with nonsingulr Mittg-Leffler function. The properties of such frctionl differences re studied nd the discrete integrtion by prts formuls re proved. Then discrete vritionl problem is considered with n illustrtive exmple. Finlly, some more tools for these derivtives nd their discrete versions hve been obtined. Keywords: discrete frctionl derivtive; modified Mittg-Leffler function; discrete Mittg-Leffler function; discrete nbl Lplce trnsform; convolution; discrete ABR frctionl derivtive 1 Introduction nd preliminries Frctionl clculus hs become n importnt mthemticl tool used in severl brnches of science nd engineering in order to describe better the properties of non-locl complex systems [ ]. Recently some uthors hve introduced new non-locl derivtives with nonsingulr kernels nd they pplied them successfully to some rel world problems [ ]. However, severl res where the frctionl clculus cn be pplied successfully remin still not deeply investigted, e.g. the thermoelsticity of bodies with microstructure see [ ] for exmple nd the references therein). Finding the discrete counterprts of these new frctionl opertors is n importnt step to pply them to model the dynmics of complex systems. In the following we recll nd prove some results in discrete frctionl clculus tht will be necessry in proceeding to obtin our discrete results see [ ]). Definition [ ] i) Let m be nturl number, then the m rising fctoril of t is written s tm = m t + k), t =. ) k= ii) For ny rel number the α rising function becomes tα = t + α), t) such tht t R \ {...,,, }, α =. ) 2016 Abdeljwd nd Blenu. This rticle is distributed under the terms of the Cretive Commons Attribution 4.0 Interntionl License which permits unrestricted use, distribution, nd reproduction in ny medium, provided you give pproprite credit to the originl uthors) nd the source, provide link to the Cretive Commons license, nd indicte if chnges were mde.

2 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 2 of 18 In ddition, we hve t α) = αt α 1, 3) hence t α is incresing on N 0,whereρt)=t 1. Definition 2 See [31, 32]) Let ρt) =t 1 be the bckwrd jump opertor. Thus, for function f : N = {, +1, +2,...} R, the nbl left frctionl sum of order α >0becomes α f t)= 1 Ɣα) t ) α 1f t ρs) s), t N+1. The nbl right frctionl sum of order α >0forf : b N = {b, b 1,b 2,...} Ris written s b α f t)= 1 Ɣα) s=t s ρt) ) α 1f s)= 1 Ɣα) The nbl left frctionl difference of order α >0 hs the form α f t)= n n α) n f t)= Ɣn α) ) α 1f σ s) t s), t b 1 N. s=t t ) n α 1f t ρs) s), t N+1, nd the nbl right frctionl difference of order α >0 is defined s b α f t)= n b n α) f t)= 1)n n ) n α 1f s ρt) s), t b 1 N. Ɣn α) s=t The left Cputo frctionl difference of order α >0strtedbyα)= + n 1,n =[α]+1 is written s C α α) f ) t)= n α α) n f t), t N +n, nd the right Cputo frctionl difference of order α > 0 ending t bα)=b n + 1 hs the following form: Cbα) α f ) t)= bα) n α n f t), t b n N. The Q-opertor ction, Qf )t) =f + b t), ws used in [31, 32] to connect left nd right frctionl sums nd differences. We recll the following results: αqf )t)=q b α f t). αqf )t)=q b α f t). C αqf )t)=qc b α f t). The mixing of nbl nd delt opertors in defining right frctionl differences plys crucil role in obtining the bove dul identities.

3 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 3 of 18 In our mnuscript, we use the properties of the discrete version of Q-opertor to define nd confirm our definitions of frctionl differences with discrete Mittg-Leffler function kernels. Definition 3 [33] Letfunctionf be defined on N 0. Then the nbl discrete Lplce trnsform hs the form N f z)= 1 z) t 1 f t). 4) t=1 More generlly for function f it is defined on N by N f z)= 1 z) t 1 f t). 5) t=+1 If f t, s) denotes function of two vribles, we hve explicitly to show to which prmeter we use the trnsform. Lemm 1 [30] For ny α R \{..., 2, 1,0}, i) N t α 1 )z)= Ɣα) z α, 1 z <1, ii) N t α 1 b t )z)= bα 1 Ɣα) z+b 1) α, 1 z < b. Remrk 1 We cn generlize i) of Lemm 1 to N t ) α 1 )s) =1 s) Ɣα) s α.herewe ccept N 0 = N. Definition 4 [2] The Mittg-Leffler function of one prmeter hs the following form: α z)= z k Ɣαk +1) z C; Reα)>0 ), 6) nd the one with two prmeters α nd β becomes α,β z)= z k Ɣαk + β) z, β C; Reα)>0 ), 7) where α,1 z)= α z). Since in generl it is not true tht t α ) β = t αβ nd b) α = α b α in generl, we define for the ske of discretiztion the following modified) versions of Mittg-Leffler functions which lso gree with the time scle clculus nottions. Definition 5 Modified clssicl Mittg-Leffler functions) The Mittg-Leffler function of one prmeter is defined by α λ, z)= α λz α ) = λ k z αk Ɣαk +1) 0 λ R, z C; Reα)>0 ), 8)

4 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 4 of 18 nd the one with two prmeters α nd β by α,β λ, z)=z β 1 α,β λz α ) = λ k z αk+β 1 Ɣαk + β) 0 λ R, z, β C; Reα)>0 ), 9) where α,1 λ, z)= α λ, z). Agreeing with Definition 5, theuthorin[31, 32] defined the following discrete versions of Mittg-Leffler functions. Definition 6 Nbl discrete Mittg-Leffler) see [31 33]) For λ R, λ <1,ndα, β, z C with Reα) > 0, the nbl discrete Mittg-Leffler functions is α,β λ, z)= For β =1,wehve λ k α λ, z) α,1 λ, z)= z kα+β 1 Ɣαk + β). 10) λ k z kα, λ <1. 11) Ɣαk +1) The generlized ML of three prmeters ws defined in the literture by ρ α,β z)= z k ρ) k k!ɣαk + β), 12) where ρ) k = ρρ +1) ρ + k 1).Noticetht1) k = k!sothtα,β 1 z)= α,βz). TopsstothediscreteprocesswedefinethefollowingversionofML function of three prmeters: ρ α,β λ, z)= λ k z αk+β 1 ρ) k k!ɣαk + β). 13) Definition 7 The nbl) discrete generl ML function ofthreeprmeters α, β, ndρ is defined by ρ λ, z)= λ k z kα+β 1 ρ) α,β k k!ɣαk + β). 14) Notice tht 1 λ, z)= α,β α,β λ, z). Proposition 1 Summtion nd difference of discrete ML functions) t α λ, z)=λ α,α λ, z). t 1,β λ, z)=λ 1,β+1 λ, z). t γ λ, α,β z)=γ λ, z). α,β 1 z t=+1 α,β λ, t )= α,β+1 λ, z ).

5 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 5 of 18 Definition 8 [31, 32] Letfunctionf be defined on N 0.Thus,for0<α 1itsα-order Cputo frctionl derivtive is C α 0 f t)= ) 0 f t) = 1 Ɣ1 α) t ) α f t ρs) s), s=1 where ρs)=s 1nd α 0 f t)= 1 Ɣα) t s=1 t ρs))α 1 f s) is the nbl left frctionl sum of order α. We recll tht if f is defined on N 0,then C 0 αf t)isdefinedonn 1 = {1,2,3,...}. For the Cputo frctionl difference of order n 1<α n strting from α)= + n 1 we refer to Section 5 in [31]. xmple 1 [31, 32] Let0<α 1, R, nd consider the nbl left Cputo nonhomogeneous frctionl difference eqution C α 0 yt)=λyt)+f t), y0) = 0, t N 0. 15) Thus, the solution of 15)iswrittens yt)= 0 α λ, t)+ t ) α,α λ, t ρs) f s). 16) s=1 Remrk 2 [31, 32] The solution of 15)withα =1nd 0 =1is yt)= λ k tk k! + t s=1 k t ρs))k λ f s). k! The nbl discrete exponentil function ê λ t,0)=1 λ) t representsthefirstprtofthe bove solution, with λ < 1. For more detils see [34], p.118. For the rest of this section, we summrize some fcts s regrds the discrete Lplce trnsform of Mittg-Leffler type nd convolution type functions see [33] for some detils). Definition 9 See [33]) Let s R, 0<α <1,ndf, g : N R be functions. The nbl discrete convolution of f with g is defined by f g)t)= t g t ρs) ) f s). 17) In the bove, ρs) = s 1 isthe bckwrdjumpingopertor usedin -nlysisfor the time scle Z. This opertor is necessry to prove for exmple discrete convolution theorem s shown below. Also it is necessry to obtin dul reltions between the left nd right frctionl sums nd differences vi the Q-opertor.

6 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 6 of 18 Proposition 2 For ny α R \{..., 2, 1,0}, s R, nd f, gdefinedonn we hve N f g) ) z)=n f )z)n g)z). 18) Proof N f g) ) t z)= 1 z) t 1 f s)g t ρs) ) t=+1 +1 t = 1 z) t 1 f s)g t ρs) ) t=s +1 = 1 z) r 1 1 z) s 1 f s)gr) r=1 =N f )z)n g)z), where the chnge of vrible r = t ρs)wsused. For the cse =0ndgt)=t α wereferto[33]. Lemm 2 [33] Let f be function defined on N 0. Thus, N f t) )) z)=zn f )z) f 0). 19) We cn generlize Lemm 2 s follows. Lemm 3 Let f be function defined on N. The following result holds: N f t) )) z)=zn f )z) 1 z) f ). 20) More generlly, Nα) n f ) n 1 z)=z n N α) f )z) 1 z) α) z n 1 i i f + 1). 21) Lemm 4 [30] For ny positive rel number ν, i=0 N 1 ν 1) f s)=s ν N 1 f )s). For the following lemm we will present n lterntive proof without using convolutions s ws done in [33]. Lemm 5 [33] Let f be defined on N 0 nd 0<α 1. Then N C α 0 f ) z)=z α N f )z) z α 1 f 0). 22)

7 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 7 of 18 Proof From the definition nd Lemm 3.2 in [35]wehve C 0 α f ) t)= ) 0 f ) t)= ) 0 f ) t α t) Ɣ1 α) f 0). Apply the nbl discrete Lplce trnsform nd mke use of Lemm 2 nd Lemm 1 to get N C 0 α f ) z)=z N ) 0 f ) z) ) 0 f ) Ɣ1 α) 0) f 0). Ɣ1 α)z Then the result follows by Lemm 4 with =1nd ) 0 f )0) = 0. Remrk 3 Lemm 5 cn be generlized s follows. For f defined on N nd 0 < α 1, we hve N C α f ) z)=z α N f )z) 1 z) z α 1 f ). 23) This cn be proved by mking use of Remrk 1. Lemm 6 [33] Let 0<α 1 nd f be defined on N 0. Then: i) N α λ, t))z)= zα 1 z α λ. ii) N α,α λ, t))z)= 1 z α λ. Proof We just repet the proof of ii) due to the clcultion error in Lemm 4ii) in [33]. ii) First it is esy to see tht α λ, t)=λ α,α λ, t). Indeed, α λ, z)= λ k kαzkα 1 Ɣαk +1). Since dividing by blls of Gmm function leds to zero, we then hve α λ, t) = zkα 1 k=1 λk Ɣαk) = λ zkα+α 1 λk Ɣαk+α) = λ α,αλ, t). If we use N together with i) nd Lemm 2, we conclude tht N α,α λ, t) ) z)=λ 1[ z N α λ, t) ) z) α λ,0) ] [ z = λ 1 α ] z α λ 1 = 1 z α λ. 2 Discrete frctionl differences with discrete Mittg-Leffler kernels Definition 10 Let f be defined on N b N, < b, α [0, 1], then the nbl discrete new left Cputo) frctionl difference in the sense of Atngn nd Blenu is defined by ABC α f ) t)= Bα) t ) α s f s) α, t ρs) = Bα) [ )] α f t) α, t 24)

8 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 8 of 18 nd in the left Riemnn sense by ABR α f ) t)= Bα) t t ) α f s) α, t ρs) = Bα) [ )] α t f t) α, t. 25) It is be noted tht since for 0 < α < 1 α we hve 1 < λ = 2 <0,then αλ, t) isconvergent for ny t N. For exmple, α λ,1)=) provided tht 0 < α < 1 2.Hence,ll the AB-type frctionl differences will converge under the restriction 0 < α < 1 2.Alsonote tht since t α is incresing on N 0, α λ, t) is monotone decresing for 0 < α < 1 2, t >0,nd λ = α <0see[36] for the continuous cse α t α 1 )). We cn show tht lim σ 0 σ α 1 σ, t ρs)) = δ s t)= { 1, t = s, s in [6] we cn show tht, for α 0, we hve ABR 0, t s, α =1,whichisthedeltDircfunctiononthetimescleZ, nd hence α f )t) f t)ndforα 1, we hve σ, t ρs)) = 1 α)t ρs), σ =, nd hence for ex- α ABR α f )t) f t). Notice tht 1 1 mple lim ABR α 1 α f ) t)=lim Bα) t α 1 t f s)1 α) t s = f t). Above we hve mde used of the fct tht the nbl discrete exponentil function hs the form e λ t, ρs)) = 1 1 λ )t ρs) nd 1 λ, t ρs)) = e λ t, ρs)). To derive the proper frctionl difference for the bove proposed frctionl difference we consider the eqution ABR α f ) t)=ut). 26) Apply N to 26) bove nd mke use of Lemm 3,Proposition2 with gt)= α λ, t)with λ = α, nd Lemm 6, Bα) N f t) α λ, t) ) z)= Bα) z N f t) α λ, t) ) z) 0 = Bα) [ z z α 1 ] N f )z) z α λ Tht is, = N ut) ) z). 27) N f )z)= N ut) ) z) λ N ut) ) z). 28) Bα) Bα) z α Apply the inverse of N nd use of Proposition 2 nd Lemm 1 to conclude tht f t)= Bα) ut)+ α α Bα) u) t). 29) This suggests the following definition for the frctionl sum corresponding to the frctionl difference with discrete Mittg-Leffler function kernel.

9 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 9 of 18 Definition 11 The frctionl sum ssocited to ABR α f )t)withorder0<α <1isdefined by AB α f ) t)= Bα) f t)+ α α Bα) f ) t). 30) It is cler tht α = 0 gives the function f nd α =1gives t f s). From the definition of the discrete frctionl integrl we hve ABR αabr α f ) t)=f t). On the other hnd we hve the following. Theorem 1 For ny 0<α 1 nd f defined on N, ABR α f )t) stisfies the eqution ABR α g ) t)=ft). 31) Proof From the definition of frctionl sum the eqution in the sttement of the theorem is equivlent to Bα) gt)+ α α Bα) g) t)=ft). 32) Apply the discrete Lplce trnsform N nd mke use of Lemm 4 to obtin Bα) Gs)+ α Bα) s α Gs)=Fs), 33) where Gs)=N g)s)ndfs)=n f )s). From this it follows tht Gs)= s α Bα) Bα) s α Fs)= Fs), 34) 1 α)s α + α s α λ where λ = α. Finlly, pply the inverse of N nd use the discrete convolution theorem, Proposition 2,or27)toconcludethtgt)= ABR α f )t). Theorem 2 The reltion between the Cputo nd Riemnn frctionl differences with ML kernels) We hve ABC α f ) t)= ABR α f ) t) f) Bα) αλ, t ). 35) Proof From 27)wehve ABR N α f ) z)= Bα) [ z α ] N f )z), 36) z α λ where λ = α. On the other hnd, we hve N ABC α f ) z)= Bα) N f t) α λ, t) ) z) = Bα) N f )z) N α λ, t) ) z)

10 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 10 of 18 = Bα) [ zn f )z) 1 z) f ) ] [ z α 1 ] z α λ [ N f )z) = Bα) From 36)nd37), we see tht N ABC z α ] 1 z) f ) Bα) z α λ [ z α 1 z α λ ]. 37) α f ) z)= ABR N α f ) z) 1 z) f ) Bα) [ z α 1 ]. 38) α z α λ Apply the inverse of N to 38) toconclude35). The fct tht N f t ))z) =1 z) N f t))z)wsusedbove. By mens of the ction of the Q-opertor on left nd right frctionl sums nd differences, we cn define the right frctionl sums AB b αf )t) nd differences AB b α f )t) s follows. Definition 12 The new right frctionl difference with ML kernel) For 0 < α <1,ndf defined on b N, the right frctionl difference of f is defined by ABR b α f ) t)= Bα) α t) f s) α, s ρt) ) ) s=t 39) nd the right Cputo one by ABC α b f ) t)= Bα) s=t s f )s) α α, s ρt) ) ). 40) Definition 13 The new right frctionl sum with ML kernel) For 0 < α <1,ndf defined on b N,therightfrctionlsumoff is defined by AB b α f ) t)= Bα) f t)+ α b α f ) t). 41) Bα) Theorem 3 For function f defined on b N nd 0<α <1,we hve ABR b αab b α f )t)=ft) nd AB b αabr b α f )t)=ft). If we pply the Q-opertor to both sides nd then replce f t) byqf )t)=f + b t), then we cn stte the following. Theorem 4 The reltion between the new right Cputo frctionl difference nd the new right Riemnn frctionl difference) We hve ABC α b f ) t)= ABR α b f ) t) f b) Bα) αλ, b t). 42) 3 Integrtion by prts for frctionl sums nd differences with discrete ML First we stte nd prove n integrtion by prts formul for frctionl sums.

11 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 11 of 18 Theorem 5 Integrtion by prts for the frctionl sums with ML kernels) For f nd g defined on N b N, b mod 1), nd 0<α <1,one hs gs) AB α f ) s)= Bα) = gs)f s)+ α Bα) f s) b α g ) s) f s) AB α b g) s). 43) Similrly, we hve gs) AB α b f ) s)= Bα) = gs)f s)+ α Bα) f s) α g) s) f s) AB α g ) s). 44) Proof The proof follows by the definition of the new left frctionl sum, the integrtion by prts formul for nbl clssicl frctionl sums see Proposition 37 in [31]), nd the definition of the new right frctionl sum. Theorem 6 Integrtion by prts for the frctionl differences with ML kernels) For f nd gdefinedonn b N, b mod 1), nd 0<α <1,one hs f s) ABR α g ) s)= gs) ABR α b f ) s). 45) Similrly, f s) ABR α b g) s)= gs) ABR α f ) s). 46) Proof The proof is chieved by Theorem 5 nd the previously proved fct tht the new frctionl sums nd differences re the inverses to ech other. Indeed, f s) AB α g ) s)= AB α = AB α = b AB b α b f ) s) AB f ) s) AB α g ) s) αab α g ) s) gs) AB b α f ) s). 47) Next, in order to present n integrtion by prts formul for Cputo type frctionl differences with ML kernels, we first define the discrete versions of the left) generlized

12 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 12 of 18 frctionl integrl opertor introduced nd studied in [37], γ ρ,μ,ω, +ϕ) x)= x x t) μ 1 γ ρ,μ[ ωx t) ρ ] ϕt) dt, x >, 48) where ρ,μz)= γ γ ) k z k is the generlized Mittg-Leffler function which is defined Ɣρk+μ)k! for complex ρ, μ, γ Reρ) >0)[3, 37]. For our purposes we just introduce the discrete version for γ =1. Definition 14 The discrete left) generlized frctionl integrl opertor is defined by 1 ρ,μ,ω, +ϕ ) t)= t ) μ 1ρ,μ ) t ρs) ω, t ρs) ϕs), t N. The discrete right) generlized frctionl integrl opertor is defined by 1 ρ,μ,ω,b ϕ ) ) μ 1ρ,μ ) t)= s ρt) ω, s ρt) ϕs), t b N. s=t Theorem 7 Integrtion by prts for Cputo frctionl differences with ML kernels) For functions f nd g defined on N b N, we hve f s) ABC 1 α g ) s)= gs) ABR b 1 α f ) s)+g ρt) ) Bα) 1 α,1,λ,b f ) t) b. 49) s= s= Similrly, b f s) ABC b+1 α g) s)= where λ = α. b gs) ABR +1 α f ) s) g σ t) ) Bα) 1 α,1,λ, + f ) t) b, 50) Proof By 35)ndTheorem6,wehve f s) ABC 1 α g ) [ ABR s)= f s) 1 α g ) s) g 1) Bα) ) ] α λ, s ρ) s= s= = gs) ABR b 1 α f ) s) g 1) Bα) ) f s) α λ, s ρ) s= = gs) ABR b 1 α f ) s)+g ρt) ) Bα) 1 α,1,λ,b f ) t) b. s= s= The second prt follows by 42) nd the second prt of Theorem 6.

13 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 13 of 18 4 Discrete frctionl uler-lgrnge equtions We prove the uler-lgrnge equtions for Lgrngin contining the left new discrete Cputo derivtive. Theorem 8 Let 0<α 1 be non-integer,, b R, < b, b mod 1). Assume tht the functionl of the form Jf )= L t, f ρ t), ABC 1 α f t) ) t= hs locl extremum in S = {y :N 1 b 1 N) R : y 1)=A, yb 1)=B} t some f S, where L :N 1 b 1 N) R R R. Then [ L1 s)+ ABR α b 1 L 2s) ] =0, for ll s N 1 b 1 N), 51) where L 1 s)= L L f ρ s) nd L 2 s)= s). ABC 1 α f Proof Without loss of generlity, ssume tht J hs locl mximum in S t f.hence,there exists n ɛ >0suchthtJ f ) Jf) 0 for ll f S with f f = sup t N b N f t) ft) < ɛ. For ny f S there is n η H = {y :N 1 b 1 N) R : y 1)=yb 1)=0} such tht f = f + ɛη. Then the ɛ-tylor s theorem nd the ssumption implies tht the first vrition quntity δjη, y) = b 1 t= [ηρ t)l 1 t)+ ABC 1 α η)t)l 2 t)] dt = 0, for ll η H. Tomkethe prmeter η free,weusetheintegrtionbyprtseqution49)toobtin δjη, f )= η ρ s) [ L 1 s)+ ABR b 1 α L 2s) ] + η ρ t) Bα) ) 1 α,1, α L,b 2 t) b =0, s= for ll η H, nd hence the result follows by the discrete fundmentl lemm of the clculus of vrition. The term 1 α,1, α L 2 )t) b,b = 0 bove is clled the nturl boundry condition. Similrly, if we llow the Lgrngin to depend on the discrete right Cputo frctionl derivtive, we cn stte the following. Theorem 9 Let 0<α 1 be non-integer,, b R, < b, b mod 1). Assume tht the functionl J of the form Jf )= b L t, f σ t), ABC b+1 α f t)) +1 hs locl extremum in S = {y :N +1 b+1 N) R : y +1)=A, yb +1)=B} t some f S, where L :N +1 b+1 N) R R R. Then [ L1 s)+ ABR +1 α L 2 s) ] =0, for ll s N +1 b+1 N), 52) where L 1 s)= L f σ s) nd L 2 s)= L ABC α b+1 f s).

14 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 14 of 18 Proof The proof is similr to Theorem 8 by pplying the second integrtion by prts eqution 50) to get the nturl boundry condition of the form 1 α,1, α L 2 )t) b,+ =0. xmple 2 WeherestudyninterestedphysiclctiontosupportTheorem8. Nmely, let us consider the following frctionl discrete ction: Jy) = b 1 t= [ 1 2 ABC 1 α yt)) 2 Vy ρ t))], where 0 < α <1ndwithy 1),yb 1)re ssigned or with the nturl boundry condition 1 ABC α,1, α,b 1 α yt) ) t) b =0. Then the uler-lgrnge eqution by pplying Theorem 8 is ABR α b 1 ABC 1 α y ) s) dv dy s) = 0 for ll s N 1 b 1 N). Here, we remrk tht it is of interest to del with the bove uler-lgrnge equtions obtined in the bove exmple, where we hve composition of discrete right nd discrete left type frctionl derivtives. For the ske of comprisons with the clssicl discrete frctionl uler-lgrnge equtions within nbl we refer to [38]. For clssicl frctionl dynmicl systems composed by the left nd right frctionl opertors under the presence of dely we refer to [39]. 5 Some tools nd properties for frctionl derivtives with nonsingulr ML kernels nd their discrete versions Theorem 10 [37] Let ρ, μ, γ, ν, σ, λ C Reρ), Reμ), Reν)>0),then x 0 x t) μ 1 γ ρ,μ λ[x t] ρ ) t ν 1 σ ρ,ν In prticulr, if γ =1,μ =1nd ρ = α, we hve λt ρ ) dt = x μ+ν 1 γ +σ ρ,μ+ν λx ρ ). 53) x 0 α λ[x t] α ) t ν 1 α,ν σ λt α ) dt = x ν α,1+ν 1+σ λx α ). 54) Remrk 4 If we use the modified nottion of ML functions, then 53)tkes the form x 0 ρ,μ γ λ, x t)σ +σ ρ,ν λ, t) dt = γ ρ,μ+ν λ, x), 55) nd 54) tkes the form x 0 α λ, x t)α,ν σ λ, t) dt = 1+σ α,1+ν λ, x). 56) From [3] we recll lso the following differentition formul, expressed in modified wy, which will be helpful. For α, μ, γ, λ C Reα)>0)ndn N we hve ) d n [ γ α,μ dz λ, z)] = α,μ n γ λ, z). 57)

15 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 15 of 18 Now, with the help of 56)nd57), we hve ABR 0 D α[ α,ν σ λ, x)] = Bα) d [ 1+σ α,1+ν dx λ, x)] = Bα) Similrly, with the help of 57)nd56), we hve 1+σ α,ν λ, x). 58) ABC 0 D α[ α,ν σ λ, x)] = Bα) Remrk 5 Noting tht = Bα) x 0 1+σ α,ν α λ, x t) d dt [ σ α,ν λ, t) ] dt λ, x). 59) α,ν 1 λ, x)=xν 1 α,ν 1 λx α ) = xv 1 Ɣν) λxα+ν 1 Ɣα + ν) nd α,ν 0 xν 1 λ, x)= Ɣν) 0, ν 0+, one cn conclude from 58)nd59)with σ = 1 tht the function [ ] gx)= lim ν 0 + Bα) 1 α,ν λ, x) = α Bα) x α 1 Ɣα) is nonzero function whose frctionl ABR nd ABC derivtive is zero. Note tht the α function gx) tends to the constnt function s α tends to 1. Bα)Ɣα) The proof of the following lemm follows by Lemm 1i) nd the definition of discrete ML functions in Definition 7. Lemm 7 For γ, α, β, λ C Reβ)>0),nd s C with Res)>0, λs α <1,we hve N γ α,β λ, t)) s)=s β[ 1 λs α] γ. In prticulr N α,β λ, t) ) s)=s β[ 1 λs α] 1. The proof of the following lemm just follows by pplying the discrete Lplce trnsform N nd its inverse in finl step vi the help of Lemm 7 nd the discrete convolution theorem. Lemm 8 Let ρ, μ, γ, ν, σ, λ C Reρ), Reμ), Reν)>0),then t s=1 γ ) ρ,μ λ, t ρs) σ ρ,ν λ, s)= γ +σ ρ,μ+ν λ, t). 60)

16 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 16 of 18 Now, with the help of Proposition 1iii) nd Lemm 8,we hve ABR 0 α[ α,ν σ λ, t)] = Bα) [ t 1+σ α,1+ν λ, t)] = Bα) 1+σ α,ν Similrly, with the help of Proposition 1iii) nd Lemm 8, we hve ABC 0 α[ α,ν σ λ, t)] = Bα) Remrk 6 Noting tht = Bα) t ) [ α λ, t ρs) t σ α,ν λ, s) ] s=1 1+σ α,ν λ, x). 61) λ, t). 62) nd α,ν 1 xv 1 λ, t)= Ɣν) λtα+ν 1 Ɣα + ν) α,ν 0 tν 1 λ, t)= Ɣν) 0, ν 0+, one cn conclude from 61)nd62)with σ = 1 tht the function [ ] ht)= lim ν 0 + Bα) 1 α,ν λ, t) = α Bα) t α 1 Ɣα) is nonzero function whose discrete frctionl ABR nd ABC derivtive is zero. Note tht the function ht) tends to the constnt function 1 s α tends to 1.As result of this,if the potentil function V in xmple 2,with = 1, is 0, then the solution tkes the form t α 1 yt)= α Bα) Ɣα). Using the following -version of eqution 14) in [7]: ABC D α f ) t)= ABR D α f ) t) Bα) f ) α λt ) α ), λ = α, 63) nd the identity see [3], p.78, forexmple) I α t ) β 1 μ,β [ λt ) μ ]) x)=x ) α+β 1 μ,α+β [ λx ) μ ], 64) we cn stte the following result which is very useful tool to solve frctionl dynmicl systems with Cputo frctionl derivtive with ML kernels. Proposition 3 For 0<α <1,we hve AB IαABC D α f ) x)=fx) f) α λx ) α ) α f )xα α,α+1 λx ) α ) = f x) f).

17 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 17 of 18 Similrly, AB I α b ABC D α b f ) x)=f x) f b). 65) Similrly,in the discrete cse by recllingthtsee[32], Proposition 3.9 or [35]) α t Ɣμ +1) )μ = Ɣμ + α +1 t )μ+α, we cn stte the following importnt result in clssicl discrete frctionl clculus. Theorem 11 Let [0, ), nd let α, ρ, μ, γ, λ C Reα) >0,Reμ) >0,Reρ) >0). Then for t > the reltions hold: αγ ρ,μ λ, t )=γ ρ,μ+α λ, t ). αγ ρ,μ λ, t )=γ ρ,μ α λ, t ). Then we cn stte the following. Proposition 4 For 0<α <1,we hve AB αabc α f ) t)=ft) f) α λ, t ) α f ) α,α+1λ, t ) = f t) f). Similrly, by the first prt nd the ction of the Q-opertor AB α b ABC α b f ) t)=f t) f b). 66) 6 Conclusions The modified versions of Mittg-Leffler functions enble us to tret esily the frctionl type derivtives with ML kernels nd enble us to obtin successfully their discrete versions. The Q-opertor nd its discrete version lwys provide n effective tool to confirm dul definitions nd reltions when pssing from left to right or vice vers.thereexistnon- constnt functions whose usul or discrete ABC frctionl derivtives re zeros. Hence zero potentil function in usul or discrete vritionl problem does not imply only constnt solution. The results obtined tend to the ordinry cse when α tends to 1. The discrete versions for AB type frctionl derivtives hve been defined nd their discrete frctionl integrls given with the help of the discrete Lplce trnsform. Competing interests The uthors declre tht they hve no competing interests. Authors contributions All uthors contributed eqully in this rticle. They red nd pproved the finl mnuscript. Author detils 1 Deprtment of Mthemtics nd Physicl Sciences, Prince Sultn University, P.O. Box 66833, Riydh, 11586, Sudi Arbi. 2 Deprtment of Mthemtics, Çnky University, Ankr, 06530, Turkey. 3 Institute of Spce Sciences, Mgurele-Buchrest, Romni. Received: 28 June 2016 Accepted: 23 August 2016

18 Abdeljwd nd Blenu Advnces in Difference qutions 2016) 2016:232 Pge 18 of 18 References 1. Smko, G, Kilbs, AA, Mrichev, S: Frctionl Integrls nd Derivtives: Theory nd Applictions. Gordon & Brech, Yverdon 1993) 2. Podlubny, I: Frctionl Differentil qutions. Acdemic Press, Sn Diego 1999) 3. Kilbs, AA, Srivstv, MH, Trujillo, JJ: Theory nd Appliction of Frctionl Differentil qutions. Mthemtics Studies, vol North-Hollnd, Amsterdm 2006) 4. Mgin, RL: Frctionl Clculus in Bioengineering. Begell House Publishers, Dnbury 2006) 5. Blenu, D, Diethelm, K, Scls,, Trujillo, JJ: Frctionl Clculus Models nd Numericl Methods. Series on Complexity, Nonlinerity nd Chos. World Scientific, Singpore 2012) 6. Cputo, M, Fbrizio, M: A new definition of frctionl derivtive without singulr kernel. Prog. Frct. Differ. Appl. 12), ) 7. Atgn, A, Blenu, D: New frctionl derivtive with non-locl nd non-singulr kernel. Therm. Sci. 202), ) 8. Cputo, M, Fbrizio, M: Applictions of new time nd sptil frctionl derivtives with exponentil kernels. Prog. Frct. Differ. Appl. 21), ) 9. Atngn, A, Blenu, D: Cputo-Fbrizio derivtive pplied to groundwter flow within confined quifer. J. ng. Mech. 2016). doi: /asc)m , D Alkhtni, BST: Chu s circuit model with Atngn-Blenu derivtive with frctionl order. Chos 2016, in press) 11. Atngn, A, Koc, I: Chos in simple nonliner system with Atngn-Blenu derivtives with frctionl order. Chos 2016, in press) 12. Losd, J, Nieto, JJ: Properties of new frctionl derivtive without singulr kernel. Prog. Frct. Differ. Appl. 12), ) 13. Hristov, J: Trnsient het diffusion with non-singulr fding memory: from the Cttneo constitutive eqution with Jeffrey s kernel to the Cputo-Fbrizio time-frctionl derivtive. Therm. Sci. 202), ) 14. Hristov, J: Stedy-stte het conduction in medium with sptil non-singulr fding memory: derivtion of Cputo-Fbrizio spce-frctionl derivtive with Jeffrey s kernel nd nlyticl solutions. Therm. Sci. 2016). doi: /tsci h 15. Mrin, M: The Lgrnge identity method in thermoelsticity of bodies with microstructure. Int. J. ng. Sci. 328), ) 16. Mrin, M: On existence nd uniqueness in thermoelsticity of micropolr bodies. C. R. Mth. Acd. Sci. Pris 321, ) 17. Mrin, M, Mrinescu, C: Thermoelsticity of initilly stressed bodies. Asymptotic equiprtition of energies. Int. J. ng. Sci. 361), ) 18. Atıcı, FM, Şengül, S: Modelling with frctionl difference equtions. J. Mth. Anl. Appl. 369, ) 19. Boros, G, Moll, V: Irresistible Integrls; Symbols, Anlysis nd xperiments in the vlution of Integrls. Cmbridge University Press, Cmbridge 2004) 20. Atıcı, FM, loe, PW: A trnsform method in discrete frctionl clculus. Int. J. Difference qu. 22), ) 21. Atıcı, FM, loe, PW: Initil vlue problems in discrete frctionl clculus. Proc. Am. Mth. Soc. 137, ) 22. Anstssiou, GA: Nbl discrete clculus nd nbl inequlities. Mth. Comput. Model. 51, ) 23. Gry, HL, Zhng, NF: On new definition of the frctionl difference. Mth. Comput ), ) 24. Atıcı, FM, loe, PW: Gronwll s inequlity on discrete frctionl clculus. Comput. Mth. Appl. 64, ). doi: /j.cmw Peng, J, Li, K: A note on property of the Mittg-Leffler function. J. Mth. Anl. Appl. 370, ) 26. Miller, KS, Ross, B: Frctionl difference clculus. In: Proceedings of the Interntionl Symposium on Univlent Functions, Frctionl Clculus nd Their Applictions, pp Nihon University, Koriym 1989) 27. Bstos, NRO, Ferreir, RAC, Torres, DFM: Discrete-time frctionl vritionl problems. Signl Process. 913), ) 28. Abdeljwd, T, Blenu, D: Frctionl differences nd integrtion by prts. J. Comput. Anl. Appl. 133), ) 29. Abdeljwd, T: On Riemnn nd Cputo frctionl differences. Comput. Mth. Appl. 623), ) 30. Atıcı, FM, loe, PW: Discrete frctionl clculus with the nbl opertor. lectron. J. Qul. Theory Differ. qu. Spec. d. I 2009, ) 31. Abdeljwd, T: On Delt nd Nbl Cputo frctionl differences nd dul identities. Discrete Dyn. Nt. Soc. 2013, Article ID ) 32. Abdeljwd, T: Dul identities in frctionl difference clculus within Riemnn. Adv. Differ. qu. 2013, Article ID ) 33. Abdeljwd, T, Jrd, F, Blenu, D: A semigroup-like property for discrete Mittg-Leffler functions. Adv. Differ. qu. 2012, Article ID ) 34. Bohner, M, Peterson, A: Advnces in Dynmic qutions on Time Scles. Birkhäuser, Boston 2003) 35. Abdeljwd, T, Atici, F: On the definitions of nbl frctionl differences. Abstr. Appl. Anl. 2012, Article ID ). doi: /2012/ Minrdi, F: On some properties of the Mittg-Leffler function α t α ) completely monotone for t >0with0<α <1. Discrete Contin. Dyn. Syst., Ser. B 197), ). doi: /dcdsb Kilbs, AA, Sigo, M, Sxen, K: Generlized Mittg-Leffler function nd generlized frctionl clculus opertors. Integrl Trnsforms Spec. Funct. 151), ) 38. Abdeljwd, T: Nbl uler-lgrnge equtions in discrete frctionl vritionl clculus within Riemnn nd Cputo. Int. J. Mth. Comput. 221), ) 39. Abdeljwd Mrb), T, Blenu, D, Jrd, F: xistence nd uniqueness theorem for clss of dely differentil equtions with left nd right Cputo frctionl derivtives. J. Mth. Phys. 49, )

Research Article On the Definitions of Nabla Fractional Operators

Research Article On the Definitions of Nabla Fractional Operators Abstrct nd Applied Anlysis Volume 2012, Article ID 406757, 13 pges doi:10.1155/2012/406757 Reserch Article On the Definitions of Nbl Frctionl Opertors Thbet Abdeljwd 1 nd Ferhn M. Atici 2 1 Deprtment of

More information

COMPARISON PRINCIPLES FOR DIFFERENTIAL EQUATIONS INVOLVING CAPUTO FRACTIONAL DERIVATIVE WITH MITTAG-LEFFLER NON-SINGULAR KERNEL

COMPARISON PRINCIPLES FOR DIFFERENTIAL EQUATIONS INVOLVING CAPUTO FRACTIONAL DERIVATIVE WITH MITTAG-LEFFLER NON-SINGULAR KERNEL Electronic Journl of Differentil Equtions, Vol. 2018 (2018, No. 36, pp. 1 10. ISSN: 1072-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu COMPARISON PRINCIPLES FOR DIFFERENTIAL EQUATIONS

More information

Oscillation of differential equations in the frame of nonlocal fractional derivatives generated by conformable derivatives

Oscillation of differential equations in the frame of nonlocal fractional derivatives generated by conformable derivatives Abdll Advnces in Difference Equtions (2018) 2018:107 https://doi.org/10.1186/s13662-018-1554-6 R E S E A R C H Open Access Oscilltion of differentil equtions in the frme of nonlocl frctionl derivtives

More information

Calculus of variations with fractional derivatives and fractional integrals

Calculus of variations with fractional derivatives and fractional integrals Anis do CNMAC v.2 ISSN 1984-820X Clculus of vritions with frctionl derivtives nd frctionl integrls Ricrdo Almeid, Delfim F. M. Torres Deprtment of Mthemtics, University of Aveiro 3810-193 Aveiro, Portugl

More information

arxiv: v1 [math.gm] 30 Dec 2015

arxiv: v1 [math.gm] 30 Dec 2015 A NEW FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL: APPLICATION TO THE MODELLING OF THE STEADY HEAT FLOW rxiv:161.1623v1 [mth.gm] 3 Dec 215 by Xio-Jun YANG, H. M. SRIVASTAVA b,c, J. A. Tenreiro MACHADO

More information

CHEBYSHEV TYPE INEQUALITY ON NABLA DISCRETE FRACTIONAL CALCULUS. 1. Introduction

CHEBYSHEV TYPE INEQUALITY ON NABLA DISCRETE FRACTIONAL CALCULUS. 1. Introduction Frctionl Differentil Clculus Volume 6, Number 2 (216), 275 28 doi:1.7153/fdc-6-18 CHEBYSHEV TYPE INEQUALITY ON NABLA DISCRETE FRACTIONAL CALCULUS SERKAN ASLIYÜCE AND AYŞE FEZA GÜVENILIR (Communicted by

More information

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation

Research Article On Existence and Uniqueness of Solutions of a Nonlinear Integral Equation Journl of Applied Mthemtics Volume 2011, Article ID 743923, 7 pges doi:10.1155/2011/743923 Reserch Article On Existence nd Uniqueness of Solutions of Nonliner Integrl Eqution M. Eshghi Gordji, 1 H. Bghni,

More information

New Expansion and Infinite Series

New Expansion and Infinite Series Interntionl Mthemticl Forum, Vol. 9, 204, no. 22, 06-073 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.2988/imf.204.4502 New Expnsion nd Infinite Series Diyun Zhng College of Computer Nnjing University

More information

Sequential Fractional Differential Equations with Hadamard Derivative

Sequential Fractional Differential Equations with Hadamard Derivative Sequentil Frctionl Differentil Equtions with Hdmrd Derivtive M. Klimek Institute of Mthemtics, Czestochow University of Technoy ul. Dbrowskiego 73, 42-200 Czestochow, Polnd e-mil: klimek@im.pcz.pl). Abstrct:

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

Ageneralizedq-fractional Gronwall inequality and its applications to nonlinear delay q-fractional difference systems

Ageneralizedq-fractional Gronwall inequality and its applications to nonlinear delay q-fractional difference systems Abdeljwd et l. Journl of Ineulities nd Applictions (206) 206:240 DOI 0.86/s3660-06-8-2 R E S E A R C H Open Access Agenerlized-frctionl Gronwll ineulity nd its pplictions to nonliner dely -frctionl difference

More information

Research Article On New Inequalities via Riemann-Liouville Fractional Integration

Research Article On New Inequalities via Riemann-Liouville Fractional Integration Abstrct nd Applied Anlysis Volume 202, Article ID 428983, 0 pges doi:0.55/202/428983 Reserch Article On New Inequlities vi Riemnn-Liouville Frctionl Integrtion Mehmet Zeki Sriky nd Hsn Ogunmez 2 Deprtment

More information

FRACTIONAL DYNAMIC INEQUALITIES HARMONIZED ON TIME SCALES

FRACTIONAL DYNAMIC INEQUALITIES HARMONIZED ON TIME SCALES FRACTIONAL DYNAMIC INEQUALITIES HARMONIZED ON TIME SCALES M JIBRIL SHAHAB SAHIR Accepted Mnuscript Version This is the unedited version of the rticle s it ppered upon cceptnce by the journl. A finl edited

More information

MAC-solutions of the nonexistent solutions of mathematical physics

MAC-solutions of the nonexistent solutions of mathematical physics Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences - Finite Elements - Finite Volumes - Boundry Elements MAC-solutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

Lyapunov-Type Inequalities for some Sequential Fractional Boundary Value Problems

Lyapunov-Type Inequalities for some Sequential Fractional Boundary Value Problems Advnces in Dynmicl Systems nd Applictions ISSN 0973-5321, Volume 11, Number 1, pp. 33 43 (2016) http://cmpus.mst.edu/ds Lypunov-Type Inequlities for some Sequentil Frctionl Boundry Vlue Problems Rui A.

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

The Basic Functional 2 1

The Basic Functional 2 1 2 The Bsic Functionl 2 1 Chpter 2: THE BASIC FUNCTIONAL TABLE OF CONTENTS Pge 2.1 Introduction..................... 2 3 2.2 The First Vrition.................. 2 3 2.3 The Euler Eqution..................

More information

A generalized Lyapunov inequality for a higher-order fractional boundary value problem

A generalized Lyapunov inequality for a higher-order fractional boundary value problem M Journl of Inequlities nd Applictions (2016) 2016:261 DOI 10.1186/s13660-016-1199-5 R E S E A R C H Open Access A generlized Lypunov inequlity for higher-order frctionl boundry vlue problem Dexing M *

More information

ON THE OSCILLATION OF FRACTIONAL DIFFERENTIAL EQUATIONS

ON THE OSCILLATION OF FRACTIONAL DIFFERENTIAL EQUATIONS ON HE OSCILLAION OF FRACIONAL DIFFERENIAL EQUAIONS S.R. Grce 1, R.P. Agrwl 2, P.J.Y. Wong 3, A. Zfer 4 Abstrct In this pper we initite the oscilltion theory for frctionl differentil equtions. Oscilltion

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall)

Green s function. Green s function. Green s function. Green s function. Green s function. Green s functions. Classical case (recall) Green s functions 3. G(t, τ) nd its derivtives G (k) t (t, τ), (k =,..., n 2) re continuous in the squre t, τ t with respect to both vribles, George Green (4 July 793 3 My 84) In 828 Green privtely published

More information

Henstock Kurzweil delta and nabla integrals

Henstock Kurzweil delta and nabla integrals Henstock Kurzweil delt nd nbl integrls Alln Peterson nd Bevn Thompson Deprtment of Mthemtics nd Sttistics, University of Nebrsk-Lincoln Lincoln, NE 68588-0323 peterso@mth.unl.edu Mthemtics, SPS, The University

More information

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform

The Solution of Volterra Integral Equation of the Second Kind by Using the Elzaki Transform Applied Mthemticl Sciences, Vol. 8, 214, no. 11, 525-53 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/1.12988/ms.214.312715 The Solution of Volterr Integrl Eqution of the Second Kind by Using the Elzki

More information

A General Dynamic Inequality of Opial Type

A General Dynamic Inequality of Opial Type Appl Mth Inf Sci No 3-5 (26) Applied Mthemtics & Informtion Sciences An Interntionl Journl http://dxdoiorg/2785/mis/bos7-mis A Generl Dynmic Inequlity of Opil Type Rvi Agrwl Mrtin Bohner 2 Donl O Regn

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

Asymptotic behavior of intermediate points in certain mean value theorems. III

Asymptotic behavior of intermediate points in certain mean value theorems. III Stud. Univ. Bbeş-Bolyi Mth. 59(2014), No. 3, 279 288 Asymptotic behvior of intermedite points in certin men vlue theorems. III Tiberiu Trif Abstrct. The pper is devoted to the study of the symptotic behvior

More information

Conservation Law. Chapter Goal. 5.2 Theory

Conservation Law. Chapter Goal. 5.2 Theory Chpter 5 Conservtion Lw 5.1 Gol Our long term gol is to understnd how mny mthemticl models re derived. We study how certin quntity chnges with time in given region (sptil domin). We first derive the very

More information

MATH 144: Business Calculus Final Review

MATH 144: Business Calculus Final Review MATH 144: Business Clculus Finl Review 1 Skills 1. Clculte severl limits. 2. Find verticl nd horizontl symptotes for given rtionl function. 3. Clculte derivtive by definition. 4. Clculte severl derivtives

More information

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS. THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS RADON ROSBOROUGH https://intuitiveexplntionscom/picrd-lindelof-theorem/ This document is proof of the existence-uniqueness theorem

More information

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all 3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the

More information

The Delta-nabla Calculus of Variations for Composition Functionals on Time Scales

The Delta-nabla Calculus of Variations for Composition Functionals on Time Scales Interntionl Journl of Difference Equtions ISSN 973-669, Volume 8, Number, pp. 7 47 3) http://cmpus.mst.edu/ijde The Delt-nbl Clculus of Vritions for Composition Functionls on Time Scles Monik Dryl nd Delfim

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex

Parametrized inequality of Hermite Hadamard type for functions whose third derivative absolute values are quasi convex Wu et l. SpringerPlus (5) 4:83 DOI.8/s44-5-33-z RESEARCH Prmetrized inequlity of Hermite Hdmrd type for functions whose third derivtive bsolute vlues re qusi convex Shn He Wu, Bnyt Sroysng, Jin Shn Xie

More information

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales

Multiple Positive Solutions for the System of Higher Order Two-Point Boundary Value Problems on Time Scales Electronic Journl of Qulittive Theory of Differentil Equtions 2009, No. 32, -3; http://www.mth.u-szeged.hu/ejqtde/ Multiple Positive Solutions for the System of Higher Order Two-Point Boundry Vlue Problems

More information

Section 6.1 INTRO to LAPLACE TRANSFORMS

Section 6.1 INTRO to LAPLACE TRANSFORMS Section 6. INTRO to LAPLACE TRANSFORMS Key terms: Improper Integrl; diverge, converge A A f(t)dt lim f(t)dt Piecewise Continuous Function; jump discontinuity Function of Exponentil Order Lplce Trnsform

More information

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei Fculty of Sciences nd Mthemtics University of Niš Seri Aville t: http://www.pmf.ni.c.rs/filomt Filomt 25:4 20) 53 63 DOI: 0.2298/FIL0453M INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV

More information

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8

Math 113 Fall Final Exam Review. 2. Applications of Integration Chapter 6 including sections and section 6.8 Mth 3 Fll 0 The scope of the finl exm will include: Finl Exm Review. Integrls Chpter 5 including sections 5. 5.7, 5.0. Applictions of Integrtion Chpter 6 including sections 6. 6.5 nd section 6.8 3. Infinite

More information

LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS

LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS Electronic Journl of Differentil Equtions, Vol. 2017 (2017), No. 139, pp. 1 14. ISSN: 1072-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu LYAPUNOV-TYPE INEQUALITIES FOR THIRD-ORDER LINEAR

More information

Numerical Solutions for Quadratic Integro-Differential Equations of Fractional Orders

Numerical Solutions for Quadratic Integro-Differential Equations of Fractional Orders Open Journl of Applied Sciences, 7, 7, 57-7 http://www.scirp.org/journl/ojpps ISSN Online: 65-395 ISSN Print: 65-397 Numericl Solutions for Qudrtic Integro-Differentil Equtions of Frctionl Orders Ftheh

More information

WENJUN LIU AND QUÔ C ANH NGÔ

WENJUN LIU AND QUÔ C ANH NGÔ AN OSTROWSKI-GRÜSS TYPE INEQUALITY ON TIME SCALES WENJUN LIU AND QUÔ C ANH NGÔ Astrct. In this pper we derive new inequlity of Ostrowski-Grüss type on time scles nd thus unify corresponding continuous

More information

Exact solutions for nonlinear partial fractional differential equations

Exact solutions for nonlinear partial fractional differential equations Chin. Phys. B Vol., No. (0) 004 Exct solutions for nonliner prtil frctionl differentil equtions Khled A. epreel )b) nd Sleh Omrn b)c) ) Mthemtics Deprtment, Fculty of Science, Zgzig University, Egypt b)

More information

Introduction to the Calculus of Variations

Introduction to the Calculus of Variations Introduction to the Clculus of Vritions Jim Fischer Mrch 20, 1999 Abstrct This is self-contined pper which introduces fundmentl problem in the clculus of vritions, the problem of finding extreme vlues

More information

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform

Solutions of Klein - Gordan equations, using Finite Fourier Sine Transform IOSR Journl of Mthemtics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 6 Ver. IV (Nov. - Dec. 2017), PP 19-24 www.iosrjournls.org Solutions of Klein - Gordn equtions, using Finite Fourier

More information

1 1D heat and wave equations on a finite interval

1 1D heat and wave equations on a finite interval 1 1D het nd wve equtions on finite intervl In this section we consider generl method of seprtion of vribles nd its pplictions to solving het eqution nd wve eqution on finite intervl ( 1, 2. Since by trnsltion

More information

Positive Solutions of Operator Equations on Half-Line

Positive Solutions of Operator Equations on Half-Line Int. Journl of Mth. Anlysis, Vol. 3, 29, no. 5, 211-22 Positive Solutions of Opertor Equtions on Hlf-Line Bohe Wng 1 School of Mthemtics Shndong Administrtion Institute Jinn, 2514, P.R. Chin sdusuh@163.com

More information

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions

Research Article Fejér and Hermite-Hadamard Type Inequalities for Harmonically Convex Functions Hindwi Pulishing Corportion Journl of Applied Mthemtics Volume 4, Article ID 38686, 6 pges http://dx.doi.org/.55/4/38686 Reserch Article Fejér nd Hermite-Hdmrd Type Inequlities for Hrmoniclly Convex Functions

More information

Calculus of Variations: The Direct Approach

Calculus of Variations: The Direct Approach Clculus of Vritions: The Direct Approch Lecture by Andrejs Treibergs, Notes by Bryn Wilson June 7, 2010 The originl lecture slides re vilble online t: http://www.mth.uth.edu/~treiberg/directmethodslides.pdf

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

The inequality (1.2) is called Schlömilch s Inequality in literature as given in [9, p. 26]. k=1

The inequality (1.2) is called Schlömilch s Inequality in literature as given in [9, p. 26]. k=1 THE TEACHING OF MATHEMATICS 2018, Vol XXI, 1, pp 38 52 HYBRIDIZATION OF CLASSICAL INEQUALITIES WITH EQUIVALENT DYNAMIC INEQUALITIES ON TIME SCALE CALCULUS Muhmmd Jibril Shhb Shir Abstrct The im of this

More information

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE

RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROXIMATION OF CSISZAR S f DIVERGENCE SARAJEVO JOURNAL OF MATHEMATICS Vol.5 (17 (2009, 3 12 RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL APPROIMATION OF CSISZAR S f DIVERGENCE GEORGE A. ANASTASSIOU Abstrct. Here re estblished vrious tight probbilistic

More information

arxiv: v1 [math.ca] 23 Jul 2016

arxiv: v1 [math.ca] 23 Jul 2016 rxiv:1607.06913v1 [mth.ca] 23 Jul 2016 Frctionl differentil equtions with dependence on the Cputo Ktugmpol derivtive Ricrdo Almeid 1 ricrdo.lmeid@u.pt Agnieszk B. Mlinowsk 2.mlinowsk@pb.edu.pl Ttin Odzijewicz

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION Applied Mthemtics E-Notes, 5(005), 53-60 c ISSN 1607-510 Avilble free t mirror sites of http://www.mth.nthu.edu.tw/ men/ AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

More information

On the Continuous Dependence of Solutions of Boundary Value Problems for Delay Differential Equations

On the Continuous Dependence of Solutions of Boundary Value Problems for Delay Differential Equations Journl of Computtions & Modelling, vol.3, no.4, 2013, 1-10 ISSN: 1792-7625 (print), 1792-8850 (online) Scienpress Ltd, 2013 On the Continuous Dependence of Solutions of Boundry Vlue Problems for Dely Differentil

More information

4. Calculus of Variations

4. Calculus of Variations 4. Clculus of Vritions Introduction - Typicl Problems The clculus of vritions generlises the theory of mxim nd minim. Exmple (): Shortest distnce between two points. On given surfce (e.g. plne), nd the

More information

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity

New Integral Inequalities of the Type of Hermite-Hadamard Through Quasi Convexity Punjb University Journl of Mthemtics (ISSN 116-56) Vol. 45 (13) pp. 33-38 New Integrl Inequlities of the Type of Hermite-Hdmrd Through Qusi Convexity S. Hussin Deprtment of Mthemtics, College of Science,

More information

1 The fundamental theorems of calculus.

1 The fundamental theorems of calculus. The fundmentl theorems of clculus. The fundmentl theorems of clculus. Evluting definite integrls. The indefinite integrl- new nme for nti-derivtive. Differentiting integrls. Tody we provide the connection

More information

FUNCTIONS OF α-slow INCREASE

FUNCTIONS OF α-slow INCREASE Bulletin of Mthemticl Anlysis nd Applictions ISSN: 1821-1291, URL: http://www.bmth.org Volume 4 Issue 1 (2012), Pges 226-230. FUNCTIONS OF α-slow INCREASE (COMMUNICATED BY HÜSEYIN BOR) YILUN SHANG Abstrct.

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015 Advnced Clculus: MATH 410 Uniform Convergence of Functions Professor Dvid Levermore 11 December 2015 12. Sequences of Functions We now explore two notions of wht it mens for sequence of functions {f n

More information

Notes on length and conformal metrics

Notes on length and conformal metrics Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

Variational Techniques for Sturm-Liouville Eigenvalue Problems

Variational Techniques for Sturm-Liouville Eigenvalue Problems Vritionl Techniques for Sturm-Liouville Eigenvlue Problems Vlerie Cormni Deprtment of Mthemtics nd Sttistics University of Nebrsk, Lincoln Lincoln, NE 68588 Emil: vcormni@mth.unl.edu Rolf Ryhm Deprtment

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

MA Handout 2: Notation and Background Concepts from Analysis

MA Handout 2: Notation and Background Concepts from Analysis MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,

More information

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS

POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY-VALUE PROBLEMS Electronic Journl of Differentil Equtions, Vol. 27(27), No. 156, pp. 1 8. ISSN: 172-6691. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu (login: ftp) POSITIVE SOLUTIONS

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 203 Outline Riemnn Sums Riemnn Integrls Properties Abstrct

More information

Chapter 4. Additional Variational Concepts

Chapter 4. Additional Variational Concepts Chpter 4 Additionl Vritionl Concepts 137 In the previous chpter we considered clculus o vrition problems which hd ixed boundry conditions. Tht is, in one dimension the end point conditions were speciied.

More information

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1 Int. Journl of Mth. Anlysis, Vol. 7, 2013, no. 41, 2039-2048 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2013.3499 On the Generlized Weighted Qusi-Arithmetic Integrl Men 1 Hui Sun School

More information

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir RGMIA Reserch Report Collection, Vol., No., 999 http://sci.vu.edu.u/ rgmi AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS I. Fedotov nd S. S. Drgomir Astrct. An

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL DR. RITU AGARWAL MALVIYA NATIONAL INSTITUTE OF TECHNOLOGY, JAIPUR, INDIA-302017 Tble of Contents Contents Tble of Contents 1 1. Introduction 1 2. Prtition

More information

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives Block #6: Properties of Integrls, Indefinite Integrls Gols: Definition of the Definite Integrl Integrl Clcultions using Antiderivtives Properties of Integrls The Indefinite Integrl 1 Riemnn Sums - 1 Riemnn

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

MAA 4212 Improper Integrals

MAA 4212 Improper Integrals Notes by Dvid Groisser, Copyright c 1995; revised 2002, 2009, 2014 MAA 4212 Improper Integrls The Riemnn integrl, while perfectly well-defined, is too restrictive for mny purposes; there re functions which

More information

Calculus of Variations

Calculus of Variations Clculus of Vritions Com S 477/577 Notes) Yn-Bin Ji Dec 4, 2017 1 Introduction A functionl ssigns rel number to ech function or curve) in some clss. One might sy tht functionl is function of nother function

More information

ULAM STABILITY AND DATA DEPENDENCE FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH CAPUTO DERIVATIVE

ULAM STABILITY AND DATA DEPENDENCE FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH CAPUTO DERIVATIVE Electronic Journl of Qulittive Theory of Differentil Equtions 2, No. 63, -; http://www.mth.u-szeged.hu/ejqtde/ ULAM STABILITY AND DATA DEPENDENCE FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH CAPUTO DERIVATIVE

More information

Calculus of Variations with Fractional and Classical Derivatives

Calculus of Variations with Fractional and Classical Derivatives Clculus of Vritions with Frctionl nd Clssicl Derivtives Ttin Odzijewicz Delfim F. M. Torres Deprtment of Mthemtics, University of Aveiro 381-193 Aveiro, Portugl e-mil: ttino@u.pt Deprtment of Mthemtics,

More information

ON THE C-INTEGRAL BENEDETTO BONGIORNO

ON THE C-INTEGRAL BENEDETTO BONGIORNO ON THE C-INTEGRAL BENEDETTO BONGIORNO Let F : [, b] R be differentible function nd let f be its derivtive. The problem of recovering F from f is clled problem of primitives. In 1912, the problem of primitives

More information

Review of basic calculus

Review of basic calculus Review of bsic clculus This brief review reclls some of the most importnt concepts, definitions, nd theorems from bsic clculus. It is not intended to tech bsic clculus from scrtch. If ny of the items below

More information

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION Fixed Point Theory, 13(2012), No. 1, 285-291 http://www.mth.ubbcluj.ro/ nodecj/sfptcj.html KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION FULI WANG AND FENG WANG School of Mthemtics nd

More information

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60. Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

More information

A PROOF OF THE FUNDAMENTAL THEOREM OF CALCULUS USING HAUSDORFF MEASURES

A PROOF OF THE FUNDAMENTAL THEOREM OF CALCULUS USING HAUSDORFF MEASURES INROADS Rel Anlysis Exchnge Vol. 26(1), 2000/2001, pp. 381 390 Constntin Volintiru, Deprtment of Mthemtics, University of Buchrest, Buchrest, Romni. e-mil: cosv@mt.cs.unibuc.ro A PROOF OF THE FUNDAMENTAL

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), ) Euler, Iochimescu nd the trpezium rule G.J.O. Jmeson (Mth. Gzette 96 (0), 36 4) The following results were estblished in recent Gzette rticle [, Theorems, 3, 4]. Given > 0 nd 0 < s

More information

Properties of the Riemann Integral

Properties of the Riemann Integral Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University Februry 15, 2018 Outline 1 Some Infimum nd Supremum Properties 2

More information

Taylor Polynomial Inequalities

Taylor Polynomial Inequalities Tylor Polynomil Inequlities Ben Glin September 17, 24 Abstrct There re instnces where we my wish to pproximte the vlue of complicted function round given point by constructing simpler function such s polynomil

More information

Three solutions to a p(x)-laplacian problem in weighted-variable-exponent Sobolev space

Three solutions to a p(x)-laplacian problem in weighted-variable-exponent Sobolev space DOI: 0.2478/uom-203-0033 An. Şt. Univ. Ovidius Constnţ Vol. 2(2),203, 95 205 Three solutions to p(x)-lplcin problem in weighted-vrible-exponent Sobolev spce Wen-Wu Pn, Ghsem Alizdeh Afrouzi nd Lin Li Abstrct

More information

Note 16. Stokes theorem Differential Geometry, 2005

Note 16. Stokes theorem Differential Geometry, 2005 Note 16. Stokes theorem ifferentil Geometry, 2005 Stokes theorem is the centrl result in the theory of integrtion on mnifolds. It gives the reltion between exterior differentition (see Note 14) nd integrtion

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics GENERALIZATIONS OF THE TRAPEZOID INEQUALITIES BASED ON A NEW MEAN VALUE THEOREM FOR THE REMAINDER IN TAYLOR S FORMULA volume 7, issue 3, rticle 90, 006.

More information

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) =

WHEN IS A FUNCTION NOT FLAT? 1. Introduction. {e 1 0, x = 0. f(x) = WHEN IS A FUNCTION NOT FLAT? YIFEI PAN AND MEI WANG Abstrct. In this pper we prove unique continution property for vector vlued functions of one vrible stisfying certin differentil inequlity. Key words:

More information

(4.1) D r v(t) ω(t, v(t))

(4.1) D r v(t) ω(t, v(t)) 1.4. Differentil inequlities. Let D r denote the right hnd derivtive of function. If ω(t, u) is sclr function of the sclrs t, u in some open connected set Ω, we sy tht function v(t), t < b, is solution

More information

Euler-Maclaurin Summation Formula 1

Euler-Maclaurin Summation Formula 1 Jnury 9, Euler-Mclurin Summtion Formul Suppose tht f nd its derivtive re continuous functions on the closed intervl [, b]. Let ψ(x) {x}, where {x} x [x] is the frctionl prt of x. Lemm : If < b nd, b Z,

More information

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations

AMATH 731: Applied Functional Analysis Fall Some basics of integral equations AMATH 731: Applied Functionl Anlysis Fll 2009 1 Introduction Some bsics of integrl equtions An integrl eqution is n eqution in which the unknown function u(t) ppers under n integrl sign, e.g., K(t, s)u(s)

More information

Research Article Moment Inequalities and Complete Moment Convergence

Research Article Moment Inequalities and Complete Moment Convergence Hindwi Publishing Corportion Journl of Inequlities nd Applictions Volume 2009, Article ID 271265, 14 pges doi:10.1155/2009/271265 Reserch Article Moment Inequlities nd Complete Moment Convergence Soo Hk

More information

Principles of Real Analysis I Fall VI. Riemann Integration

Principles of Real Analysis I Fall VI. Riemann Integration 21-355 Principles of Rel Anlysis I Fll 2004 A. Definitions VI. Riemnn Integrtion Let, b R with < b be given. By prtition of [, b] we men finite set P [, b] with, b P. The set of ll prtitions of [, b] will

More information