Spotted Beebalm CBS Theorem J. Larson, C. Porter UF

Size: px
Start display at page:

Download "Spotted Beebalm CBS Theorem J. Larson, C. Porter UF"

Transcription

1 Spotted Beebalm

2 Cantor-Schröder-Bernstein Theorem, Part 2 Jean A. Larson and Christopher C. Porter MHF 3202 December 4, 2015

3 Theorem (Cantor-Schröder-Bernstein Theorem) Suppose A and B are sets. If A B and B A, then A B.

4 Opening of the Proof: Recalll that for any function F : U V and any subset D U, the image of D under a F is the set F (D) := {F (d) d D}. Assume A B and B A (o ). Let f : A B and g : B A be one-to-one functions that witness the above relations (a ). Case 1: One of f and g is onto. Then one of f and g is a witness that A B. Case 2: Neither f nor g is onto

5 Plan of the proof for Case 2: Define a set X A by recursion Set W := f (X ) = {f (x) x X } and show f (X W ) : X W is one-to-one and onto. Set Z = B \ W, Y = g(z), and prove that Y = g(z) = A \ X. Show g (Z Y ) is one-to-one and onto, so (g (Z Y )) 1 = (g (Y Z)) 1 is also one-to-one and onto. Show that h = (f (X W )) (g (Y Z)) 1 : A B is the witness that A B.

6 Definitions of R, A and W : Let R = Ran(g) A. Define X by recursion: A1 := A \ R; for every n Z +, A n+1 := g(f (A n )) = {g(f (a)) a A n }. Then X := {A n n Z + }. Set W := f (X ) = {f (x) x X } = Ran(f X ).

7 Claim 1: The function f (X W ) : X W is one-to-one and onto. Proof. Since f is one-to-one and f (X W ) is a restriction of f, it follows from Exercise 5.2: 10a, that f (X W ) is one-to-one. Since f (X ) = W and f and f (X W ) agree with f on X by Exercise 5.1: 7a, it follows that Ran(f (X W )) = f (X ) = W. Thus by Theorem 5.2.3, f (X W ) is onto.

8 Claim 2: Y = g(z) = {g(z) z Z} A \ X where Z := B \ W. Proof. Assume toward a contradiction that Y = g(z) A \ X (o ). Let g(z 0 ) g(z) A be a witness, i.e. assume z 0 Z and g(z 0 ) / A \ X (a ). Since g(z 0 ) / A \ X, it follows that g(z 0 ) X (def set difference). Since g(z 0 ) is in the range of g, it is not in A 1 = Z \ Ran(g). Since X = {A n n Z + } and g(z 0 ) / A 1, we can find a witness n 0 Z + with g(z 0 ) A n0 +1 (a ).

9 Claim 2 (proof continued) Since g(z 0 ) A n0 +1 and A n0 +1 = g(f (A n0 )), we know g(z 0 ) g(f (A n0 )) = {g(f (x) x A n0 }. Let x 0 be a witness, i.e. assume g(z 0 ) = g(f (x 0 )). Since g is one-to-one, it follows that z 0 = f (x 0 ) W, by the definition of W. Thus z 0 Z = B \ W and z 0 W, which is a contradiction, since these two sets are disjoint (c ) Thus our assumption was false and Claim 2 follows.

10 Claim 3: A \ X Y = g(z) = {g(z) z Z}. Assume toward a contradiction that A \ X g(z) (o ). Let a 0 A \ X be a witness, i.e. assume a 0 / g(z) (a ). Since y 0 A \ X, it follows that y 0 / X and in particular, y 0 / A 1 = A \ Ran(g), so y 0 Ran(g). Let b 0 B be a witness, i.e. g(b 0 ) = y 0 (a ). Since y 0 / g(z), it follows that b 0 / Z = B \ W, so b 0 W = f (X ). Let x 0 X be a witness, i.e. assume f (x 0 ) = b 0 and let m 0 be such that x 0 A m0 (a ). Thus a 0 = g(b 0 ) = g(f (x 0 )) g(f (A m0 )) = A m0 +1 X, so a 0 is in both X and A \ X which is a contradiction since these sets are disjoint (c ). So our assumption was false and Claim 3 follows.

11 Claim 4:The function g (Z Y ) : Z Y is one-to-one and onto and so is its inverse, g 1 (Y Z) : Y Z. Proof. By Claims 2 and 3, Y = g(z) = A \ X. Since g is one-to-one and g (Z Y ) is a restriction of g, it follows from Exercise 5.2: 10a, that g (Z Y ) is one-to-one. Since g(z) = Y and, by Exercise 5.1: 7a, g and g (Z Y ) agree with g on Z, it follows that Ran(g (Z Y )) = g(z) = Y, so g (Z Y ) is onto by Theorem Since g (Z Y ) is one-to-one and onto, its inverse is a function, (g (Z Y )) 1 : Y Z, and it is one-to-one and onto, by Theorem

12 Claim 5: (f (X W )) (g (Y Z)) 1 : A B is one-to-one and onto. Proof. By Claims 2 and 4, the functions f (X W ) and (g (Y Z)) 1 are one-to-one and onto. Note that X and Y = A \ X are disjoint, as are Ran(f (X W ) = W and Ran(g 1 (Y Z) = Z. By Exercises 5.1: 9a and 5.2:12, (f (X W )) (g (Y Z)) 1 is a one-to-one function from A = X Y to B = W Z. Since the range of (f (X W )) (g 1 (Y Z)) is W Z = B, by Theorem 5.2.3, it is onto and Claim 5 follows.

13 Claim 6: The function h : A B defined for all a A by h(a) = f (a) and if a X and h(a) = g 1 (a) if a A \ X is one-to-one and onto. Proof. By Claim 5, (f (X W )) (g 1 (Y Z)) has the same domain and codomain as h. Note that h, f, and f (X W ) agree on X. Also h, g 1 and g 1 (Y Z) agree on Y. Thus h and (f (X W )) (g 1 (Y Z)) agree on A = X Y, so h = (f (X W )) (g 1 (Y Z)), by Theorem

14 Closing of the Proof: By Claim 6, h : A B is one-to-one and onto, so it witnesses that A B (p ). This assertion completes Case 2. By exhaustive case analysis, A B. We assumed A B and B A and proved A B, so the implication and the theorem follow (c ).

15

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Define and compute the cardinality of a set. Use functions to compare the sizes of sets. Classify sets

More information

2 Truth Tables, Equivalences and the Contrapositive

2 Truth Tables, Equivalences and the Contrapositive 2 Truth Tables, Equivalences and the Contrapositive 12 2 Truth Tables, Equivalences and the Contrapositive 2.1 Truth Tables In a mathematical system, true and false statements are the statements of the

More information

Mathematics 220 Homework 4 - Solutions. Solution: We must prove the two statements: (1) if A = B, then A B = A B, and (2) if A B = A B, then A = B.

Mathematics 220 Homework 4 - Solutions. Solution: We must prove the two statements: (1) if A = B, then A B = A B, and (2) if A B = A B, then A = B. 1. (4.46) Let A and B be sets. Prove that A B = A B if and only if A = B. Solution: We must prove the two statements: (1) if A = B, then A B = A B, and (2) if A B = A B, then A = B. Proof of (1): Suppose

More information

SETS AND FUNCTIONS JOSHUA BALLEW

SETS AND FUNCTIONS JOSHUA BALLEW SETS AND FUNCTIONS JOSHUA BALLEW 1. Sets As a review, we begin by considering a naive look at set theory. For our purposes, we define a set as a collection of objects. Except for certain sets like N, Z,

More information

Introduction to Proofs

Introduction to Proofs Introduction to Proofs Notes by Dr. Lynne H. Walling and Dr. Steffi Zegowitz September 018 The Introduction to Proofs course is organised into the following nine sections. 1. Introduction: sets and functions

More information

Mathematics Review for Business PhD Students

Mathematics Review for Business PhD Students Mathematics Review for Business PhD Students Anthony M. Marino Department of Finance and Business Economics Marshall School of Business Lecture 1: Introductory Material Sets The Real Number System Functions,

More information

CHAPTER THREE: RELATIONS AND FUNCTIONS

CHAPTER THREE: RELATIONS AND FUNCTIONS CHAPTER THREE: RELATIONS AND FUNCTIONS 1 Relations Intuitively, a relation is the sort of thing that either does or does not hold between certain things, e.g. the love relation holds between Kim and Sandy

More information

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c.

a + b = b + a and a b = b a. (a + b) + c = a + (b + c) and (a b) c = a (b c). a (b + c) = a b + a c and (a + b) c = a c + b c. Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

Properties of the Integers

Properties of the Integers Properties of the Integers The set of all integers is the set and the subset of Z given by Z = {, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, }, N = {0, 1, 2, 3, 4, }, is the set of nonnegative integers (also called

More information

can only hit 3 points in the codomain. Hence, f is not surjective. For another example, if n = 4

can only hit 3 points in the codomain. Hence, f is not surjective. For another example, if n = 4 .. Conditions for Injectivity and Surjectivity In this section, we discuss what we can say about linear maps T : R n R m given only m and n. We motivate this problem by looking at maps f : {,..., n} {,...,

More information

Cardinality and ordinal numbers

Cardinality and ordinal numbers Cardinality and ordinal numbers The cardinality A of a finite set A is simply the number of elements in it. When it comes to infinite sets, we no longer can speak of the number of elements in such a set.

More information

2.23 Theorem. Let A and B be sets in a metric space. If A B, then L(A) L(B).

2.23 Theorem. Let A and B be sets in a metric space. If A B, then L(A) L(B). 2.23 Theorem. Let A and B be sets in a metric space. If A B, then L(A) L(B). 2.24 Theorem. Let A and B be sets in a metric space. Then L(A B) = L(A) L(B). It is worth noting that you can t replace union

More information

FOUNDATIONS & PROOF LECTURE NOTES by Dr Lynne Walling

FOUNDATIONS & PROOF LECTURE NOTES by Dr Lynne Walling FOUNDATIONS & PROOF LECTURE NOTES by Dr Lynne Walling Note: You are expected to spend 3-4 hours per week working on this course outside of the lectures and tutorials. In this time you are expected to review

More information

Equations and Solutions

Equations and Solutions Section 2.1 Solving Equations: The Addition Principle 1 Equations and Solutions ESSENTIALS An equation is a number sentence that says that the expressions on either side of the equals sign, =, represent

More information

6 CARDINALITY OF SETS

6 CARDINALITY OF SETS 6 CARDINALITY OF SETS MATH10111 - Foundations of Pure Mathematics We all have an idea of what it means to count a finite collection of objects, but we must be careful to define rigorously what it means

More information

Mathematics Review for Business PhD Students Lecture Notes

Mathematics Review for Business PhD Students Lecture Notes Mathematics Review for Business PhD Students Lecture Notes Anthony M. Marino Department of Finance and Business Economics Marshall School of Business University of Southern California Los Angeles, CA 90089-0804

More information

Let us first solve the midterm problem 4 before we bring up the related issues.

Let us first solve the midterm problem 4 before we bring up the related issues. Math 310 Class Notes 6: Countability Let us first solve the midterm problem 4 before we bring up the related issues. Theorem 1. Let I n := {k N : k n}. Let f : I n N be a one-toone function and let Im(f)

More information

Sets, Logic, Relations, and Functions

Sets, Logic, Relations, and Functions Sets, Logic, Relations, and Functions Andrew Kay September 28, 2014 Abstract This is an introductory text, not a comprehensive study; these notes contain mainly definitions, basic results, and examples.

More information

Week Some Warm-up Questions

Week Some Warm-up Questions 1 Some Warm-up Questions Week 1-2 Abstraction: The process going from specific cases to general problem. Proof: A sequence of arguments to show certain conclusion to be true. If... then... : The part after

More information

RED. Name: Math 290 Fall 2016 Sample Exam 3

RED. Name: Math 290 Fall 2016 Sample Exam 3 RED Name: Math 290 Fall 2016 Sample Exam 3 Note that the first 10 questions are true false. Mark A for true, B for false. Questions 11 through 20 are multiple choice. Mark the correct answer on your ule

More information

Mathematics 220 Workshop Cardinality. Some harder problems on cardinality.

Mathematics 220 Workshop Cardinality. Some harder problems on cardinality. Some harder problems on cardinality. These are two series of problems with specific goals: the first goal is to prove that the cardinality of the set of irrational numbers is continuum, and the second

More information

a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0. (x 1) 2 > 0.

a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0. (x 1) 2 > 0. For some problems, several sample proofs are given here. Problem 1. a. See the textbook for examples of proving logical equivalence using truth tables. b. There is a real number x for which f (x) < 0.

More information

Mid Term-1 : Practice problems

Mid Term-1 : Practice problems Mid Term-1 : Practice problems These problems are meant only to provide practice; they do not necessarily reflect the difficulty level of the problems in the exam. The actual exam problems are likely to

More information

Cographs; chordal graphs and tree decompositions

Cographs; chordal graphs and tree decompositions Cographs; chordal graphs and tree decompositions Zdeněk Dvořák September 14, 2015 Let us now proceed with some more interesting graph classes closed on induced subgraphs. 1 Cographs The class of cographs

More information

ORDER AND ARITHMETIC OF CARDINALITIES

ORDER AND ARITHMETIC OF CARDINALITIES ORDER AND ARITHMETIC OF CARDINALITIES PETE L. CLARK Here we pursue Cantor s theory of cardinalities of infinite sets a bit more deeply. We also begin to take a more sophisticated approach in that we identify

More information

Chapter 1 : The language of mathematics.

Chapter 1 : The language of mathematics. MAT 200, Logic, Language and Proof, Fall 2015 Summary Chapter 1 : The language of mathematics. Definition. A proposition is a sentence which is either true or false. Truth table for the connective or :

More information

Math Fall 2014 Final Exam Solutions

Math Fall 2014 Final Exam Solutions Math 2001-003 Fall 2014 Final Exam Solutions Wednesday, December 17, 2014 Definition 1. The union of two sets X and Y is the set X Y consisting of all objects that are elements of X or of Y. The intersection

More information

Section 2.2 Set Operations. Propositional calculus and set theory are both instances of an algebraic system called a. Boolean Algebra.

Section 2.2 Set Operations. Propositional calculus and set theory are both instances of an algebraic system called a. Boolean Algebra. Section 2.2 Set Operations Propositional calculus and set theory are both instances of an algebraic system called a Boolean Algebra. The operators in set theory are defined in terms of the corresponding

More information

HANDOUT AND SET THEORY. Ariyadi Wijaya

HANDOUT AND SET THEORY. Ariyadi Wijaya HANDOUT LOGIC AND SET THEORY Ariyadi Wijaya Mathematics Education Department Faculty of Mathematics and Natural Science Yogyakarta State University 2009 1 Mathematics Education Department Faculty of Mathematics

More information

INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS

INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS Problem 1. Give an example of a non-metrizable topological space. Explain. Problem 2. Introduce a topology on N by declaring that open sets are, N,

More information

Section 1.2 Propositional Equivalences. A tautology is a proposition which is always true. A contradiction is a proposition which is always false.

Section 1.2 Propositional Equivalences. A tautology is a proposition which is always true. A contradiction is a proposition which is always false. Section 1.2 Propositional Equivalences A tautology is a proposition which is always true. Classic Example: P P A contradiction is a proposition which is always false. Classic Example: P P A contingency

More information

CSC Discrete Math I, Spring Propositional Logic

CSC Discrete Math I, Spring Propositional Logic CSC 125 - Discrete Math I, Spring 2017 Propositional Logic Propositions A proposition is a declarative sentence that is either true or false Propositional Variables A propositional variable (p, q, r, s,...)

More information

More examples of mathematical. Lecture 4 ICOM 4075

More examples of mathematical. Lecture 4 ICOM 4075 More examples of mathematical proofs Lecture 4 ICOM 4075 Proofs by construction A proof by construction is one in which anobjectthat proves the truth value of an statement is built, or found There are

More information

ANALYSIS EXERCISE 1 SOLUTIONS

ANALYSIS EXERCISE 1 SOLUTIONS ANALYSIS EXERCISE 1 SOLUTIONS 1. (a) Let B The main course will be beef. F The main course will be fish. P The vegetable will be peas. C The vegetable will be corn. The logical form of the argument is

More information

Infinite constructions in set theory

Infinite constructions in set theory VI : Infinite constructions in set theory In elementary accounts of set theory, examples of finite collections of objects receive a great deal of attention for several reasons. For example, they provide

More information

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Spring

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Spring c Dr Oksana Shatalov, Spring 2016 1 3 FUNCTIONS 3.1 Definition and Basic Properties DEFINITION 1. Let A and B be nonempty sets. A function f from A to B is a rule that assigns to each element in the set

More information

Functions. Given a function f: A B:

Functions. Given a function f: A B: Functions Given a function f: A B: We say f maps A to B or f is a mapping from A to B. A is called the domain of f. B is called the codomain of f. If f(a) = b, then b is called the image of a under f.

More information

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall

3 FUNCTIONS. 3.1 Definition and Basic Properties. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2016 1 3 FUNCTIONS 3.1 Definition and Basic Properties DEFINITION 1. Let A and B be nonempty sets. A function f from the set A to the set B is a correspondence that assigns to

More information

Chapter 6 Cardinal Numbers and Cardinal Arithmetic

Chapter 6 Cardinal Numbers and Cardinal Arithmetic Principles of Mathematics (Math 2450) A Ë@ Õæ Aë áöß @. X. @ 2014-2015 Èð B@ É Ë@ Chapter 6 Cardinal Numbers and Cardinal Arithmetic In this chapter we introduce the concept of cardinal numbers. The properties

More information

The integers. Chapter 3

The integers. Chapter 3 Chapter 3 The integers Recall that an abelian group is a set A with a special element 0, and operation + such that x +0=x x + y = y + x x +y + z) =x + y)+z every element x has an inverse x + y =0 We also

More information

Math 242: Principles of Analysis Fall 2016 Homework 1 Part B solutions

Math 242: Principles of Analysis Fall 2016 Homework 1 Part B solutions Math 4: Principles of Analysis Fall 0 Homework Part B solutions. Let x, y, z R. Use the axioms of the real numbers to prove the following. a) If x + y = x + z then y = z. Solution. By Axiom a), there is

More information

Uniquely Universal Sets

Uniquely Universal Sets Uniquely Universal Sets 1 Uniquely Universal Sets Abstract 1 Arnold W. Miller We say that X Y satisfies the Uniquely Universal property (UU) iff there exists an open set U X Y such that for every open

More information

Math 4603: Advanced Calculus I, Summer 2016 University of Minnesota Notes on Cardinality of Sets

Math 4603: Advanced Calculus I, Summer 2016 University of Minnesota Notes on Cardinality of Sets Math 4603: Advanced Calculus I, Summer 2016 University of Minnesota Notes on Cardinality of Sets Introduction In this short article, we will describe some basic notions on cardinality of sets. Given two

More information

SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2

SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2 SOLUTIONS TO ADDITIONAL EXERCISES FOR II.1 AND II.2 Here are the solutions to the additional exercises in betsepexercises.pdf. B1. Let y and z be distinct points of L; we claim that x, y and z are not

More information

Sets and Functions. (As we will see, in describing a set the order in which elements are listed is irrelevant).

Sets and Functions. (As we will see, in describing a set the order in which elements are listed is irrelevant). Sets and Functions 1. The language of sets Informally, a set is any collection of objects. The objects may be mathematical objects such as numbers, functions and even sets, or letters or symbols of any

More information

Prof. Ila Varma HW 8 Solutions MATH 109. A B, h(i) := g(i n) if i > n. h : Z + f((i + 1)/2) if i is odd, g(i/2) if i is even.

Prof. Ila Varma HW 8 Solutions MATH 109. A B, h(i) := g(i n) if i > n. h : Z + f((i + 1)/2) if i is odd, g(i/2) if i is even. 1. Show that if A and B are countable, then A B is also countable. Hence, prove by contradiction, that if X is uncountable and a subset A is countable, then X A is uncountable. Solution: Suppose A and

More information

Functions. Definition 1 Let A and B be sets. A relation between A and B is any subset of A B.

Functions. Definition 1 Let A and B be sets. A relation between A and B is any subset of A B. Chapter 4 Functions Definition 1 Let A and B be sets. A relation between A and B is any subset of A B. Definition 2 Let A and B be sets. A function from A to B is a relation f between A and B such that

More information

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr.

Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Notes for Math 290 using Introduction to Mathematical Proofs by Charles E. Roberts, Jr. Chapter : Logic Topics:. Statements, Negation, and Compound Statements.2 Truth Tables and Logical Equivalences.3

More information

Cantor s Letter to Dedekind

Cantor s Letter to Dedekind Cantor s Letter to Dedekind (Halle, 28 July 1899) Áron Dombrovszki October 24, 2017 Introducion in the first part of his letter, Cantor deals with the same contradiction as Burali-Forti about the multiplicity

More information

The Informational Content of Canonical Disjoint NP-Pairs

The Informational Content of Canonical Disjoint NP-Pairs The Informational Content of Canonical Disjoint NP-Pairs Christian Glaßer Alan L. Selman Liyu Zhang February 21, 2007 Abstract We investigate the connection between propositional proof systems and their

More information

Problem List MATH 5143 Fall, 2013

Problem List MATH 5143 Fall, 2013 Problem List MATH 5143 Fall, 2013 On any problem you may use the result of any previous problem (even if you were not able to do it) and any information given in class up to the moment the problem was

More information

COT 2104 Homework Assignment 1 (Answers)

COT 2104 Homework Assignment 1 (Answers) 1) Classify true or false COT 2104 Homework Assignment 1 (Answers) a) 4 2 + 2 and 7 < 50. False because one of the two statements is false. b) 4 = 2 + 2 7 < 50. True because both statements are true. c)

More information

Topics in Logic, Set Theory and Computability

Topics in Logic, Set Theory and Computability Topics in Logic, Set Theory and Computability Homework Set #3 Due Friday 4/6 at 3pm (by email or in person at 08-3234) Exercises from Handouts 7-C-2 7-E-6 7-E-7(a) 8-A-4 8-A-9(a) 8-B-2 8-C-2(a,b,c) 8-D-4(a)

More information

HOMEWORK ASSIGNMENT 6

HOMEWORK ASSIGNMENT 6 HOMEWORK ASSIGNMENT 6 DUE 15 MARCH, 2016 1) Suppose f, g : A R are uniformly continuous on A. Show that f + g is uniformly continuous on A. Solution First we note: In order to show that f + g is uniformly

More information

Introduction to Proofs in Analysis. updated December 5, By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION

Introduction to Proofs in Analysis. updated December 5, By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION Introduction to Proofs in Analysis updated December 5, 2016 By Edoh Y. Amiran Following the outline of notes by Donald Chalice INTRODUCTION Purpose. These notes intend to introduce four main notions from

More information

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem

Chapter 8. General Countably Additive Set Functions. 8.1 Hahn Decomposition Theorem Chapter 8 General Countably dditive Set Functions In Theorem 5.2.2 the reader saw that if f : X R is integrable on the measure space (X,, µ) then we can define a countably additive set function ν on by

More information

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero Chapter Limits of Sequences Calculus Student: lim s n = 0 means the s n are getting closer and closer to zero but never gets there. Instructor: ARGHHHHH! Exercise. Think of a better response for the instructor.

More information

THE CANTOR GAME: WINNING STRATEGIES AND DETERMINACY. by arxiv: v1 [math.ca] 29 Jan 2017 MAGNUS D. LADUE

THE CANTOR GAME: WINNING STRATEGIES AND DETERMINACY. by arxiv: v1 [math.ca] 29 Jan 2017 MAGNUS D. LADUE THE CANTOR GAME: WINNING STRATEGIES AND DETERMINACY by arxiv:170109087v1 [mathca] 9 Jan 017 MAGNUS D LADUE 0 Abstract In [1] Grossman Turett define the Cantor game In [] Matt Baker proves several results

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

Exercises 1 - Solutions

Exercises 1 - Solutions Exercises 1 - Solutions SAV 2013 1 PL validity For each of the following propositional logic formulae determine whether it is valid or not. If it is valid prove it, otherwise give a counterexample. Note

More information

Cardinality of sets. Cardinality of sets

Cardinality of sets. Cardinality of sets Cardinality of sets Two sets A and B have the same size, or cardinality, if and only if there is a bijection f : A Ñ B. Example: We know that set ta, b, cu has elements because we can count them: 1: a

More information

CSCE 222 Discrete Structures for Computing. Review for Exam 1. Dr. Hyunyoung Lee !!!

CSCE 222 Discrete Structures for Computing. Review for Exam 1. Dr. Hyunyoung Lee !!! CSCE 222 Discrete Structures for Computing Review for Exam 1 Dr. Hyunyoung Lee 1 Topics Propositional Logic (Sections 1.1, 1.2 and 1.3) Predicate Logic (Sections 1.4 and 1.5) Rules of Inferences and Proofs

More information

1 Partitions and Equivalence Relations

1 Partitions and Equivalence Relations Today we re going to talk about partitions of sets, equivalence relations and how they are equivalent. Then we are going to talk about the size of a set and will see our first example of a diagonalisation

More information

Solutions for Chapter Solutions for Chapter 17. Section 17.1 Exercises

Solutions for Chapter Solutions for Chapter 17. Section 17.1 Exercises Solutions for Chapter 17 403 17.6 Solutions for Chapter 17 Section 17.1 Exercises 1. Suppose A = {0,1,2,3,4}, B = {2,3,4,5} and f = {(0,3),(1,3),(2,4),(3,2),(4,2)}. State the domain and range of f. Find

More information

MA441: Algebraic Structures I. Lecture 18

MA441: Algebraic Structures I. Lecture 18 MA441: Algebraic Structures I Lecture 18 5 November 2003 1 Review from Lecture 17: Theorem 6.5: Aut(Z/nZ) U(n) For every positive integer n, Aut(Z/nZ) is isomorphic to U(n). The proof used the map T :

More information

Numbers, proof and all that jazz.

Numbers, proof and all that jazz. CHAPTER 1 Numbers, proof and all that jazz. There is a fundamental difference between mathematics and other sciences. In most sciences, one does experiments to determine laws. A law will remain a law,

More information

Tautologies, Contradictions, and Contingencies

Tautologies, Contradictions, and Contingencies Section 1.3 Tautologies, Contradictions, and Contingencies A tautology is a proposition which is always true. Example: p p A contradiction is a proposition which is always false. Example: p p A contingency

More information

4130 HOMEWORK 4. , a 2

4130 HOMEWORK 4. , a 2 4130 HOMEWORK 4 Due Tuesday March 2 (1) Let N N denote the set of all sequences of natural numbers. That is, N N = {(a 1, a 2, a 3,...) : a i N}. Show that N N = P(N). We use the Schröder-Bernstein Theorem.

More information

Solutions Manual for: Understanding Analysis, Second Edition. Stephen Abbott Middlebury College

Solutions Manual for: Understanding Analysis, Second Edition. Stephen Abbott Middlebury College Solutions Manual for: Understanding Analysis, Second Edition Stephen Abbott Middlebury College June 25, 2015 Author s note What began as a desire to sketch out a simple answer key for the problems in Understanding

More information

FRACTAL GEOMETRY, DYNAMICAL SYSTEMS AND CHAOS

FRACTAL GEOMETRY, DYNAMICAL SYSTEMS AND CHAOS FRACTAL GEOMETRY, DYNAMICAL SYSTEMS AND CHAOS MIDTERM SOLUTIONS. Let f : R R be the map on the line generated by the function f(x) = x 3. Find all the fixed points of f and determine the type of their

More information

A Logician s Toolbox

A Logician s Toolbox A Logician s Toolbox 461: An Introduction to Mathematical Logic Spring 2009 We recast/introduce notions which arise everywhere in mathematics. All proofs are left as exercises. 0 Notations from set theory

More information

Standard forms for writing numbers

Standard forms for writing numbers Standard forms for writing numbers In order to relate the abstract mathematical descriptions of familiar number systems to the everyday descriptions of numbers by decimal expansions and similar means,

More information

Exercises for Unit VI (Infinite constructions in set theory)

Exercises for Unit VI (Infinite constructions in set theory) Exercises for Unit VI (Infinite constructions in set theory) VI.1 : Indexed families and set theoretic operations (Halmos, 4, 8 9; Lipschutz, 5.3 5.4) Lipschutz : 5.3 5.6, 5.29 5.32, 9.14 1. Generalize

More information

1. Propositions: Contrapositives and Converses

1. Propositions: Contrapositives and Converses Preliminaries 1 1. Propositions: Contrapositives and Converses Given two propositions P and Q, the statement If P, then Q is interpreted as the statement that if the proposition P is true, then the statement

More information

COMP9020 Lecture 3 Session 2, 2016 Sets, Functions, and Sequences. Revision: 1.3

COMP9020 Lecture 3 Session 2, 2016 Sets, Functions, and Sequences. Revision: 1.3 1 COMP9020 Lecture 3 Session 2, 2016 Sets, Functions, and Sequences Revision: 1.3 2 Divisibility Let m, n Z. m n means m is a divisor of n, defined by n = km for some k Z (Also stated as: n is divisible

More information

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes

Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes Foundations of Mathematics MATH 220 FALL 2017 Lecture Notes These notes form a brief summary of what has been covered during the lectures. All the definitions must be memorized and understood. Statements

More information

16.1 Countability. CS125 Lecture 16 Fall 2014

16.1 Countability. CS125 Lecture 16 Fall 2014 CS125 Lecture 16 Fall 2014 16.1 Countability Proving the non-existence of algorithms for computational problems can be very difficult. Indeed, we do not know how to prove P NP. So a natural question is

More information

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,

More information

Functions and cardinality (solutions) sections A and F TA: Clive Newstead 6 th May 2014

Functions and cardinality (solutions) sections A and F TA: Clive Newstead 6 th May 2014 Functions and cardinality (solutions) 21-127 sections A and F TA: Clive Newstead 6 th May 2014 What follows is a somewhat hastily written collection of solutions for my review sheet. I have omitted some

More information

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam RED Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam Note that the first 10 questions are true-false. Mark A for true, B for false. Questions 11 through 20 are multiple choice

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

Real Variables: Solutions to Homework 3

Real Variables: Solutions to Homework 3 Real Variables: Solutions to Homework 3 September 3, 011 Exercise 0.1. Chapter 3, # : Show that the cantor set C consists of all x such that x has some triadic expansion for which every is either 0 or.

More information

Functions If (x, y 1 ), (x, y 2 ) S, then y 1 = y 2

Functions If (x, y 1 ), (x, y 2 ) S, then y 1 = y 2 Functions 4-3-2008 Definition. A function f from a set X to a set Y is a subset S of the product X Y such that if (, y 1 ), (, y 2 ) S, then y 1 = y 2. Instead of writing (, y) S, you usually write f()

More information

Complex Analysis Qualifying Exam Solutions

Complex Analysis Qualifying Exam Solutions Complex Analysis Qualifying Exam Solutions May, 04 Part.. Let log z be the principal branch of the logarithm defined on G = {z C z (, 0]}. Show that if t > 0, then the equation log z = t has exactly one

More information

ADDENDUM B: CONSTRUCTION OF R AND THE COMPLETION OF A METRIC SPACE

ADDENDUM B: CONSTRUCTION OF R AND THE COMPLETION OF A METRIC SPACE ADDENDUM B: CONSTRUCTION OF R AND THE COMPLETION OF A METRIC SPACE ANDREAS LEOPOLD KNUTSEN Abstract. These notes are written as supplementary notes for the course MAT11- Real Analysis, taught at the University

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

Foundations Revision Notes

Foundations Revision Notes oundations Revision Notes hese notes are designed as an aid not a substitute for revision. A lot of proofs have not been included because you should have them in your notes, should you need them. Also,

More information

Complex Analysis Topic: Singularities

Complex Analysis Topic: Singularities Complex Analysis Topic: Singularities MA201 Mathematics III Department of Mathematics IIT Guwahati August 2015 Complex Analysis Topic: Singularities 1 / 15 Zeroes of Analytic Functions A point z 0 C is

More information

Math 455 Some notes on Cardinality and Transfinite Induction

Math 455 Some notes on Cardinality and Transfinite Induction Math 455 Some notes on Cardinality and Transfinite Induction (David Ross, UH-Manoa Dept. of Mathematics) 1 Cardinality Recall the following notions: function, relation, one-to-one, onto, on-to-one correspondence,

More information

586 Index. vertex, 369 disjoint, 236 pairwise, 272, 395 disjoint sets, 236 disjunction, 33, 36 distributive laws

586 Index. vertex, 369 disjoint, 236 pairwise, 272, 395 disjoint sets, 236 disjunction, 33, 36 distributive laws Index absolute value, 135 141 additive identity, 254 additive inverse, 254 aleph, 465 algebra of sets, 245, 278 antisymmetric relation, 387 arcsine function, 349 arithmetic sequence, 208 arrow diagram,

More information

Section 31. The Separation Axioms

Section 31. The Separation Axioms 31. The Separation Axioms 1 Section 31. The Separation Axioms Note. Recall that a topological space X is Hausdorff if for any x,y X with x y, there are disjoint open sets U and V with x U and y V. In this

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 2 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 2 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 2 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 1.4.2, 1.4.4, 1.4.9, 1.4.11,

More information

Sets, Functions and Relations

Sets, Functions and Relations Chapter 2 Sets, Functions and Relations A set is any collection of distinct objects. Here is some notation for some special sets of numbers: Z denotes the set of integers (whole numbers), that is, Z =

More information

MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG

MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Suggested Problems for Sets and Functions The following problems are from Discrete Mathematics and Its Applications by Kenneth H. Rosen. 1. Define the

More information

Equivalence of Propositions

Equivalence of Propositions Equivalence of Propositions 1. Truth tables: two same columns 2. Sequence of logical equivalences: from one to the other using equivalence laws 1 Equivalence laws Table 6 & 7 in 1.2, some often used: Associative:

More information

Sec$on Summary. Tautologies, Contradictions, and Contingencies. Logical Equivalence. Normal Forms (optional, covered in exercises in text)

Sec$on Summary. Tautologies, Contradictions, and Contingencies. Logical Equivalence. Normal Forms (optional, covered in exercises in text) Section 1.3 1 Sec$on Summary Tautologies, Contradictions, and Contingencies. Logical Equivalence Important Logical Equivalences Showing Logical Equivalence Normal Forms (optional, covered in exercises

More information

Compatible probability measures

Compatible probability measures Coin tossing space Think of a coin toss as a random choice from the two element set {0,1}. Thus the set {0,1} n represents the set of possible outcomes of n coin tosses, and Ω := {0,1} N, consisting of

More information

Chapter 2 Metric Spaces

Chapter 2 Metric Spaces Chapter 2 Metric Spaces The purpose of this chapter is to present a summary of some basic properties of metric and topological spaces that play an important role in the main body of the book. 2.1 Metrics

More information

NEW NORMALITY AXIOMS AND DECOMPOSITIONS OF NORMALITY. J. K. Kohli and A. K. Das University of Delhi, India

NEW NORMALITY AXIOMS AND DECOMPOSITIONS OF NORMALITY. J. K. Kohli and A. K. Das University of Delhi, India GLASNIK MATEMATIČKI Vol. 37(57)(2002), 163 173 NEW NORMALITY AXIOMS AND DECOMPOSITIONS OF NORMALITY J. K. Kohli and A. K. Das University of Delhi, India Abstract. Generalizations of normality, called(weakly)(functionally)

More information

Huan Long Shanghai Jiao Tong University

Huan Long Shanghai Jiao Tong University Huan Long Shanghai Jiao Tong University Paradox Equinumerosity Cardinal Numbers Infinite Cardinals Paradox and ZFC Equinumerosity Ordering Countable sets Paradox Axiomatic set theory Modern set theory

More information