SUPPLEMENTARY MATERIAL TO EFFICIENT MULTIVARIATE ENTROPY ESTIMATION VIA K-NEAREST NEIGHBOUR DISTANCES

Size: px
Start display at page:

Download "SUPPLEMENTARY MATERIAL TO EFFICIENT MULTIVARIATE ENTROPY ESTIMATION VIA K-NEAREST NEIGHBOUR DISTANCES"

Transcription

1 arxiv: v2 SUPPLEMENTARY MATERIAL TO EFFICIENT MULTIVARIATE ENTROPY ESTIMATION VIA K-NEAREST NEIGHBOUR DISTANCES By Thomas B Berrett,, Richar J Samworth, a Mig Yua, Uiversity of Cambrige Uiversity of Wiscosi Maiso Appeix This is the supplemetary material to Berrett, Samworth a Yua 2017, hereafter referre to as the mai text A1 Proofs of auxiliary results Proof of Propositio 9 i the mai text Fix τ α+, 1] We first claim that give ay ɛ > 0, there exists A ɛ > 0 such that aδ A ɛ δ ɛ for all δ 0, γ] To see this, observe that there exists δ 0 0, γ] such that aδ δ ɛ for δ δ 0 But the sup δ ɛ aδ max 1, γ ɛ aδ 0 } γ ɛ δ0 ɛ, δ 0,γ] which establishes the claim, with A ɛ := γ ɛ δ0 ɛ Now choose ɛ = 1 3 τ α+ a let τ := τ α+ α+, 1 The, by Höler s iequality, a sice ατ /1 τ >, a fx fx τ x A ɛ δ ɛ sup fx τ x sup f F,θ x:fx<δ} as δ 0, as require A ɛ δ ɛ 1 + ν τ f F,θ R 1 + x α x:fx<δ} } τ 1 τ 1 τ x 0 Research supporte by a PhD scholarship from the SIMS fu Research supporte by a EPSRC Early Career Fellowship a a grat from the Leverhulme Trust Research supporte by NSF FRG Grat DMS a NIH Grat 1- U54AI AMS 2000 subject classificatios: 62G05, 62G20 Keywors a phrases: efficiecy, etropy estimatio, Kozacheko Leoeko estimator, weighte earest eighbours 1 imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

2 2 T B BERRETT, R J SAMWORTH AND M YUAN For the seco part, fix ρ > 0, set ɛ := 1 2 τ sup f F,θ X f F,θ X α+ α+, 1 The, by Höler s iequality agai, a fx ρ fx τ x A ɛ/ρ sup fx τ x as require A ɛ/ρ 1 + ν τ R 1 + x α a τ := τ 2 + 2α+ } τ 1 τ 1 τ x <, Proof of Lemma 10 i The lower bou is immeiate from the fact that h x r V f r for ay r > 0 For the upper bou, observe that by Markov s iequality, for ay r > 0, h x x + r = B x x +r fy y B 0 r fy y 1 µ αf r α The result follows o substitutig r = µ αf 1/α 1 s for s 0, 1 ii We first prove this result i the case β 2, 4], givig the state form of b 1 Let C := 4V β/ / + β, a let y := Cafx β/2 ss/fx} β/ Now, by the mea value theorem, we have for r r a x that h xr V r V fx r+2 fx afxfx V 2 + β r+β It is coveiet to write s 1+2/ fx s x,y := s 2 + 2V 2/ + y fx 1+2/ The, provie s x,y 0, V raxfx], we have s 1/ x,y h x V fx} 1/ fx s x,y fx V 2/ Now, by our hypothesis, we kow that sup sup f F,θ sup max s S x X s1+2/ 1+2/ x,y 2/ V s 2/ fx 2 + 2fx 1+2/, y s 1/2 V 2/ max β/ afxv s1+β/ 2 + βfx β/ x,y } C 2/ }, CC β/ 0 imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

3 EFFICIENT ENTROPY ESTIMATION 3 as Hece there exists 1 = 1, θ N such that for all 1, all f F,θ, s S a x X, we have s1+2/ x,y s 1+2/ s1+2/ 1/2 V 2/ afxs 2/ fx 2/ + y } s Moreover, there exists 2 = 2, θ N such that for all 2, all s S, x X a f F,θ we have s x,y 1+β/ 2s 1+β/ Fially, we ca choose 3 = 3, θ N such that max C 4 β/ 4 + 2V 4 β/, 2 1/2 C 2/ + βv 2/, 3/2 C 2/ } βv 2/ + β a such that C 8 1/2 V /2 for 3 It follows that for max 1, 2, 3 =:, for f F,θ, s S a for x X, we have that s x,y 0, V raxfx] a h x y s 1/ x,y V fx} 1/ s afxs1+2/ 2 1/2 V 2/ fx 2/ afxβ/2 s 1+β/ fx β/ 1/2 V 2/ afxs 2/ 2 + 2fx 2/ + y } afxs1+β/ s [C afx2 β/ V 4/ Cafx 2 1/2 V 2/ s fx } 4 β/ } s 2/ fx + βv β fx β β/ ] V 0 + β The lower bou is prove by very similar calculatios, a the result for the case β 2, 4] follows The geeral case ca be prove usig very similar argumets, a is omitte for brevity A2 Auxiliary results for the proof of Theorem 2 i the mai text the efiitio of V f give i the statemet of Theorem 1 Recall Lemma 1 For each N a θ Θ a m N, we have i sup f F,θ X fx logm fx x < ; ii if f F,θ V f > 0; imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

4 4 T B BERRETT, R J SAMWORTH AND M YUAN Proof of Lemma 1 Fix N a θ = α, β, γ, ν, a Θ i For ɛ 0, 1 a t 0, 1], we have log 1 t 1 ɛ t ɛ α α1 mɛ Let ɛ = mα+2, so that mɛ = 2 The, by Höler s iequality, for ay f F,θ, fx log m fx x 2 m 1 fx log m f x + 2 m 1 log m f X X fx 2m 1 f mɛ ɛ m fx 1 mɛ x + 2 m 1 log m f X } 1 + x α 1 mɛ mɛ mɛ x 2m 1 γ mɛ ɛ m 1 + ν 1 mɛx + 2 m 1 max log m γ, 1 V α α m logm ν α + α+ α α where the bou o log m f comes from 13 i the mai text ii Now efie A,θ := max sup Hf, 1 } f F,θ 2 log if f, 1 f F,θ }, a the set S,θ := x X : e 4A,θ fx e 2A,θ} For f F,θ, x S,θ a y B x 8 1/2 ae 4A,θ} 1/β 1 we have by Lemma 2 below that 1 fy fx 151/2 ae 4A,θ e 2A,θ y x β 1 7 By the cotiuity of f, there exists x 0 S,θ such that fx 0 = 1 2 e 2A,θ1+ e 2A,θ Thus, by 1, we have that B x0 r,θ S,θ, where Hece 71 e 2A,θ } 1/β 1 1 r,θ := 30 1/2 ae 4A,θ 8 1/2 ae 4A,θ} 1/β 1 V f = E f [log fx 1 + Hf} 2 ] A 2,θ P f X 1 S,θ A 2,θ e 4A,θ V r,θ, as require The followig auxiliary result provies cotrol o eviatios of the esity arisig from the smoothess coitio of our F,θ classes imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

5 EFFICIENT ENTROPY ESTIMATION 5 Lemma 2 For θ = α, β, γ, ν, a Θ, m := β 1, f F,θ a y B x ra x, we have, for multi-iices t with t m, that f t f t y xt x t x 15 1/2 a fx fx y x miβ t,1 7 Proof If t = m the the result follows immeiately from the efiitio of F,θ Heceforth, therefore, assume that m 1 a t m 1 Writig here for the largest absolute etry of a array, we have for y B x ra x that f t f t y xt x t x y x sup f t z B x y x x t z y x f t +1 x + 1/2 y x sup f t +1 z f t +1 x m t l=1 l 1/2 y x l f t +l x z B x y x + m t /2 y x m t sup z B x y x f m z f m x } 1 afxfx y x 1 1/2 y x + β t /2 y x β t 1 151/2 afxfx y x, 7 as require Lemma 3 that Uer the coitios of Theorem 1 i the mai text, we have sup k k 0,,k 1 } sup E f [Ṽ w V f} 2 ] 0 f F,θ Proof For w = w 1,, w k T W k, write suppw := j : w j 0} The E f Ṽ w V f k w j E f log 2 ξ j,1 j=1 w 1 max j suppw X E f log 2 ξ j,1 f log 2 f + E f Ĥw 2 } Hf 2 X f log 2 f + Var f Ĥw + E f Ĥ w 2 Hf 2 imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

6 6 T B BERRETT, R J SAMWORTH AND M YUAN Thus, by Theorem 1 i the mai text, 18 i the proof of that result a Lemma 1i, we have that sup k k 0,,k 1 } sup f F,θ E f Ṽ w V f 0 Now, 2 Var f Ṽ w w 2 1 max j suppw Var f log 2 ξ j,1 + w 2 1 max j,l suppw Cov f log 2 ξ j,1, log 2 ξ l,2 Let a,j := j 3j1/2 log 1/2 0 a a +,j := j + 3j1/2 log 1/2 1 Mimickig argumets i the proof of Theorem 1, for ay m N, j suppw a ɛ > 0, E f log m ξ j,1 fx 1 } = = X fx a+,j 1 a,j 1 0 log m V 1fxh 1 x log m 1s e Ψj e Ψj B j, j s s s k β/ + O max β/ logm 1, k B j, j s s x α α+ ɛ α α+ ɛ } 0, uiformly for j suppw, k k 0,, k 1 } a f F,θ Moreover, by Cauchy Schwarz, we ca ow show, for example, that E f log 4 ξ j,1 = E f [logξ j,1 fx 1 log fx 1 } 4 ] E f log 4 fx 1 uiformly for j suppw, k k 0,, k 1 } a f F,θ The result follows upo otig that we may use a similar approach for the covariace term i 2 to see that sup k k 0,,k 1 } sup f F,θ Var Ṽ w 0 A3 Proof of Propositio 5 i the mai text Proof of Propositio 5 i the mai text I each of the three examples, we provie θ = α, β, γ, ν, a Θ such that f F,θ I fact, β > 0 may be chose arbitrarily i each case i We may choose ay α > 0, a the set ν = 2 α/2 Γ α /Γ/2 We may also set γ = 2π /2 It remais to fi a A such that 6 i the mai text hols Write H r y := 1 r e y2 /2 r y r e y2 /2 for the rth Hermite polyomial, a ote that H r y p r y, where p r is a polyomial of egree r with o-egative coefficiets Usig multi-iex otatio for partial imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

7 EFFICIENT ENTROPY ESTIMATION 7 erivatives, if t = t 1,, t 0, 1,, } with t := t t, we have f t x x t = fx H tj x j fx j=1 p tj x fxq t x, for some polyomial q r of egree r, with o-egative coefficiets It follows that if y Bx1, the for ay β > 0 with m = β 1, f m x f m y fx y x β m m/2 fx y x β m max f t x t: t =m x t f t y x t m+1/2 max sup f t x + w fx t: t =m+1 x t m+1/2 sup j=1 w B 0 1 w B 0 1 m+1/2 e x q m+1 x + 1 fx + wq m+1 x + w fx Similarly, f r x max r=1,,m fx m/2 max q r x r=1,,m Write gδ := 2 log δ2π /2} 1/2 a efie a A by settig aδ := max1, ãδ}, where } ãδ := m/2 sup max max q r x, 1/2 e x q m+1 x + 1 x: x gδ r=1,,m = m/2 max max q r gδ, 1/2 e gδ } q m+1 gδ + 1 r=1,,m The sup x:fx δ M f,a,β x aδ a aδ = oδ ɛ for every ɛ > 0, so 6 i the mai text hols ii We may choose ay α < ρ, a set ν = 2 α/2 Γ α ρ/2 α/2 Γ ρ α 2 Γ 2 Γ ρ 2 We may also set γ = Γ ρ To verify 6 i the mai text for suitable Γρ/2ρ /2 π /2 a A, we ote by iuctio, that if t = t 1,, t 0, 1,, } with t := t t, the f t x x t fxq t x 1 + x 2 /ρ t, imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

8 8 T B BERRETT, R J SAMWORTH AND M YUAN where q r is a polyomial of egree r with o-egative coefficiets Thus, similarly to the Gaussia example, for ay β > 0 with m = β 1, f m x f m y sup sup y Bx 1 fx y x β m x R m+1/2 sup sup x R w B 0 1 say, where A 1,m,ρ [0, Similarly, fx + wq m+1 x + w fx1 + x 2 /ρ m+1 =: A 1,m,ρ, sup max x R r=1,,m f r x fx m/2 sup max x R r=1,,m q r x 1 + x 2 =: A2 /ρ r,m,ρ, say, where A 2,m,ρ [0, Now efiig a A to be the costat fuctio aδ := max1, A 1,m,ρ, A2,m,ρ }, we agai have that sup x:fx δ M f,a,β x aδ, so 6 i the mai text hols iii We may take ay α > 0 a ν = 1, γ = 3 To verify 6 i the mai text, fix β > 0, set m := β 1, a efie a A by aδ := A m max 1, log 2m+1 1 }, δ for some A m 1 epeig oly o m The, by iuctio, we fi that for some costats A m, B m > 0 epeig oly o m, a x 1, 1 M f,a,β x max max r=1,,m A r 1 x 2, sup 2r y:0< y x r ax B m+1 1 x 2 2m+1 a fx, A m+1 fy 1 y 2 2m+1 fx provie A m i the efiitio of a is chose sufficietly large Hece 6 i the mai text agai hols A4 Proof of Propositio 6 i the mai text Proof of Propositio 6 i the mai text To eal with the itegrals over X c, we first observe that by 13 i the mai text there exists a } imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

9 EFFICIENT ENTROPY ESTIMATION 9 costat C,f > 0, epeig oly o a f, such that X c 3 fx C,f 1 0 X c B k, k s log u x,s s x fx log + log 1 + x µ 1/α α f for every ɛ > 0 Moreover, 4 fx log fx x = Oq1 ɛ, X c } x = O maxq log, q 1 ɛ }, for every ɛ > 0 Now, a slightly simpler argumet tha that use i the proof of Lemma 10ii i the mai text gives that for r 0, r x ], we have h x r V fxr V + β C β, β xr+ We euce, agai usig a slightly simplifie versio of the argumet i Lemma 10ii i the mai text, that there exists 0 N such that for a 0, s [0, 1 ] a x X, we have 5 V fxh 1 x s s 2V β/ + β s1+ β/ C, βx fx 1+ β/ s 2 It follows from 3, 4, 5 a a almost ietical argumet to that leaig to 15 i the mai text that for every 0 a ɛ > 0, a 1 E f Ĥ H V fxh 1 x s fx B k, k s log s x X 0 s + O maxq 1 ɛ, q log, 1 } a 1 2 fx B k, k s V fxh 1 x s s X 0 s s x + O maxq 1 ɛ, q log, 1 } β/ 4V B k+ β/, k C, βx + β B k, k X fx β/ x + O maxq 1 ɛ, q log, 1 }, as require imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

10 10 T B BERRETT, R J SAMWORTH AND M YUAN A5 Completio of the proof of Lemma 7 i the mai text To prove Lemma 7 i the mai text, it remais to bou several error terms arisig from argumets that approximate the variace of the uweighte Kozacheko Leoeko estimator Ĥ, a the to show how these argumets may be aapte to yiel the esire asymptotic expasio for VarĤw A51 Bous o S 1,, S 5 To bou S 1 : By similar methos to those use to bou R 1 i the proof of Lemma 3 i the mai text, it is straightforwar to show that for every ɛ > 0, we have S 1 = X c fx 1 0 α k B k, k s log 2 u x,s s x = O α+ ɛ α α+ ɛ To bou S 2 : For every ɛ > 0, we have that 1 S 2 = fx B k, k s log 2 u x,s s x = o 3 ɛ, X a 1 by very similar argumets to those use to bou R 2 i the proof of Lemma 3 i the mai text To bou S 3 : We have 1s log 2 u x,s log 2 e Ψk fx 1s V fxh 1 x s } V fxh 1 x = 2 log e Ψk + log log fx s s s It therefore follows from Lemma 10ii i the mai text that for every ɛ > 0, a 1 S 3 = fx X 0 k β/ k = O max log, β/ 1s B k, k s log 2 u x,s log 2 e Ψk fx α α+ ɛ α α+ ɛ } } s x To bou S 4 : A simplifie versio of the argumet use to bou R 4 i Lemma 3 of the mai text shows that for every ɛ > 0, 1 1s S 4 = fx B k, k s log 2 X e Ψk s x = o 3 ɛ fx a 1 imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

11 EFFICIENT ENTROPY ESTIMATION 11 To bou S 5 : Very similar argumets to those use to bou R 1 i Lemma 3 i the mai text show that for every ɛ > 0, α k S 5 = fx log 2 α+ ɛ fx x = O X c α α+ ɛ A52 Bous o T 1, T 2 a T 3 To bou T 1 : Let B Betak 1, k 1 By 13 i the mai text, for every ɛ > 0, T 11 := fxfy log fy logufx F,x F,xu y x X X c c ũ,x,y 2 fxfy log fy k 1 X c X c 1 logu x,s fx B k 1, k 1 s 2s 1 0 k 1 s y x [ fxfy log fy E log 1 } X c X c B + log 1 2B 1 1 B k 1 + log + log fx + log 1 + x } ] µ 1/α E 2B 1 α f k 1 y x k α α+ ɛ = o, 2α α+ ɛ where we use the Cauchy Schwarz iequality a elemetary properties of beta raom variables to obtai the fial bou Now let u x := u x,a/ 1 = V 1h 1 x a 1 e Ψk, a cosier T 12 := fxfy log fy logufx F,x F,xu y x X ũ,x,y X c If ũ,x,y u x, the by very similar argumets to those use to bou R 1 a R 2 cf 13 a 14 i the mai text, together with Cauchy Schwarz, logufx F,x F,xu ũ,x,y 6 1 a 1 logu x,s fx B k 1, k s + B k, k 1 s} s log + log fx + log 1 + x µ 1/α α f 3 ɛ, imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

12 12 T B BERRETT, R J SAMWORTH AND M YUAN for every ɛ > 0 O the other ha, if ũ,x,y < u x, the x y < r,u x +r,u y, where we have ae the r,u y term to ai a calculatio later i the proof Defie the sequece From Lemma 10ii i the mai text, ρ := [ c log 1/ 1 ] 1 sup r,u y = sup h 1 a } k log 1/ k log 1/ y sup = oρ y X y X 1 y X fy δ Now suppose that x X c a y X satisfy y x ρ Choose 0 N large eough that r,u y ρ /2 for all y X, a that log 1 max3/2 8 1/2 /β, 12V 1 2 } for all 0 a k k0,, k 1 } The whe β 0, 1] a 0, usig the fact that B x ρ /2 B y 3ρ /2, we have fw w V fyρ /2 V afyfyρ /2 3ρ /2 β 7 B xρ /2 V fyρ /2 1 3c ρ /2 β } 1 2 V ρ /2 δ a 1 Hece, for all 0, x X c, y X with y x ρ a k k 0,, k 1 }, 8 r,u x + r,u y ρ O other ha, suppose istea that x X c a ρ x := if y X y x ρ Sice X is a close subset of R, we ca fi y X such that y x = ρ x, a set x := ρ ρ x + 1 ρ x ρ y The x y = ρ, so from 7, we x have r,u x ρ /2 for 0 a k k0,, k 1 } Sice B xρ /2 B x ρ x ρ /2, we euce that r,u x ρ x ρ /2 a 9 y X : x y < r,u x + r,u y} = for 0 a k k 0,, k 1 } But for 0, 10 sup 1 sup x X c y X : y x ρ fy 151/2 fx fy c ρ β < 1 7 2, so that if x X c, y X a x y ρ, the fy < 2δ for 0 a k k 0,, k 1 } imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

13 EFFICIENT ENTROPY ESTIMATION 13 It therefore follows from 6, 8, 9, 10 a the argumet use to bou T 11 that for each ɛ > 0 a 0, T 12 fxfy log fy 1 x y <r,u X x +r,u y} X c X c 0 logufx F,x F,xu y x + o 2 y:fy<2δ fxfy log fy 0 k α = o α+ ɛ 2α α+ ɛ logufx F,x F,xu y x + o 2 Fially for T 1, we efie T 13 := r,1 fxfy log fy X Bx c fx 1/ log ufx F,x F,xu y x ũ,x,y By Lemma 10ii i the mai text, we ca fi 1 N such that for 1, k k0,, k 1 }, x X a s a / 1, we have V fxh 1 x s 2s Thus, for 1, k k0,, k 1 }, x X a y Bx c r,1, fx 1/ ũ,x,y 24 log fx 2a fxe Ψk u x Thus, from 6, T 13 = O 2 log We coclue that for every ɛ > 0, k α T 1 T 11 + T 12 + T 13 = o α+ ɛ 2α α+ ɛ To bou T 2 : Fix x X a z B 0 Choosig 2 N large eough that r,1 8 1/2 1/β c 1 δ 1/ for 2, we have by Lemma 2 that sup fy fx y B x r,1 δ 1/ imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

14 14 T B BERRETT, R J SAMWORTH AND M YUAN for 2, k k0,, k 1 } Also, for all 2, k k0,, k 1 }, we have fy x,z log fy x,z fx log fx fy x,z logfy x,z /fx + log fx fy x,z fx afxfx y x,z x β log fx + 4} Moreover, by argumets use to bou T 11, logufx F,x F,xu E 2B logb 1 z /fx k 1 + log + log fx + log 1 + x } E 2B 1 f k 1, µ 1/α α where B Betak 1, k 1 It follows that for every ɛ > 0, T 2 = eψk fy x,z log fy x,z fx log fx} V 1 X B 0 z /fx α k 1/2 k = O max α+ ɛ } kβ/, α ɛ α+ β/ log2+β/ logufx F,x F,xu z x To bou T 3 : Note that by Fubii s theorem, fx log fx logufx F,x F,xu z x z X B 0 = V X fx log fx = V X fx log fx e Ψk fx 0 u x 0 miufx, } logufx F,x F,xu x ufx logufx F,x F,xu x + O 3 ɛ, for all ɛ > 0, where the orer of the error term follows from a similar argumet to that use to obtai 6 a Lemma 10i Thus, for every ɛ > 0, T 3 = k 1 a 1 V fxh 1 x s fx log fx logu x,s fx k 1 X 0 s } } 1s 2s log B k, k 1 s 1 s x + O 3 ɛ k 1 k 1/2 = O max k α α+ ɛ α α+ kβ/, log ɛ β/ } imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

15 EFFICIENT ENTROPY ESTIMATION 15 A53 Bous o U 1 a U 2 To bou U 1 : Usig Lemma 10i a 13 i the mai text as i our bous o T 11 we have that for every ɛ > 0, u x U 11 := fx log ufx F,x F,x u x X c 0 a 1 fx logu x,s fx B k, k 1 s 1s k X c 0 k 1 s x 1 k 2 + α α+ ɛ 11 = o 1+ α α+ ɛ Moreover, usig argumets similar to those use to bou R 2 i the proof of Lemma 3 i the mai text, for every ɛ > 0, 12 U 12 := fx log ufx F X u x,x F,x u x = o 3 ɛ From 11, a 12, we have for every ɛ > 0 that 1 k 2 + α U 1 U 11 + U 12 = o α+ ɛ 1+ α α+ ɛ To bou U 2 : By Lemma 10ii a lettig B Betak + β/, k 1, we have that for every ɛ > 0, a 1 U 21 := V fxh 1 x s 1s k } fx log B k, k 1 s s x X 0 s k 1 kβ/ β/ E 1B k k 1 afxfx 1 β/ x X k 1/2 k β/ = O max β/, k α α+ ɛ } α+ ɛ α Moreover, we ca use similar argumets to those use to bou R 4 i the proof of Lemma 3 i the mai text to show that for every ɛ > 0, 1 } U 22 := 1s 1s k fx log X e Ψk B k, k 1 s s x k 1 = o 3 ɛ a 1 We euce that for every ɛ > 0, k 1/2 U 2 U 21 + U 22 = O k β/ max β/, k α α+ ɛ α α+ ɛ } imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

16 16 T B BERRETT, R J SAMWORTH AND M YUAN A54 Bous o W 1,, W 4 To bou W 1 : We partitio the regio [l x, v x ] [l y, v y ] c ito eight rectagles as follows: [lx, v x ] [l y, v y ] c = [0, lx [0, l y [0, l x [l y, v y ] [0, l x v y, [l x, v x ] [0, l y [l x, v x ] v y, v x, [0, l y v x, [l y, v y ] v x, v y, Recall our shortha hu, v = logufx logvfy By Lemma 10i i the mai text a the Cauchy Schwarz iequality, as well as very similar argumets to those use to bou R 2 i the proof of Lemma 3 i the mai text, we ca bou the cotributios from each rectagle iiviually, to obtai that for every ɛ > 0, W 1 = fxfy hu, v F,x,y F,x F,y u, v x y X X [l x,v x] [l y,v y] c = o 9/2 ɛ To bou W 2 : We have W 2 = fxfy X X vx vy l x l y hu, v G,x,y F,x F,y u, v x y + 1 We write B a,b,c := ΓaΓbΓc Γa+b+c, a, for s, t > 0 with s + t < 1, let 13 B a,b,c s, t := sa 1 t b 1 1 s t c 1 B a,b,c eote the esity of a Dirichleta, b, c raom vector at s, t For a, b > 1, writig I := [a / 1, a + / 1], let B k+a, k := I s k+a 1 1 s k 1 s, B k+a, k s := sk+a 1 1 s k 1 /B k+a, k B k+a,k+b, 2k 1 := I I s k+a 1 t k+b 1 1 s t 2k 2 s t B k+a,k+b, 2k 1 s, t := sk+a 1 t k+b 1 1 s t 2k 2 /B k+a,k+b, 2k 1 imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

17 EFFICIENT ENTROPY ESTIMATION 17 The by the triagle a Pisker s iequalities, a Beta tail bous similar to those use previously, we have that B k+a,k+b, 2k 1 s, t B k+a, k sb k+b, k t s t I I B k+a,k+b, 2k 1 1 B k+a,k+b, 2k 1 + B k+a, k B k+b, k 1 B k+a, k B k+b, k B + 2 k+a,k+b, 2k 1 s, t log k+a,k+b, 2k 1 s, t = 2 B I I 1 1 t 0 0 B k+a, k sb k+b, k t Bk+a,k+b, 2k 1 s, t B k+a,k+b, 2k 1 s, t log B k+a, k sb k+b, k t } 1/2 s t } 1/2 s t + o 2 Γ + a + b 1Γ k = 2 [log 1/ k 2ψ 2k 1 Γ 2k 1Γ + aγ + b 14 = k 1 + o1} k 1ψ + b k 1 + ψ + a k 1} + ψ + a + b 1] 1/2 + o 2 As a first step towars bouig W 2 ote that vx vy W 21 := fxfy hu, v G,x,y F,x F,y u, v x y X X l x l y = fxfy logu x,s fx logu y,t fy X X I I Bk,k, 2k 1 s, t B k, k sb k, k t } s t x y 1s 1t = fxfy log X X I I e Ψk log e Ψk Bk,k, 2k 1 s, t B k, k sb k, k t } s t x y + W = 1 + O k α α+ ɛ 1+ α α+ ɛ + O 2 + W 211, for every ɛ > 0 But, by Lemma 10ii i the mai text a 14, for every imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

18 18 T B BERRETT, R J SAMWORTH AND M YUAN ɛ > 0, W 211 = V h 1 x s fx 1t fxfy 2 log log X X I I s e Ψk V h 1 x s fx V h 1 y t } fy + log log s t Bk,k, 2k 1 s, t B k, k sb k, k t } s t x y 2 V h 1 x s fx fxfy log X X I s [ log } 1 Ψ k 1 + log1 s Bk, k 1 s log 1 Ψ } ] B k, k s s x y k 1+ 2β 2α k1+ α+ ɛ } + O max, 16 k 1/2 k β/ = O max β/, k 1+ 2β α α+ ɛ α α+ ɛ } 2α 1+ α+ ɛ Moreover, by Lemma 10i a ii i the mai text a very similar argumets, for every ɛ > 0, vx vy W 22 := fxfy hu, v G,x,y F,x F,y u, v x y X X c l x l y k 1+ α α+ ɛ α k α+ ɛ } kβ/ = O 1+ max, α ɛ α+ α ɛ α+ β/, 1 k 1/2 vx vy W 23 := fxfy hu, v G,x,y F,x F,y u, v x y 17 X c X c k 1+ 2α = O α+ ɛ 2α 1+ α+ ɛ l x l y Icorporatig our restrictios o k, we coclue from 15, 16 a 17 that for every ɛ > 0, W 2 W k 1/2 k β/ + 2 W 22 + W 23 = O max β/, k α α+ ɛ } α+ ɛ α To bou W 3 : We write h u, h v a h uv for the partial erivatives of hu, v a write, for example, h u F u, v = h u u, vf u, v We fi o itegratig imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

19 EFFICIENT ENTROPY ESTIMATION 19 by parts that, writig F = F,x,y G,x,y, vx vy h F u, v h uv F u, v u v [l x,v x] [l y,v y] vx = 18 l x [ hu F u, l y h u F u, v y ] u + l x l y vy l y [ hv F l x, v h v F v x, v ] v + hf v x, v y + hf l x, l y hf v x, l y hf l x, v y Usig staar biomial tail bous as use to bou W 1 together with 13 i the mai text we therefore see that for every ɛ > 0, v x vy vx vy } W 31 := fxfy h F u, v h uv F u, v u v x y 19 = X X X X fxfy l x l y vx l x h u F u, v y u + + o 9/2 ɛ l x l y vy l y } h v F v x, v v x y Now, uiformly for u [l x, v x ] a x, y X X a for every ɛ > 0, 2 F u, v y = 1 x y r,u} p k 1 k 1,x,u1 p,x,u k 1 + o 9/2 ɛ B k, k p,x,u = 1 x y r,u} + o 9/2 ɛ x y r,vx } 2πk 1/2 1 + o1} + o 9/2 ɛ By 10 a the argumets leaig up to it, we have 21 sup sup x X c y X B xr,vx +r,vy fx fy 1 0 We therefore have by 13 i the mai text that, for every ɛ > 0, 22 X c X fxfy vx l x k α h u F u, v y u y x = O Now, usig Lemma 10ii i the mai text, for x X, α+ ɛ 2α α+ ɛ k β/ 23 max l x fx 1, v x fx 1 } afx + log1/2 fx k 1/2 imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

20 20 T B BERRETT, R J SAMWORTH AND M YUAN We also ee some cotrol over vfy By 10 a the work leaig up to it, for max 0, 5, x X a y x r,vx + r,vy, fy 1 151/2 c ρ β} δ δ /2 k/ 1 7 Thus afy c β a usig 21 we may apply Lemma 10ii i the mai text to the set X = X y : y x r,vx + r,vy for some x X } From this a 21, for ay x X a y B x r,vx + r,vy, k β/ 24 max l y fy 1, v y fy 1 afy + log1/2 fx k 1/2 Usig 21 agai, we have that afy x,z fx ɛ for each ɛ > 0, uiformly for x X a z v x fx} 1/ + v y fx} 1/ From 20, 23 a 24 we therefore have that vx fxfy h u F u, v y u y x X X l x k 1/2 fxfy1 x y <r,vx } logv y fy logv x /l x y x 25 X X k 1/2+2β/ = O max 1+2β/ k 1/2, k α, log α+ ɛ 1+ α α+ ɛ } for every ɛ > 0 By 19, 22 a 25, it follows that k 1/2+2β/ 26 W 31 = O max 1+2β/, log k 2α k 1/2+ α+ ɛ, 1/2 2α α+ ɛ } Fially, by 13 i the mai text a 21, we have sice F = 0 whe x y > r,u + r,v that 27 W 32 := fxfy X c X vx vy Combiig 26 a 27 we have that l x l y 2α k h uv F u, v u v x y = O k 1/2+2β/ W 3 = W 31 + W 32 = O max 1+2β/, log k 1/2, k 2α α+ ɛ 2α α+ ɛ α+ ɛ 2α α+ ɛ } imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

21 EFFICIENT ENTROPY ESTIMATION 21 To bou W 4 : Let p := B xr,u B yr,v fw w a let N 1, N 2, N 3, N 4 Multi 2, p,x,u p, p,y,v p, p, 1 p,x,u p,y,v + p Further, let so that F 1,x,yu, v := PN 1 + N 3 k, N 2 + N 3 k, F,x,y F 1,x,yu, v = PN 1 + N 3 = k 1, N 2 + N 3 k1 x y r,u} + PN 2 + N 3 = k 1, N 1 + N 3 k1 x y r,v} + PN 1 + N 3 = k 1, N 2 + N 3 = k 11 x y r,u r,v} Now PN 1 +N 3 = k 1 = 2 k 1 p k 1,x,u1 p,x,u k 1 2πk 1/2 1+o1} a F,x,y u, v = G,x,y u, v if x y > r,u + r,v, a so, by 23 a 24, we have that vx vy F,x,y G,x,y u, v fxfy u v x y X X l x l y uv vx vy 1 F,x,y G,x,y u, v = fxfy u v x y X X l x l y uv log + O max k 1/2, k β, k α α+ ɛ } 28 α+ ɛ 1+ 2β 1+ α We ca ow approximate F,x,yu, 1 v by Φ Σ k 1/2 ufx 1}, k 1/2 vfx 1} a G,x,y u, v by Φk 1/2 ufx 1}Φk 1/2 vfx 1} To avoi repetitio, we focus o the former of these terms To this e, for i = 3,,, let 1Xi B Y i := xr,u}, 1 Xi B yr,v} so that i=3 Y N1 + N i = 3 We also efie N 2 + N 3 p,x,u µ := EY i = p,y,v p,x,u 1 p V := CovY i =,x,u p p,x,u p,y,v, p p,x,u p,y,v p,y,v 1 p,y,v Whe x X a y B xr,vx + r,vy we have that, writig for the symmetric ifferece a usig 21, PX 1 B x r,u B y r,v > 0 a so V is ivertible for such x a y We may therefore set Z i := V 1/2 Y i µ imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

22 22 T B BERRETT, R J SAMWORTH AND M YUAN The by the Berry Essee bou of Götze 1991, writig C for the set of close, covex subsets of R 2 a lettig Z N 2 0, I, there exists a uiversal costat C 2 > 0 such that 29 sup P 1 2 1/2 C C i=3 Z i C PZ C C 2E Z /2 The istributio of Z 3 epes o x, y, u a v, but, recallig the substitutio y = y x,z as efie i 22 i the mai text, we claim that for x X, y = y x,z B x r,u + r,v, u [l x, v x ] a v [l y, v y ], 30 E Z 3 3 1/2 k z To establish this, ote that for x X a y x r,vx + r,vy, we have k by 21, 23 a 24 that y x fx 1/ Thus, for v [l y, v y ], a usig Lemma 2, we also have that 31 vfx 1 max v y fy 1, l y fy 1 + v y fy fx k β/ afx fy + log1/2 fx k 1/2 Now, by the efiitio of l x a v x, 32 max p,x,u k/ 1, p,y,v k/ 1 } 3k1/2 log 1/2 1 for all x, y X a u [l x, v x ], v [l y, v y ] Next, we bou 2 k p α z for x X a y = y x,z with z v x fx} 1/ + v y fx} 1/ First suppose that u v We may write B x r,u B y r,v = B x r,v B y r,v } [B x r,u \B x r,v } B y r,v ], where this is a isjoit uio Writig I a,b x := x 0 B a,bs s for the regularise icomplete beta fuctio a recallig that µ eotes Lebesgue measure o R, we have µ Bx r,v B y r,v = V r,vi +1 2, 1 2 = veψk 1 I +1 2, x y 2 4r,v 2 z 2 4vfx} 2/ imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

23 a Now, r I +1 2, 1 2 EFFICIENT ENTROPY ESTIMATION 23 α z = I , 1 z r2 = 1 r2 / B +1/2,1/2 Hece by the mea value iequality, µ Bx r,v B y r,v eψk α z 1fx eψk 1 1 B +1/2,1/2 [ v z 1 vfx} 1/ + α z 1 vfx B +1/2,1/2 fx It follows that for all x X, y B x r,vx + r,vy a v [l y, v y ], B xr,v B yr,v fw w eψk α z 1 k k β/ afx fy + k1/2 log 1/2 fx usig 31 a Lemma 2 We also have by 32 that fw w p,x,u p,x,v B xr,u\b xr,v} B yr,v ] k k β/ afx fy + k1/2 log 1/2 fx Thus, whe x X, y = y x,z B x r,vx + r,vy, u [l x, v x ], v [l y, v y ] a u v, 33 2 k p α z k β/ afx fy + log1/2 fx k 1/2 We ca prove the same bou whe v > u similarly, usig 23, 31 a Lemma 2 We will also require a lower bou o p,x,u + p,y,v 2p i the regio where B x r,u B y r,v, ie, z ufx} 1/ + vfx} 1/ By the mea value theorem, } 2 1 I +1 2, 1 1 δ 2 2 1/2 /2 δ max, 1 I +1 2 B +1/2,1/2 2, 1 1/2 2 imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

24 24 T B BERRETT, R J SAMWORTH AND M YUAN for all δ [0, 1] Thus, for u v, with v [l y, v y ], x X, a y = y x,z with z 2vfx} 1/, by 31 we have, µ Bx r,u B y r,v c µ Bx r,v B y r,v c } = V r,v x y 2 1 I , 1 2 4r,v 2 k z fx Whe z > 2vfx} 1/ we simply have µ Bx r,v B y r,v c = V r,v a the same overall bou applies Moreover, the same lower bou for µ By r,v B x r,u c hols whe u < v, u [l x, v x ], x X, a y = y x,z B x r,vx +r,vy We euce that for all x X, y = y x,z B x r,vx + r,vy, u [l x, v x ] a v [l y, v y ], 34 p,x,u + p,y,v 2p maxp,x,u p, p,y,v p } k z We are ow i a positio to bou E Z 3 3 above for x X, y = y x,z B x r,vx + r,vy, u [l x, v x ], v [l y, v y ] We write E Z 3 3 = p V 1/2 1 p,x,u 3 + p 1 p,x,u p,y,v V 1/2 1 p,x,u 3 p,y,v + p,y,v p V 1/2 p,x,u 3 1 p,y,v + 1 p,x,u p,y,v + p V 1/2 p,x,u 3 35, a bou each of these terms i tur First, p V 1/2 1 p,x,u 3 1 p,y,v 36 p,y,v = p V 3/2 1 p,x,u 1 p,y,v p,x,u + p,y,v 2p } 3/2 } 3/2 1 p,x,u 1 p,y,v = p p p,x,u p,y,v + p,x,u p p,y,v p p,x,u+p,y,v 2p } p,x,u + p,y,v 1 3/2 p mi, 1/2 /k 1/2, V p p,x,u p,y,v usig 32 a 33, a where we erive the fial bou from the left ha sie of the miimum if z 1 a the right ha sie if z < 1 Similarly, 37 p,x,u p V 1/2 1 p,x,u 3 1/2, p,x,u p p,y,v V 3/2 3/2 k z p,y,v imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

25 EFFICIENT ENTROPY ESTIMATION 25 where we have use 34 for the fial bou By symmetry, the same bou hols for the thir term o the right-ha sie of 35 Fially, very similar argumets yiel 38 1 p,x,u p,y,v + p V 1/2 p,x,u 3 k/ 3/2 p,y,v Combiig 36, 37 a 38 gives 30 Writig Φ A for the measure associate with the N 2 0, A istributio for ivertible A, a φ A for the correspoig esity, we have by Pisker s iequality a a Taylor expasio of the log-etermiat fuctio that 2 sup Φ A C Φ B C 2 C C R 2 φ A log φ A φ B = 1 2 log B log A + trb 1 A B} B 1/2 A BB 1/2 2, provie B 1/2 A BB 1/2 1/2 Hece sup Φ A C Φ B C mi1, 2 B 1/2 A BB 1/2 } C C We ow take A = 2V/k, B = Σ a use the submultiplicativity of the Frobeius orm alog with 32 a 33 a the fact that Σ 1/2 = 1 + α z α z 1 } 1/2 to euce that 39 sup Φ A C Φ B C 1 k β/ } afx fy + log1/2 C C z fx k 1/2 for x X, y Bxr,vx + r,vy, u [l x, v x ], v [l y, v y ] Now let u = fx 1 1+k 1/2 s a v = fx 1 1+k 1/2 t By the mea value theorem, 23 a 31, } Φ Σ k 1/2 k 2µ Φ k Σ s, t } 1 2p,x,u k 2π 1/2 k 1/2 s + 2p,y,v k k 1/2 t k β/ 40 k 1/2 afx fy + k 1/2 fx It follows by 29, 30, 39 a 40 that for x X a y B xr,vx + imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

26 26 T B BERRETT, R J SAMWORTH AND M YUAN r,vy, sup u [l x,v x],v [l y,v y] F 1,x,yu, v Φ Σ s, t mi 1, log1/2 k k 1/2 + afx fy z fx β/ k 1/2 + 1 } z Therefore, by 23 a 24, a sice fy fx/2 for x X, y B x r,vx + r,vy a 0, we coclue that for each ɛ > 0 a 0 41 X X vx vy 1 F,xu, v Φ Σ s, t fxfy 1 l x l y uv x y r,u+r,v} u v y x k log 1/2 k β/ } 2 fx X k 1/2 + afx/2 fx sup F,x,y 1 x,z u, v Φ Σ s, t z x k log 5/2 = O max k 3/2 B 0 3 u [l x,v x],v [l yx,z,v yx,z ], k α α+ ɛ α α+ ɛ, k 1/2+β/ log β/, k1/2+2β/ 2β/ } By similar i fact, rather simpler meas we ca establish the same bou for the approximatio of G,x,y by Φk 1/2 ufx 1}Φk 1/2 vfx 1} To coclue the proof for the uweighte case, we write X = X 1 X 2, where X 1 := x : fx k 2β δ }, X 2 := x : δ fx < k 2β δ }, a eal with these two regios separately We have by Slepia s iequality that Φ Σ s, t ΦsΦt for all s a t Hece, recallig that s = s x,u = k 1/2 ufx 1} a t = t x,v = k 1/2 vfx 1}, by 21, 23 a 31, for every ɛ > 0, vx vy Φ Σ s, t ΦsΦt 42 X 2 X fxfy 1 l x e Ψk V 1k X 2 l y uv X 2 1 x y r,u+r,v}u v y x fy x,z 1 x yx,z r,vx+r,vyx,z } R fx 2 l x l yx,z Φ Σ s, t ΦsΦt} s t z x 1+ k 2β α fx α z z x = o B 0 2 α+ ɛ 1+ α α+ ɛ, imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

27 X 1 X l x EFFICIENT ENTROPY ESTIMATION 27 where to obtai the fial error term, we have use the fact that B 0 2 α z z = V By 23 a 24 we have, for each ɛ > 0, vx vy Φ Σ s, t ΦsΦt fxfy 1 uv x y r,u+r,v} u v y x e Ψk V 1k = eψk 1k X 1 X 1 l y fy x,z 1 x yx,z r,vx+r,vyx,z } R fx 2 α z z x l x l yx,z log 1/2 fx x + O max k 1/2, k β/ α 1+β/, k 43 = eψk log 1/2 1k + O max k 1/2, k β/ k1+ 2β α α+ ɛ, 1+β/ 1+ α α+ ɛ α+ ɛ 1+ α α+ ɛ } By applyig Lemma 10ii i the mai text as for 31 we have, for x X 1 a y B x r,vx + r,vy, that 44 max v v vfx 1 3k 1/2 log 1/2 afx fy x,v y} } k β/ = ok 1/2, fx with similar bous holig for l x a l y A correspoig lower bou of the same orer for the left-ha sie of 43 follows from 44 a the fact that 2 log 2 log 2 log 2 log Φ Σ s, t ΦsΦt} s t = α z + O 2 uiformly for z R It ow follows from 28, 41, 42 a 43 that for each ɛ > 0, log 5/2 W 4 = O max k 1/2 as require, k α ɛ α+ α ɛ 1+ α+, k3/2+2β/ 1+2β/, k1+ 2β α ɛ α+ α ɛ 1+ α+, k β } log, 1+ β We ow tur our attetio to the variace of the weighte Kozacheko Leoeko estimator Ĥw We first claim that 45 k Var w j log ξ j,1 = j=1 k w j w l Covlog ξ j,1, log ξ l,1 = V f + o1 j,l=1 imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

28 28 T B BERRETT, R J SAMWORTH AND M YUAN By 18, 19 a Lemma 3 i the mai text, for j such that w j 0, Var log ξ j,1 = V f + o1 as For l > j, usig similar argumets to those use i the proof of Lemma 3 i the mai text, a writig u k x,s := u x,s = V 1h 1 x s e Ψk for clarity, we have Elog ξ j,1 log ξ l,1 1 = fx = = X X fx X s s logu j x,slogu l x,s+t B j,l j, ls, t t s x 1s log fxe Ψj fx log 2 fx x + o1 1s + t log fxe Ψl B j,l j, l s, tt s x+o1 as, uiformly for 1 j < l k1 Now 45 follows o otig that sup k k w < Next we claim that k 46 Cov w j log ξ j,1, j=1 k w l log ξ l,2 = o 1 l=1 as I view of 20 i the mai text a the fact that sup k k w <, it is sufficiet to show that Cov logfx 1 ξ j,1, logfx 2 ξ l,2 = o 1 as, wheever w j, w l 0 We suppose without loss of geerality here that j < l, sice the j = l case is ealt with i 27 We broaly follow the same approach use to bou W 1,, W 4, though we require some ew similar otatio Let F,x,y eote the coitioal istributio fuctio of ξ j,1, ξ l,2 give X 1 = x, X 2 = y a let F,x j eote the coitioal istributio fuctio of ξ j,1 give X 1 = x Let } ue r,u j Ψj 1/ :=, p j,x,u := h x r j V 1,u Recall the efiitios of a ±,j give i the proof of Lemma 3, a let v x,j := ifu 0 : 1p j,x,u = a +,j } a l x,j := ifu 0 : 1p j,x,u = a,j } imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

29 EFFICIENT ENTROPY ESTIMATION 29 For pairs u, v with u v x,j a v v y,l, let M 1, M 2, M 3 Multi 2; p j,x,u, p l,y,v, 1 p j,x,u p l,y,v a write Also write G,x,yu, v := PM 1 j, M 2 l Σ := 1 j/l 1/2 α z j/l 1/2 α z 1 where α z := V 1 µ B0 1 B z expψl Ψj 1/ Writig W i for remaier terms to be boue later, we have Cov logfx 1 ξ j,1, logfx 2 ξ l,2 = fxfy hu, v F,x,y F,xF j,yu, l v x y + W 1 X X = fxfy X X = fxfy X X = V 1 e Ψj 1jl 1/2 47 = V 1 e Ψj 1l [l y,l,v y,l ] [l x,j,v x,j ] [l y,l,v y,l ] [l x,j,v x,j ] vy,l vx,j l y,l R, hu, v F,x,y G,x,yu, v x y 1 + F,x,y G,x,y u, v l x,j uv R α z z 1 + u v x y i=1 3 i=1 Φ Σ s, t ΦsΦt} s t z i=1 1 W i = O + k as The fial equality here follows from the fact that, for Borel measurable sets K, L R, 48 µ K + z L z = µ Kµ L, R so that R α z z = V e Ψl Ψj 4 i=1 W i i=1 W i W i W i To bou W 1 : Very similar argumets to those use to bou W 1 show that W 1 = o 9/2 ɛ as, for every ɛ > 0 imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

30 30 T B BERRETT, R J SAMWORTH AND M YUAN To bou W 2 : Similar to our work use to bou W 2, we may show that a+,j 1 a,j 1 a+,l 1 a,l 1 as, for fixe a, b > 1 Also, 1 1 s 0 0 1s log e Ψj B j+a,l+b, j l 1 s, t B j+a, j sb l+b, l t t s 1t log e Ψl jl1/2 1 + o1} B j,l, j l 1 s, t B j, j sb l, l t}ts = 1 + O 2 as Usig these facts a very similar argumets to those use to bou W 2 we have for every ɛ > 0 that k W 2 1/2 k β/ = O max β/, k α α+ ɛ } α+ ɛ α To bou W 3 : Similarly to 18 a the surrouig work, we ca show that for every ɛ > 0, log W 3 = O max k 1/2, k β 1+ 2β, k 2α α+ ɛ 2α α+ ɛ } To bou W 4 : Let N 1, N 2, N 3, N 4 Multi 2; p j,x,u p, p l,y,v p, p, 1 p j,x,u p l,y,v+p, where p := B xr j fw w Further, let,u B yr,v l F,1,x,y := PN 1 + N 3 j, N 2 + N 3 l The, as i 28, we have vx,j vy,l F,x,y fxfy G,x,y u, v u v x y X X l x,j l y,l uv vx,j vy,l F,1,x,y G,x,yu, v = fxfy u v x y X X l x,j l y,l uv log + O max k 1/2, k β, k α α+ ɛ } α+ ɛ 1+ 2β 1+ α imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

31 EFFICIENT ENTROPY ESTIMATION 31 We ca ow approximate F,1,x,yu, v by Φ Σ j 1/2 ufx 1}, l 1/2 vfx 1} a G,x,yu, v by Φj 1/2 ufx 1}Φl 1/2 vfx 1} This is rather similar to the correspoig approximatio i the bous o W 4, so we oly preset the mai iffereces First, let We also efie Y i := 1Xi B xr j,u} 1 Xi B yr l,v} µ := EY i = p j,x,u p l,y,v a V := CovY i = p j,x,u1 p j,x,u p p j,x,up l,y,v p p j,x,up l,y,v p l,y,v1 p l,,y,v a set Z i := V 1/2 Y i µ Our aim is to provie a bou o p Sice the fuctio r, s µ B0 r 1/ B z s 1/, is Lipschitz we have for x X, y = x + fx 1/ r j,1 z B xr,v j x,j + r,v l y,l, u [l x,j, v x,j ] a v [l y,l, v y,l ] that 49 2 e Ψj p α z k β/ afx fy + log1/2 fx k 1/2, usig similar equatios to 23, 24 a 31 From this a similar bous to 32, we fi that V k 2 / 2 a V 1/2 /k 1/2 We therefore have E Z 3 3 V 1/2 3 E Y 3 µ 3 1/2 /k 1/2, which is as i the l = j case except with the factor of z 1/2 missig Note ow that lim sup sup j,l:j<l w j,w l 0 sup z B 0 1+e Ψl Ψj/ Σ 1/2 < Hece, usig 49, similar bous to 32 a the same argumets as leaig up to 39, k β/ 50 sup Φ A C Φ B C afx fy + log1/2 C C fx k 1/2, imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

32 32 T B BERRETT, R J SAMWORTH AND M YUAN where B := Σ a j A := 2 1 p j,x,u1 p j,x,u j 1/2 l 1/2 p p j,x,up l,y,v j 1/2 l 1/2 p p j,x,up l l 1 p l,y,v1 p l,y,v,y,v Now let u := fx j 1/2 s a v := fx l 1/2 t Similarly to 40, we have j 2p Φ,x,u j 2pl,y,v l Σ j 1/2, l 1/2 Φ Σ s, t k β/ k 1/2 afx fy + k 1/2 fx Similarly to the argumets leaig up to 41, it follows that X X fxfy vx,j vy,l l x,j l y,l k log 3/2 = O max k 3/2 F,1,x u, v Φ Σ s, t uv 1 x y r j,u+r l,v}, k α α+ ɛ α α+ ɛ, k 1/2+β/ log β/, k1/2+2β/ 2β/ u v y x }, where the power o the first logarithmic factor is smaller because of the absece of the factor of the z 1 term i 50 The remaier of the work require to bou W 4 is very similar to the work oe from 42 to 43, usig also 48, so is omitte We coclue that 3 log W 4 2 = O max k 1 2, k α ɛ α+ α ɛ 1+ α+, k β 1+ 2β, k1+ 2β α ɛ α+ α ɛ 1+ α+, k β } log 1+ β The equatio 47, together the bous o W 1,, W 4 just prove, establish the claim 46 We fially coclue from 45 a 46 that VarĤw = 1 Var k j=1 as require = V f + o 1, w j log ξ j, k Cov w j log ξ j,1, j=1 k w l log ξ l,2 l=1 imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

33 A Proof of Theorem 8 EFFICIENT ENTROPY ESTIMATION 33 Proof of Theorem 8 For the first part of the theorem we aim to apply Theorem 2521 of va er Vaart 1998, a follow the otatio use there With Ṗ := λlog f + Hf : λ R} we will first show that the etropy fuctioal H is ifferetiable at f relative to the taget set Ṗ, with efficiet ifluece fuctio ψ f = log f Hf Followig Example 2516 i va er Vaart 1998, for g Ṗ, the paths f t,g efie i 10 of the mai text are ifferetiable i quaratic mea at t = 0 with score fuctio g Note that X gf = 0 a X g2 f < for all g Ṗ It is coveiet to efie, for t 0, the set A t := x X : 8t gx 1}, o which we may expa e 2tg easily as a Taylor series By Höler s iequality, for ɛ 0, 1/2, f log f 8t 21 ɛ f g 21 ɛ log f A c t X 8t 21 ɛ X as t 0 Moreover, f log1 + e 2tg A c t A c t } 1 ɛ g 2 f f log f 1/ɛ} ɛ = ot X log 2 + 2t g f 16t 2 4 log g 2 f X We also have that ct 1 1 = 2 1 tg f X 1 + e 2tg e 2tg 1 + 2tg + tge 2tg 1 A t 1 + e 2tg f t2 g 2 f + 72t 2 g 2 f 72t 2 g 2 f A t X It follows that t 1 Hf t,g Hf} + log f + Hf}fg X = 1 1 2ct t X 1+e 2tg log f 1 fe 2tg 1 + 2tg + tge 2tg 1} log f t A t 2 2 log 1 + e 2tg 16 3 t g 2 f log f + 22t X X A c t A c t 1 + t g f 2ct 2ct 1+e 2tg log 1+e 2tg + tg1 + log f g 2 f + o1 0 + tg1 + e 2tg + o1 } f imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

34 34 T B BERRETT, R J SAMWORTH AND M YUAN The coclusio 11 i the mai text therefore follows from va er Vaart 1998, Theorem 2521 We ow establish the seco part of the theorem First, by our previous bou o ct i 51, for 12t < X g2 f} 1/2 we have that f t,g 2ct f 2 f 1 72t 2 X g2 f 4 f, a µ α f t,g 4µ α f We ow stuy the smoothess properties of f t,g This requires some ivolve calculatios, because we first ee to uersta correspoig properties of g To this e, for a m times ifferetiable fuctio g : R R, efie a Mg x := max max t=1,,m gt x, D g := max 1, sup δ 0, f g m y g m } x sup y Bx rax y x β m sup x:fx δ M g x aδ m+1 Let J m eote the set of multisets of elemets 1,, } of cariality at most m, a for J = j 1,, j s } J m, efie g J x := s g s l=1 x x j l Moreover, for i 1,, s}, let P i J eote the set of partitios of J ito i o-empty multisets As a illustratio, if = 2, the J 3 =, 1}, 2}, 1, 1}, 1, 2}, 2, 1}, 2, 2}, 1, 1, 1},1, 1, 2},1, 2, 1},1, 2, 2},2, 1, 1},2, 1, 2},2, 2, 1},2, 2, 2} } Moreover, if J = 1, 1, 2} J 3, the } P 2 J = 1, 1}, 2} }, 1, 2}, 1} }, 1, 2}, 1} } } The, by iuctio, a writig g := g 1 = log f + Hf, it may be show that carj gjx 1 i 1 i 1! = f i f P1 f Pi i=1 P 1,,P i } P i J Now, the cariality of P i J is give by a Stirlig s umber of the seco ki: car P i J = 1 i i 1 i l l carj =: S carj, i, i! l l=0 imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

35 say Thus, if carj m, the 52 g Jx carj i=1 EFFICIENT ENTROPY ESTIMATION 35 i 1!S carj, i afx i 1 2 mm+1 m!afx m Moreover, if y x r a x a m 1, the g Jy g Jx carj i=1 i 1! P 1,,P i } P i J Now, by Lemma 2, f i y f i x 1 i fy fx fy fx 1 i 1 Moreover, by iuctio a Lemma 2 agai, fp1 f Pi y f P1 f Pi x f i y + f P 1 f Pi x f i } y f i y f i x 1 71 i 1i fy 56 fx 1 f P1 f Pi y f P1 f Pi x 8 1/2 71 i } 1 afx i f i x y x β m 56 We euce that eve whe m = 0, 53 gjy gjx 8 1/2 71 mm!m + 1 m+2 afx m+1 y x β m 41 Comparig 52 a 53, we see that 54 D g 8 1/2 71 mm!m + 1 m+2 =: D 41 Now let qy := 1 + e 2ty 1, so that f t,g x = 2ctq gx fx Similar iuctive argumets to those use above yiel that whe J J m with m 1 a g is m times ifferetiable, q g J x = carj i=1 q i gx P 1,,P i } P i J a we ow bou the erivatives of q By iuctio, q i y = 2t i i 1 i l a i l e 2tly 1 + e 2ty l+1, l=1 g P1 g Pi x, imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

36 36 T B BERRETT, R J SAMWORTH AND M YUAN where for each i N, we have a i 1 = 1, a i i = i! a a i l = la i 1 l + a i 1 l 1 for l 2,, i 1} Sice max 1 l i a i l 2i i 1 agai by iuctio, we euce that e 2ty q i y 2 2i 1 i i t i Writig s := carj, it follows that 56 q g J x q gx s 2 2i 1 i i t i Ss, iafx im+1 Dg i i=1 q gx s s+1 2 2s 1 max1, t s B s afx sm+1 D s g, where B s := s i=1 Ss, i eotes the sth Bell umber We ca ow apply the multivariate Leibiz rule, so that for a multi-iex ω = ω 1,, ω with ω m, a for t 1 a m 1, ω f t,g x x ω = 2ct ω ν q g x ω ν fx ν x ν x ω ν 57 ν:ν ω 2 3m 1 m m+1 B m D m g afxm2 +m f t,g x Now, i orer to cotrol ω f t,g y x ω f t,g x ω x, we first ote that by 53 ω a 54, we have for y x r a x, i N, J J m with carj = s a P 1,, P i } P i J, 58 g P 1 g P i y g P 1 g P i x 2D i afx im+1 y x β m Thus, by 55, 58, the mea value theorem a Lemma 2, for t 1, y x r a x a m 1, q g J y q g J x s q i g x i=1 P 1,,P i } P i J s + q i g y q i g x} i=1 D m qg xafx m2 +m+1 y x β m gp 1 gp i y gp 1 gp i x} P 1,,P i } P i J gp 1 gp i y B m2 3m+5 1/2 m + 1 m e 2tg x e 2tg x + e 2t g y g x 59 D m qg xafx m2 +m+1 y x β m B m 2 3m+5 1/2 m + 1 m t 41 imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

37 EFFICIENT ENTROPY ESTIMATION 37 Here, to obtai the fial iequality, we use the fact that 1+a b+a 1 b for a, b > 0 a b < 1, a the fact that e 2t g y g fy 2t, fx } 2t x = max 1+afx y x β 1} 2t 1 fx fy for y x r a x Usig the multivariate Leibitz rule agai, together with 56, 59 a Lemma 2, for t 1, y x r a x a ω = m 1, ω f t,g y x ω ω f t,g x x ω 2ct ω ω ν fy ν qg y ν y ω ν x ν ν qg x x ν ν:ν ω + ν qg x ν } fy x ν x ν ν fx x ν m+9 1/2 B m m + 1 m+1 D m afx m2 +m+1 f t,g x y x β m =: C md m afx m2 +m+1 f t,g x y x β m This also hols i the case m = 0 Now ote that if 12t < X g 2 f} 1/2 we have Fially, efie the fuctio fx = 1 + e 2tg x 2ct f t,g x f t,g x 4 61 ãδ := m/2 C md m aδ/4 m2 +m+1 The ã A a from 57 a 60, we have M ft,g,ã,βx ãf t,g x We coclue that for t < mi 1, 144 g 2 f} 1/2, we have that f t,g F,θ, where θ = α, β, 4γ, 4ν, ã Θ The result follows o otig that f t,gλ = f tλ,g Refereces Berrett, T B, Samworth, R J a Yua, M 2017 Efficiet multivariate etropy estimatio via k-earest eighbour istaces Submitte Götze, F 1991 O the rate of covergece i the multivariate CLT A Prob, 19, va er Vaart, A W 1998 Asymptotic Statistics Cambrige Uiversity Press, Cambrige imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

38 38 T B BERRETT, R J SAMWORTH AND M YUAN Statistical Laboratory Wilberforce Roa Cambrige CB3 0WB Uite Kigom rsamworth@statslabcamacuk tberrett@statslabcamacuk URL: rjs57 URL: tbb26 Departmet of Statistics Uiversity of Wiscosi Maiso Meical Scieces Ceter 1300 Uiversity Aveue Maiso, WI Uite States of America myua@statwisceu URL: myua/ imsart-aos ver 2014/10/16 file: WKLAoSFialSupptex ate: Jauary 28, 2018

Chapter 2 Transformations and Expectations

Chapter 2 Transformations and Expectations Chapter Trasformatios a Epectatios Chapter Distributios of Fuctios of a Raom Variable Problem: Let be a raom variable with cf F ( ) If we efie ay fuctio of, say g( ) g( ) is also a raom variable whose

More information

Sparsification using Regular and Weighted. Graphs

Sparsification using Regular and Weighted. Graphs Sparsificatio usig Regular a Weighte 1 Graphs Aly El Gamal ECE Departmet a Cooriate Sciece Laboratory Uiversity of Illiois at Urbaa-Champaig Abstract We review the state of the art results o spectral approximatio

More information

Lecture 6 Testing Nonlinear Restrictions 1. The previous lectures prepare us for the tests of nonlinear restrictions of the form:

Lecture 6 Testing Nonlinear Restrictions 1. The previous lectures prepare us for the tests of nonlinear restrictions of the form: Eco 75 Lecture 6 Testig Noliear Restrictios The previous lectures prepare us for the tests of oliear restrictios of the form: H 0 : h( 0 ) = 0 versus H : h( 0 ) 6= 0: () I this lecture, we cosier Wal,

More information

Definition 2 (Eigenvalue Expansion). We say a d-regular graph is a λ eigenvalue expander if

Definition 2 (Eigenvalue Expansion). We say a d-regular graph is a λ eigenvalue expander if Expaer Graphs Graph Theory (Fall 011) Rutgers Uiversity Swastik Kopparty Throughout these otes G is a -regular graph 1 The Spectrum Let A G be the ajacecy matrix of G Let λ 1 λ λ be the eigevalues of A

More information

(average number of points per unit length). Note that Equation (9B1) does not depend on the

(average number of points per unit length). Note that Equation (9B1) does not depend on the EE603 Class Notes 9/25/203 Joh Stesby Appeix 9-B: Raom Poisso Poits As iscusse i Chapter, let (t,t 2 ) eote the umber of Poisso raom poits i the iterval (t, t 2 ]. The quatity (t, t 2 ) is a o-egative-iteger-value

More information

k=1 s k (x) (3) and that the corresponding infinite series may also converge; moreover, if it converges, then it defines a function S through its sum

k=1 s k (x) (3) and that the corresponding infinite series may also converge; moreover, if it converges, then it defines a function S through its sum 0. L Hôpital s rule You alreay kow from Lecture 0 that ay sequece {s k } iuces a sequece of fiite sums {S } through S = s k, a that if s k 0 as k the {S } may coverge to the it k= S = s s s 3 s 4 = s k.

More information

On triangular billiards

On triangular billiards O triagular billiars Abstract We prove a cojecture of Keyo a Smillie cocerig the oexistece of acute ratioal-agle triagles with the lattice property. MSC-iex: 58F99, 11N25 Keywors: Polygoal billiars, Veech

More information

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Stirling s Formula Derived from the Gamma Function

Topics in Probability Theory and Stochastic Processes Steven R. Dunbar. Stirling s Formula Derived from the Gamma Function Steve R. Dubar Departmet of Mathematics 23 Avery Hall Uiversity of Nebraska-Licol Licol, NE 68588-3 http://www.math.ul.edu Voice: 42-472-373 Fax: 42-472-8466 Topics i Probability Theory ad Stochastic Processes

More information

MDIV. Multiple divisor functions

MDIV. Multiple divisor functions MDIV. Multiple divisor fuctios The fuctios τ k For k, defie τ k ( to be the umber of (ordered factorisatios of ito k factors, i other words, the umber of ordered k-tuples (j, j 2,..., j k with j j 2...

More information

Analytic Number Theory Solutions

Analytic Number Theory Solutions Aalytic Number Theory Solutios Sea Li Corell Uiversity sl6@corell.eu Ja. 03 Itrouctio This ocumet is a work-i-progress solutio maual for Tom Apostol s Itrouctio to Aalytic Number Theory. The solutios were

More information

A Proof of Birkhoff s Ergodic Theorem

A Proof of Birkhoff s Ergodic Theorem A Proof of Birkhoff s Ergodic Theorem Joseph Hora September 2, 205 Itroductio I Fall 203, I was learig the basics of ergodic theory, ad I came across this theorem. Oe of my supervisors, Athoy Quas, showed

More information

Inhomogeneous Poisson process

Inhomogeneous Poisson process Chapter 22 Ihomogeeous Poisso process We coclue our stuy of Poisso processes with the case of o-statioary rates. Let us cosier a arrival rate, λ(t), that with time, but oe that is still Markovia. That

More information

1 Review and Overview

1 Review and Overview CS229T/STATS231: Statistical Learig Theory Lecturer: Tegyu Ma Lecture #12 Scribe: Garrett Thomas, Pega Liu October 31, 2018 1 Review a Overview Recall the GAN setup: we have iepeet samples x 1,..., x raw

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

Notes 19 : Martingale CLT

Notes 19 : Martingale CLT Notes 9 : Martigale CLT Math 733-734: Theory of Probability Lecturer: Sebastie Roch Refereces: [Bil95, Chapter 35], [Roc, Chapter 3]. Sice we have ot ecoutered weak covergece i some time, we first recall

More information

ALGEBRA HW 7 CLAY SHONKWILER

ALGEBRA HW 7 CLAY SHONKWILER ALGEBRA HW 7 CLAY SHONKWILER Prove, or isprove a salvage: If K is a fiel, a f(x) K[x] has o roots, the K[x]/(f(x)) is a fiel. Couter-example: Cosier the fiel K = Q a the polyomial f(x) = x 4 + 3x 2 + 2.

More information

Self-normalized deviation inequalities with application to t-statistic

Self-normalized deviation inequalities with application to t-statistic Self-ormalized deviatio iequalities with applicatio to t-statistic Xiequa Fa Ceter for Applied Mathematics, Tiaji Uiversity, 30007 Tiaji, Chia Abstract Let ξ i i 1 be a sequece of idepedet ad symmetric

More information

1+x 1 + α+x. x = 2(α x2 ) 1+x

1+x 1 + α+x. x = 2(α x2 ) 1+x Math 2030 Homework 6 Solutios # [Problem 5] For coveiece we let α lim sup a ad β lim sup b. Without loss of geerality let us assume that α β. If α the by assumptio β < so i this case α + β. By Theorem

More information

1 = 2 d x. n x n (mod d) d n

1 = 2 d x. n x n (mod d) d n HW2, Problem 3*: Use Dirichlet hyperbola metho to show that τ 2 + = 3 log + O. This ote presets the ifferet ieas suggeste by the stuets Daiel Klocker, Jürge Steiiger, Stefaia Ebli a Valerie Roiter for

More information

A Note on the Weak Law of Large Numbers for Free Random Variables

A Note on the Weak Law of Large Numbers for Free Random Variables A Note o the Weak Law of Large Numbers for Free Raom Variables Raluca Bala Uiversity of Ottawa George Stoica Uiversity of New Bruswick July 28, 2006 Abstract I this article we prove that if {X k } k are

More information

LECTURE 8: ASYMPTOTICS I

LECTURE 8: ASYMPTOTICS I LECTURE 8: ASYMPTOTICS I We are iterested i the properties of estimators as. Cosider a sequece of radom variables {, X 1}. N. M. Kiefer, Corell Uiversity, Ecoomics 60 1 Defiitio: (Weak covergece) A sequece

More information

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices A Hadamard-type lower boud for symmetric diagoally domiat positive matrices Christopher J. Hillar, Adre Wibisoo Uiversity of Califoria, Berkeley Jauary 7, 205 Abstract We prove a ew lower-boud form of

More information

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II C. T. LONG J. H. JORDAN* Washigto State Uiversity, Pullma, Washigto 1. INTRODUCTION I the first paper [2 ] i this series, we developed certai properties

More information

3. Calculus with distributions

3. Calculus with distributions 6 RODICA D. COSTIN 3.1. Limits of istributios. 3. Calculus with istributios Defiitio 4. A sequece of istributios {u } coverges to the istributio u (all efie o the same space of test fuctios) if (φ, u )

More information

6.3.3 Parameter Estimation

6.3.3 Parameter Estimation 130 CHAPTER 6. ARMA MODELS 6.3.3 Parameter Estimatio I this sectio we will iscuss methos of parameter estimatio for ARMAp,q assumig that the orers p a q are kow. Metho of Momets I this metho we equate

More information

The structure of Fourier series

The structure of Fourier series The structure of Fourier series Valery P Dmitriyev Lomoosov Uiversity, Russia Date: February 3, 2011) Fourier series is costructe basig o the iea to moel the elemetary oscillatio 1, +1) by the expoetial

More information

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number

Integrable Functions. { f n } is called a determining sequence for f. If f is integrable with respect to, then f d does exist as a finite real number MATH 532 Itegrable Fuctios Dr. Neal, WKU We ow shall defie what it meas for a measurable fuctio to be itegrable, show that all itegral properties of simple fuctios still hold, ad the give some coditios

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

AP Calculus BC Review Chapter 12 (Sequences and Series), Part Two. n n th derivative of f at x = 5 is given by = x = approximates ( 6)

AP Calculus BC Review Chapter 12 (Sequences and Series), Part Two. n n th derivative of f at x = 5 is given by = x = approximates ( 6) AP Calculus BC Review Chapter (Sequeces a Series), Part Two Thigs to Kow a Be Able to Do Uersta the meaig of a power series cetere at either or a arbitrary a Uersta raii a itervals of covergece, a kow

More information

Algorithms in The Real World Fall 2002 Homework Assignment 2 Solutions

Algorithms in The Real World Fall 2002 Homework Assignment 2 Solutions Algorithms i The Real Worl Fall 00 Homewor Assigmet Solutios Problem. Suppose that a bipartite graph with oes o the left a oes o the right is costructe by coectig each oe o the left to raomly-selecte oes

More information

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck!

University of Colorado Denver Dept. Math. & Stat. Sciences Applied Analysis Preliminary Exam 13 January 2012, 10:00 am 2:00 pm. Good luck! Uiversity of Colorado Dever Dept. Math. & Stat. Scieces Applied Aalysis Prelimiary Exam 13 Jauary 01, 10:00 am :00 pm Name: The proctor will let you read the followig coditios before the exam begis, ad

More information

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS VERNER E. HOGGATT, JR. Sa Jose State Uiversity, Sa Jose, Califoria 95192 ad CALVIN T. LONG Washigto State Uiversity, Pullma, Washigto 99163

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Summary. Recap. Last Lecture. Let W n = W n (X 1,, X n ) = W n (X) be a sequence of estimators for

Summary. Recap. Last Lecture. Let W n = W n (X 1,, X n ) = W n (X) be a sequence of estimators for Last Lecture Biostatistics 602 - Statistical Iferece Lecture 17 Asymptotic Evaluatio of oit Estimators Hyu Mi Kag March 19th, 2013 What is a Bayes Risk? What is the Bayes rule Estimator miimizig square

More information

Rates of Convergence by Moduli of Continuity

Rates of Convergence by Moduli of Continuity Rates of Covergece by Moduli of Cotiuity Joh Duchi: Notes for Statistics 300b March, 017 1 Itroductio I this ote, we give a presetatio showig the importace, ad relatioship betwee, the modulis of cotiuity

More information

Archimedes - numbers for counting, otherwise lengths, areas, etc. Kepler - geometry for planetary motion

Archimedes - numbers for counting, otherwise lengths, areas, etc. Kepler - geometry for planetary motion Topics i Aalysis 3460:589 Summer 007 Itroductio Ree descartes - aalysis (breaig dow) ad sythesis Sciece as models of ature : explaatory, parsimoious, predictive Most predictios require umerical values,

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information

6.451 Principles of Digital Communication II Wednesday, March 9, 2005 MIT, Spring 2005 Handout #12. Problem Set 5 Solutions

6.451 Principles of Digital Communication II Wednesday, March 9, 2005 MIT, Spring 2005 Handout #12. Problem Set 5 Solutions 6.51 Priciples of Digital Commuicatio II Weesay, March 9, 2005 MIT, Sprig 2005 Haout #12 Problem Set 5 Solutios Problem 5.1 (Eucliea ivisio algorithm). (a) For the set F[x] of polyomials over ay fiel F,

More information

PUTNAM TRAINING INEQUALITIES

PUTNAM TRAINING INEQUALITIES PUTNAM TRAINING INEQUALITIES (Last updated: December, 207) Remark This is a list of exercises o iequalities Miguel A Lerma Exercises If a, b, c > 0, prove that (a 2 b + b 2 c + c 2 a)(ab 2 + bc 2 + ca

More information

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002

ECE 330:541, Stochastic Signals and Systems Lecture Notes on Limit Theorems from Probability Fall 2002 ECE 330:541, Stochastic Sigals ad Systems Lecture Notes o Limit Theorems from robability Fall 00 I practice, there are two ways we ca costruct a ew sequece of radom variables from a old sequece of radom

More information

The Chi Squared Distribution Page 1

The Chi Squared Distribution Page 1 The Chi Square Distributio Page Cosier the istributio of the square of a score take from N(, The probability that z woul have a value less tha is give by z / g ( ( e z if > F π, if < z where ( e g e z

More information

THE NUMBER OF IRREDUCIBLE POLYNOMIALS AND LYNDON WORDS WITH GIVEN TRACE

THE NUMBER OF IRREDUCIBLE POLYNOMIALS AND LYNDON WORDS WITH GIVEN TRACE SIM J. DISCRETE MTH. Vol. 14, No. 2, pp. 240 245 c 2001 Society for Iustrial a pplie Mathematics THE NUMBER OF IRREDUCIBLE POLYNOMILS ND LYNDON WORDS WITH GIVEN TRCE F. RUSKEY, C. R. MIERS, ND J. SWD bstract.

More information

INEQUALITIES BJORN POONEN

INEQUALITIES BJORN POONEN INEQUALITIES BJORN POONEN 1 The AM-GM iequality The most basic arithmetic mea-geometric mea (AM-GM) iequality states simply that if x ad y are oegative real umbers, the (x + y)/2 xy, with equality if ad

More information

AN ALMOST LINEAR RECURRENCE. Donald E. Knuth Calif. Institute of Technology, Pasadena, Calif.

AN ALMOST LINEAR RECURRENCE. Donald E. Knuth Calif. Institute of Technology, Pasadena, Calif. AN ALMOST LINEAR RECURRENCE Doald E. Kuth Calif. Istitute of Techology, Pasadea, Calif. form A geeral liear recurrece with costat coefficiets has the U 0 = a l* U l = a 2 " ' " U r - l = a r ; u = b, u,

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences Commuicatios of the Korea Statistical Society 29, Vol. 16, No. 5, 841 849 Precise Rates i Complete Momet Covergece for Negatively Associated Sequeces Dae-Hee Ryu 1,a a Departmet of Computer Sciece, ChugWoo

More information

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT TR/46 OCTOBER 974 THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION by A. TALBOT .. Itroductio. A problem i approximatio theory o which I have recetly worked [] required for its solutio a proof that the

More information

Variance function estimation in multivariate nonparametric regression with fixed design

Variance function estimation in multivariate nonparametric regression with fixed design Joural of Multivariate Aalysis 00 009 6 36 Cotets lists available at ScieceDirect Joural of Multivariate Aalysis joural homepage: www.elsevier.com/locate/jmva Variace fuctio estimatio i multivariate oparametric

More information

Exponential Families and Bayesian Inference

Exponential Families and Bayesian Inference Computer Visio Expoetial Families ad Bayesia Iferece Lecture Expoetial Families A expoetial family of distributios is a d-parameter family f(x; havig the followig form: f(x; = h(xe g(t T (x B(, (. where

More information

Title. Author(s)Cho, Yonggeun; Jin, Bum Ja. CitationJournal of Mathematical Analysis and Applications, 3. Issue Date Doc URL.

Title. Author(s)Cho, Yonggeun; Jin, Bum Ja. CitationJournal of Mathematical Analysis and Applications, 3. Issue Date Doc URL. Title Blow-up of viscous heat-couctig compressible flow Author(s)Cho, Yoggeu; Ji, Bum Ja CitatioJoural of Mathematical Aalysis a Applicatios, 3 Issue Date 26-8-15 Doc URL http://hl.hale.et/2115/1442 Type

More information

Math 113, Calculus II Winter 2007 Final Exam Solutions

Math 113, Calculus II Winter 2007 Final Exam Solutions Math, Calculus II Witer 7 Fial Exam Solutios (5 poits) Use the limit defiitio of the defiite itegral ad the sum formulas to compute x x + dx The check your aswer usig the Evaluatio Theorem Solutio: I this

More information

ON THE EXTENDED AND ALLAN SPECTRA AND TOPOLOGICAL RADII. Hugo Arizmendi-Peimbert, Angel Carrillo-Hoyo, and Jairo Roa-Fajardo

ON THE EXTENDED AND ALLAN SPECTRA AND TOPOLOGICAL RADII. Hugo Arizmendi-Peimbert, Angel Carrillo-Hoyo, and Jairo Roa-Fajardo Opuscula Mathematica Vol. 32 No. 2 2012 http://dx.doi.org/10.7494/opmath.2012.32.2.227 ON THE EXTENDED AND ALLAN SPECTRA AND TOPOLOGICAL RADII Hugo Arizmedi-Peimbert, Agel Carrillo-Hoyo, ad Jairo Roa-Fajardo

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

BENDING FREQUENCIES OF BEAMS, RODS, AND PIPES Revision S

BENDING FREQUENCIES OF BEAMS, RODS, AND PIPES Revision S BENDING FREQUENCIES OF BEAMS, RODS, AND PIPES Revisio S By Tom Irvie Email: tom@vibratioata.com November, Itrouctio The fuametal frequecies for typical beam cofiguratios are give i Table. Higher frequecies

More information

arxiv: v1 [math.pr] 4 Dec 2013

arxiv: v1 [math.pr] 4 Dec 2013 Squared-Norm Empirical Process i Baach Space arxiv:32005v [mathpr] 4 Dec 203 Vicet Q Vu Departmet of Statistics The Ohio State Uiversity Columbus, OH vqv@statosuedu Abstract Jig Lei Departmet of Statistics

More information

Detailed proofs of Propositions 3.1 and 3.2

Detailed proofs of Propositions 3.1 and 3.2 Detailed proofs of Propositios 3. ad 3. Proof of Propositio 3. NB: itegratio sets are geerally omitted for itegrals defied over a uit hypercube [0, s with ay s d. We first give four lemmas. The proof of

More information

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1 Solutio Sagchul Lee October 7, 017 1 Solutios of Homework 1 Problem 1.1 Let Ω,F,P) be a probability space. Show that if {A : N} F such that A := lim A exists, the PA) = lim PA ). Proof. Usig the cotiuity

More information

f n (x) f m (x) < ɛ/3 for all x A. By continuity of f n and f m we can find δ > 0 such that d(x, x 0 ) < δ implies that

f n (x) f m (x) < ɛ/3 for all x A. By continuity of f n and f m we can find δ > 0 such that d(x, x 0 ) < δ implies that Lecture 15 We have see that a sequece of cotiuous fuctios which is uiformly coverget produces a limit fuctio which is also cotiuous. We shall stregthe this result ow. Theorem 1 Let f : X R or (C) be a

More information

Homework 4. x n x X = f(x n x) +

Homework 4. x n x X = f(x n x) + Homework 4 1. Let X ad Y be ormed spaces, T B(X, Y ) ad {x } a sequece i X. If x x weakly, show that T x T x weakly. Solutio: We eed to show that g(t x) g(t x) g Y. It suffices to do this whe g Y = 1.

More information

Fourier Series and their Applications

Fourier Series and their Applications Fourier Series ad their Applicatios The fuctios, cos x, si x, cos x, si x, are orthogoal over (, ). m cos mx cos xdx = m = m = = cos mx si xdx = for all m, { m si mx si xdx = m = I fact the fuctios satisfy

More information

Appendix to: Hypothesis Testing for Multiple Mean and Correlation Curves with Functional Data

Appendix to: Hypothesis Testing for Multiple Mean and Correlation Curves with Functional Data Appedix to: Hypothesis Testig for Multiple Mea ad Correlatio Curves with Fuctioal Data Ao Yua 1, Hog-Bi Fag 1, Haiou Li 1, Coli O. Wu, Mig T. Ta 1, 1 Departmet of Biostatistics, Bioiformatics ad Biomathematics,

More information

Gaps between Consecutive Perfect Powers

Gaps between Consecutive Perfect Powers Iteratioal Mathematical Forum, Vol. 11, 016, o. 9, 49-437 HIKARI Lt, www.m-hikari.com http://x.oi.org/10.1988/imf.016.63 Gaps betwee Cosecutive Perfect Powers Rafael Jakimczuk Divisió Matemática, Uiversia

More information

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15 17. Joit distributios of extreme order statistics Lehma 5.1; Ferguso 15 I Example 10., we derived the asymptotic distributio of the maximum from a radom sample from a uiform distributio. We did this usig

More information

OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS

OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS LOUKAS GRAFAKOS AND RICHARD G. LYNCH 2 Abstract. We exted a theorem by Grafakos ad Tao [5] o multiliear iterpolatio betwee adjoit operators

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

MATH 413 FINAL EXAM. f(x) f(y) M x y. x + 1 n

MATH 413 FINAL EXAM. f(x) f(y) M x y. x + 1 n MATH 43 FINAL EXAM Math 43 fial exam, 3 May 28. The exam starts at 9: am ad you have 5 miutes. No textbooks or calculators may be used durig the exam. This exam is prited o both sides of the paper. Good

More information

Appendix to Quicksort Asymptotics

Appendix to Quicksort Asymptotics Appedix to Quicksort Asymptotics James Alle Fill Departmet of Mathematical Scieces The Johs Hopkis Uiversity jimfill@jhu.edu ad http://www.mts.jhu.edu/~fill/ ad Svate Jaso Departmet of Mathematics Uppsala

More information

MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS

MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS MATH48E FOURIER ANALYSIS AND ITS APPLICATIONS 7.. Cesàro summability. 7. Summability methods Arithmetic meas. The followig idea is due to the Italia geometer Eresto Cesàro (859-96). He shows that eve if

More information

Solutions to Final Exam Review Problems

Solutions to Final Exam Review Problems . Let f(x) 4+x. Solutios to Fial Exam Review Problems Math 5C, Witer 2007 (a) Fid the Maclauri series for f(x), ad compute its radius of covergece. Solutio. f(x) 4( ( x/4)) ( x/4) ( ) 4 4 + x. Sice the

More information

The minimum value and the L 1 norm of the Dirichlet kernel

The minimum value and the L 1 norm of the Dirichlet kernel The miimum value ad the L orm of the Dirichlet kerel For each positive iteger, defie the fuctio D (θ + ( cos θ + cos θ + + cos θ e iθ + + e iθ + e iθ + e + e iθ + e iθ + + e iθ which we call the (th Dirichlet

More information

lim za n n = z lim a n n.

lim za n n = z lim a n n. Lecture 6 Sequeces ad Series Defiitio 1 By a sequece i a set A, we mea a mappig f : N A. It is customary to deote a sequece f by {s } where, s := f(). A sequece {z } of (complex) umbers is said to be coverget

More information

Week 5-6: The Binomial Coefficients

Week 5-6: The Binomial Coefficients Wee 5-6: The Biomial Coefficiets March 6, 2018 1 Pascal Formula Theorem 11 (Pascal s Formula For itegers ad such that 1, ( ( ( 1 1 + 1 The umbers ( 2 ( 1 2 ( 2 are triagle umbers, that is, The petago umbers

More information

1 = δ2 (0, ), Y Y n nδ. , T n = Y Y n n. ( U n,k + X ) ( f U n,k + Y ) n 2n f U n,k + θ Y ) 2 E X1 2 X1

1 = δ2 (0, ), Y Y n nδ. , T n = Y Y n n. ( U n,k + X ) ( f U n,k + Y ) n 2n f U n,k + θ Y ) 2 E X1 2 X1 8. The cetral limit theorems 8.1. The cetral limit theorem for i.i.d. sequeces. ecall that C ( is N -separatig. Theorem 8.1. Let X 1, X,... be i.i.d. radom variables with EX 1 = ad EX 1 = σ (,. Suppose

More information

Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions

Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions Statistical ad Mathematical Methods DS-GA 00 December 8, 05. Short questios Sample Fial Problems Solutios a. Ax b has a solutio if b is i the rage of A. The dimesio of the rage of A is because A has liearly-idepedet

More information

Lecture 2. The Lovász Local Lemma

Lecture 2. The Lovász Local Lemma Staford Uiversity Sprig 208 Math 233A: No-costructive methods i combiatorics Istructor: Ja Vodrák Lecture date: Jauary 0, 208 Origial scribe: Apoorva Khare Lecture 2. The Lovász Local Lemma 2. Itroductio

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

Dirichlet s Theorem on Arithmetic Progressions

Dirichlet s Theorem on Arithmetic Progressions Dirichlet s Theorem o Arithmetic Progressios Athoy Várilly Harvard Uiversity, Cambridge, MA 0238 Itroductio Dirichlet s theorem o arithmetic progressios is a gem of umber theory. A great part of its beauty

More information

SHARP INEQUALITIES INVOLVING THE CONSTANT e AND THE SEQUENCE (1 + 1/n) n

SHARP INEQUALITIES INVOLVING THE CONSTANT e AND THE SEQUENCE (1 + 1/n) n SHARP INEQUALITIES INVOLVING THE CONSTANT e AND THE SEQUENCE + / NECDET BATIR Abstract. Several ew ad sharp iequalities ivolvig the costat e ad the sequece + / are proved.. INTRODUCTION The costat e or

More information

arxiv: v4 [math.co] 5 May 2011

arxiv: v4 [math.co] 5 May 2011 A PROBLEM OF ENUMERATION OF TWO-COLOR BRACELETS WITH SEVERAL VARIATIONS arxiv:07101370v4 [mathco] 5 May 011 VLADIMIR SHEVELEV Abstract We cosier the problem of eumeratio of icogruet two-color bracelets

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit theorems Throughout this sectio we will assume a probability space (Ω, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Concentration inequalities

Concentration inequalities Cocetratio iequalities Jea-Yves Audibert 1,2 1. Imagie - ENPC/CSTB - uiversité Paris Est 2. Willow (INRIA/ENS/CNRS) ThRaSH 2010 with Problem Tight upper ad lower bouds o f(x 1,..., X ) X 1,..., X i.i.d.

More information

Lecture 20: Multivariate convergence and the Central Limit Theorem

Lecture 20: Multivariate convergence and the Central Limit Theorem Lecture 20: Multivariate covergece ad the Cetral Limit Theorem Covergece i distributio for radom vectors Let Z,Z 1,Z 2,... be radom vectors o R k. If the cdf of Z is cotiuous, the we ca defie covergece

More information

This section is optional.

This section is optional. 4 Momet Geeratig Fuctios* This sectio is optioal. The momet geeratig fuctio g : R R of a radom variable X is defied as g(t) = E[e tx ]. Propositio 1. We have g () (0) = E[X ] for = 1, 2,... Proof. Therefore

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learig Theory: Lecture Notes Kamalika Chaudhuri October 4, 0 Cocetratio of Averages Cocetratio of measure is very useful i showig bouds o the errors of machie-learig algorithms. We will begi with a basic

More information

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover.

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover. Compactess Defiitio 1. A cover or a coverig of a topological space X is a family C of subsets of X whose uio is X. A subcover of a cover C is a subfamily of C which is a cover of X. A ope cover of X is

More information

A PROOF OF THE WEIERSTRASS APPROXIMATION THEOREM FOR R k USING BINOMIAL DISTRIBUTIONS

A PROOF OF THE WEIERSTRASS APPROXIMATION THEOREM FOR R k USING BINOMIAL DISTRIBUTIONS A PROOF OF THE WEIERSTRASS APPROXIMATION THEOREM FOR R k USING BINOMIAL DISTRIBUTIONS BEN KORDESH Abstract. We relate the probabilistic proof of the Weierstrass Approximatio Theorem [Lev84] to the covolutio

More information

MAS111 Convergence and Continuity

MAS111 Convergence and Continuity MAS Covergece ad Cotiuity Key Objectives At the ed of the course, studets should kow the followig topics ad be able to apply the basic priciples ad theorems therei to solvig various problems cocerig covergece

More information

The value of Banach limits on a certain sequence of all rational numbers in the interval (0,1) Bao Qi Feng

The value of Banach limits on a certain sequence of all rational numbers in the interval (0,1) Bao Qi Feng The value of Baach limits o a certai sequece of all ratioal umbers i the iterval 0, Bao Qi Feg Departmet of Mathematical Scieces, Ket State Uiversity, Tuscarawas, 330 Uiversity Dr. NE, New Philadelphia,

More information

n p (Ω). This means that the

n p (Ω). This means that the Sobolev s Iequality, Poicaré Iequality ad Compactess I. Sobolev iequality ad Sobolev Embeddig Theorems Theorem (Sobolev s embeddig theorem). Give the bouded, ope set R with 3 ad p

More information

Bertrand s Postulate

Bertrand s Postulate Bertrad s Postulate Lola Thompso Ross Program July 3, 2009 Lola Thompso (Ross Program Bertrad s Postulate July 3, 2009 1 / 33 Bertrad s Postulate I ve said it oce ad I ll say it agai: There s always a

More information

THE LEGENDRE POLYNOMIALS AND THEIR PROPERTIES. r If one now thinks of obtaining the potential of a distributed mass, the solution becomes-

THE LEGENDRE POLYNOMIALS AND THEIR PROPERTIES. r If one now thinks of obtaining the potential of a distributed mass, the solution becomes- THE LEGENDRE OLYNOMIALS AND THEIR ROERTIES The gravitatioal potetial ψ at a poit A at istace r from a poit mass locate at B ca be represete by the solutio of the Laplace equatio i spherical cooriates.

More information

Econometrica Supplementary Material

Econometrica Supplementary Material Ecoometrica Supplemetary Material SUPPLEMENT TO NONPARAMETRIC INSTRUMENTAL VARIABLES ESTIMATION OF A QUANTILE REGRESSION MODEL : MATHEMATICAL APPENDIX (Ecoometrica, Vol. 75, No. 4, July 27, 1191 128) BY

More information

FINAL EXAMINATION IN FOUNDATION OF ANALYSIS (TMA4225)

FINAL EXAMINATION IN FOUNDATION OF ANALYSIS (TMA4225) Norwegia Uiversity of Sciece ad Techology Departmet of Mathematical Scieces Page of 7 Cotact durig exam: Eugeia Maliikova (735) 52 57 FINAL EXAMINATION IN FOUNDATION OF ANALYSIS (TMA4225) Moday, December

More information

Convex Bodies with Minimal Mean Width

Convex Bodies with Minimal Mean Width Covex Boies with Miimal Mea With A.A. Giaopoulos 1, V.D. Milma 2, a M. Ruelso 3 1 Departmet of Mathematics, Uiversity of Crete, Iraklio, Greece 2 School of Mathematical Scieces, Tel Aviv Uiversity, Tel

More information

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT Itroductio to Extreme Value Theory Laures de Haa, ISM Japa, 202 Itroductio to Extreme Value Theory Laures de Haa Erasmus Uiversity Rotterdam, NL Uiversity of Lisbo, PT Itroductio to Extreme Value Theory

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

Math 525: Lecture 5. January 18, 2018

Math 525: Lecture 5. January 18, 2018 Math 525: Lecture 5 Jauary 18, 2018 1 Series (review) Defiitio 1.1. A sequece (a ) R coverges to a poit L R (writte a L or lim a = L) if for each ǫ > 0, we ca fid N such that a L < ǫ for all N. If the

More information

DANIELL AND RIEMANN INTEGRABILITY

DANIELL AND RIEMANN INTEGRABILITY DANIELL AND RIEMANN INTEGRABILITY ILEANA BUCUR We itroduce the otio of Riema itegrable fuctio with respect to a Daiell itegral ad prove the approximatio theorem of such fuctios by a mootoe sequece of Jorda

More information