Complex Analysis Qualifying Exam Solutions

Size: px
Start display at page:

Download "Complex Analysis Qualifying Exam Solutions"

Transcription

1 Complex Analysis Qualifying Exam Solutions May, 04 Part.. Let log z be the principal branch of the logarithm defined on G = {z C z (, 0]}. Show that if t > 0, then the equation log z = t has exactly one root in G. z Solution. Let z = re iθ where r > 0 and π < θ < π. Then log z = t z becomes log r + iθ = t r cos θ i t sin θ. r Since θ and t sin θ have opposite signs when θ 0, it follows that if z G, then r log z = t if and only if z = r where r > 0 satisfies log r = t. But log r is strictly z r increasing and t is strictly decreasing. Hence, the Intermediate Value Theorem r implies that log r = t has exactly one root in {r R r > 0}. Therefore, log z = t r z has exactly one root in G.. Let G = C \ [, ]. Prove that f(z) = z has an analytic square root on G but does not have an analytic logarithm on G. Solution. To see that f has a square root, consider the function g defined on G by the formula ( ) g(z) = f(z) e arg(z )+arg(z+), where the arguments are chosen in [0, π). g is a well defined continuous function on G satisfying g = f. (g is analytic since z is locally - on C \ {0}; cf. Proposition.0 pg. 39 Conway). To see that f does not have an analytic logarithm on G, recall that this is equivalent to f having a primitive on G. But if γ is a path in G that winds once f around [, ] in the counterclockwise direction, then γ f f dz = γ ( z + ) dz = 4πi 0. z +

2 Therefore, f f cannot have a primitive (cf. Corollary. pg. 66 Conway). 3. Prove that the zeros of the polynomial p(z) = z n + c n z n +... c z + c 0 all lie in the open disk with center 0 and radius R = + c n c + c 0. Solution. Note that R = if and only if p(z) = z n and that in this case the assertion is obviously true. Therefore, we may assume that R >. If z = R, then z n p(z) = c n z n +... c z + c 0 ( c n c + c 0 ) (R (n ) + R (n ) ) = ( R ) ( R n ) R = ( R n ) < R n = z n. Therefore, by Rouche s Theorem, the 0 s of p all lie in the open disk with center 0 and radius R. 4. Let G be a connected open set in C and let a G. Prove that if F H(G) is a normal family, then D = {f H(G) f(a) = 0 and f F} is a normal family. Solution. Assume that F H(G) is normal. That D is normal, will follow from Montel s Theorem if we can show that D is locally bounded. Accordingly, fix b G. Since G is assumed connected, there exists a rectifiable path γ : [0, ] G satisfying γ(0) = a and γ() = b. Since F is normal and {γ} is compact, there exists a constant M such that g F max g(γ(t)) M. t [0,]

3 Also, since F is normal, there exist r > 0 and M such that B(b, r) G and g F sup g(z) M. z B(b,r) It follows that if f D and w B(b, r), then f(w) = f (z) dz + γ γ [b,w] f (z) dz + f (z) dz [b,w] f (z) dz Thus, D is locally bounded. M γ + M r. 5. Show that if G C is a simply connected subset of C, f : G G is analytic, and f(z) is not identically equal to z, then f has at most one fixed point in G. Solution. Recall that Problem on the 0B Final Exam was to show that if g : D D is analytic and g(z) is not identically equal to z, then g can have at most one fixed point in D. The simple proof of this fact was based on an application of Schwarz s Lemma. Since G is assumed simply connected and C, it follows by the Riemann Mapping Theorem that there exists an analytic bijection φ : G D. If we define g by g = φ f φ, then g : D D is analytic and f(z) is not identically equal to z if and only if g(z) is not identically equal to z. Furthermore, a G is a fixed point for f if and only if φ(a) is a fixed point in D for g. Therefore, the assertion of this problem follows from the result in the previous paragraph. 6. Show that if G is an open subset of C, then there exist ideals in H(G) that are not finitely generated. Solution. Construct an infinite sequence of distinct points {z k } k= no limit points in G. For each n define in G that has I n = {f H(G) f(z k ) = 0 for each k n}. 3

4 It is straightforward to prove that for each n, I n is an ideal and also that I, defined by I = I n, n= is an ideal. We claim that I is not finitely generated. For if f, f,..., f m generate I, then, as there exists N such that f k I N for k =,,..., m, it would follow that I = I N. On the other hand, the Weierstrass Factorization Theorem implies the existence of an f I N+ with f(z N ) 0, i.e., I I N. Part.. Let G = {z C z < and z 3 > 3 }, K = G = {z C z and z 3 3 }, and A(K) denote the space of continuous functions on K that are analytic on G equipped with the uniform norm on K. For the purposes of this problem, a Laurent polynomial ia a function of the form N n= N a nz n and a Laurent series is an infinite sum of the form n= a nz n. Determine the truth or falsity of the following assertions. Be sure to justify your answers. (a) The polynomials are dense in H(G). (b) The polynomials are dense in A(K). (c) If f is analytic on a neighborhood of K, then f can be uniformly approximated on K by a Laurent polynomial. (d) If f H(G) then f can be represented on G by a Laurent series. Solution to (a). This assertion is true. Fix a compact open exhaustion {K n } of G that has the property that C \ K n is connected for each n. For example, the sets K n defined by K n = {z C z n n + and z 3 3 n + n } have this property. To prove that the polynomials are dense in H(G), fix f H(G). For each n, since C \ K n is connected, Runge s Theorem implies that there exists a polynomial 4

5 p n such that f(z) p n (z) n. For such a sequence of polynomials, p n f in H(G). Solution to (b). This assertion is false. Note that the function f(z) = is in z A(K). If {p n } is a sequence of polynomials and p n in A(K), then there exists z n such that max p z K z n(z) <. But if we set f(z) = zp n (z), as f is analytic on a neighborhood of D, the Maximum Principle implies that = f(0) max f(z) = max p z = z = z n(z) <. This contradiction implies that the polynomials are not dense in A(K). Solution to (c). This assertion is true. C \ K has two components, C = {z z 3 < 3 } and C = {z z > } { }. Furthermore, 0 C and C. Therefore, by Runge s Theorem, if f is analytic on a neighborhood of K, f can be uniformly approximated on K by rational functions R whose only poles are at 0 and. But if R is a rational function whose only poles are at 0 and, then R is a Laurent polynomial. Solution to (d). This assertion is false. A particularly simple counterexample is obtained by considering the function f(z) = (z a) where a 3 = 3. f has two Laurent series representations, and f(z) = f(z) = n= n=0 a n, a < z zn z n a n+, z < a. If a,, then neither of these series converge on G. 3. (a) Prove that the formula π f(z) = lim 0+ 5 t z dt

6 defines an analytic function in {z C Re z > 0}. (b) Show that if f is defined as in part (a), then f has an analytic continuation to {z C Re z > } \ {0} with a simple pole at 0 with residue. Solution. (a) Let G = {z C Re z > 0}. In Conway s language, the assertion is that the integral π t z 0 dt converges uniformly in G. Fix a compact set K G. Since K is compact, if we let ρ = min Re z, z K t then ρ > 0. Since has a removable singularity at 0, there exists δ (0, ) and a constant c such that 0 < t < δ = c t. If, β (0, δ) with < β and z K, it follows that β t z dt β β t Re z dt c t tρ dt = c ρ (βρ ρ ). Noting that either Morera s Theorem or Leibniz s Rule imply that π t z dt is analytic on G when (0, π ), this estimate implies that if we choose a sequence { n } in (0, π), then { π/ t z dt } n is a Cauchy sequence in H(G). Since H(G) is complete, it follows that there exists f H(G) such that π n t z dt f in H(G). Furthermore, the function f does not depend on the choice of sequence { n }. This proves that there exists an analytic function f on G satisfying π f(z) = lim 0+ t z dt. 6

7 (b) We adapt the trick used in class to analytically continue the Riemann ζ function to the critical strip {z 0 < Re z < }. Let and f (z) = π 0 f (z) = ( ) t z dt t π 0 t tz dt. Noting that has a removable singularity at 0, it follows by a straightforward sin z z modification of the analysis in part (a) that f is a well defined analytic function on {z Re z > }. Also, if Re z > 0, then f (z) = ( π )z z by straightforward calculation. It follows that if Re z > 0, then Hence, f(z) = f (z) + f (z) = f (z) + ( π )z z. f (z) + ( π )z z, which is analytic in {z C Re z > } \ {0} with a simple pole at 0 gives the desired continuation of f. Res(f, 0) = lim z (f (z) + ( π )z z 0 z ) = ( π )0 =. 3. Let G be an open set in C and let (S (G), ρ) denote the sheaf of germs of analytic functions on G. (a) Prove that the sheaf topology on S (G) is Hausdorff. (b) Let Γ(t) = (γ(t), [f t ] γ(t) ), 0 t be a function from [0, ] into S (G) and for each t [0, ] choose an open set D t such that γ(t) D t G and f t is analytic on D t. Prove that Γ is continuous if and only if γ is a path in G and {(f t, D t ) 0 t } is an analytic continuation along γ. 7

8 Solution to (a). Assume that (a, [f] a ), (b, [f] b ) S (G) with (a, [f] a ) (b, [f] b ). Either a b, or a = b and [f] a [f] b. If a b, choose disjoint neighborhoods D a, D b G of a and b respectively such that f is analytic on D a and g is analytic on D b. Then N(f, D a ) = {(z, [f] z ) z D a } and N(g, D b ) = {(z, [g] z ) z D b } are disjoint neighborhoods of (a, [f] a ) and (b, [f] b ) respectively. Solution to (b). First assume that Γ(t) = (γ(t), [f t ] γ(t) ), 0 t is a continuous function from [0, ] into S (G) and that D t is an open set such that γ(t) D t G and f t is analytic on D t. We wish to show γ is a path in G and {(f t, D t ) t [0, ]} is an analytic continuation along γ. Since γ = ρ Γ, that γ is a path in G follows immediately follows from the continuity of Γ and ρ. To prove that {(f t, D t ) t [0, ]} is an analytic continuation along γ, fix t [0, ]. Since Γ is continuous and N(f t, D t ) is a neighborhood of Γ(t), there exists δ > 0 such that s [0, ] and s t < δ = Γ(s) N(f t, D t ). But Γ(s) = (γ(s), [f s ] γ(s) ) and N(f t, D t ) = {(z, [f t ] z ) z D t }. Therefore, s [0, ] and s t < δ = γ(s) D t and [f s ] γ(s) = [f t ] γ(s). This proves that {(f t, D t ) t [0, ]} is an analytic continuation along γ. Conversely, assume that γ is a path in G, Γ(t) = (γ(t), [f t ] γ(t) ), 0 t is a function from [0, ] into S (G), and that {(f t, D t ) t [0, ]} is an analytic continuation along γ. We wish to show that Γ is continuous. Accordingly, fix t [0, ] and an open set Ω in S (G) such that Γ(t) Ω. By the definition of the sheaf topology, there exists an open set U in G such that Γ(t) N(f t, U) Ω. Since {(f t, D t ) t [0, ]} is an analytic continuation along γ, there exists δ > 0 such that s [0, ] and s t < δ = γ(s) D t and [f s ] γ(s) = [f t ] γ(s). Since γ is a path, there exists δ > 0 such that Therefore, if δ = min{δ, δ }, then s [0, ] and s t < δ = γ(s) U. s [0, ] and s t < δ = γ(s) D t U and [f s ] γ(s) = [f t ] γ(s). But γ(s) D t U and [f s ] γ(s) = [f t ] γ(s) imply that Γ(s) = (γ(s), [f s ] γ(s) ) {(z, [f t ] z ) z D t U} = N(f t, U) Ω. Summarizing, we have shown that if t [0, ] and Ω is a neighborhood of Γ(t) in S (G), then there exists δ > 0 such that Γ(s) Ω whenever s [0, ] and s t < δ. Therefore, Γ is continuous. 8

Complex Analysis Qual Sheet

Complex Analysis Qual Sheet Complex Analysis Qual Sheet Robert Won Tricks and traps. traps. Basically all complex analysis qualifying exams are collections of tricks and - Jim Agler Useful facts. e z = 2. sin z = n=0 3. cos z = z

More information

Part IB Complex Analysis

Part IB Complex Analysis Part IB Complex Analysis Theorems Based on lectures by I. Smith Notes taken by Dexter Chua Lent 2016 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after

More information

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5

MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5 MATH 722, COMPLEX ANALYSIS, SPRING 2009 PART 5.. The Arzela-Ascoli Theorem.. The Riemann mapping theorem Let X be a metric space, and let F be a family of continuous complex-valued functions on X. We have

More information

Part IB. Further Analysis. Year

Part IB. Further Analysis. Year Year 2004 2003 2002 2001 10 2004 2/I/4E Let τ be the topology on N consisting of the empty set and all sets X N such that N \ X is finite. Let σ be the usual topology on R, and let ρ be the topology on

More information

Qualifying Exam Complex Analysis (Math 530) January 2019

Qualifying Exam Complex Analysis (Math 530) January 2019 Qualifying Exam Complex Analysis (Math 53) January 219 1. Let D be a domain. A function f : D C is antiholomorphic if for every z D the limit f(z + h) f(z) lim h h exists. Write f(z) = f(x + iy) = u(x,

More information

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions.

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions. Complex Analysis Qualifying Examination 1 The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions 2 ANALYTIC FUNCTIONS:

More information

Complex Analysis Problems

Complex Analysis Problems Complex Analysis Problems transcribed from the originals by William J. DeMeo October 2, 2008 Contents 99 November 2 2 2 200 November 26 4 3 2006 November 3 6 4 2007 April 6 7 5 2007 November 6 8 99 NOVEMBER

More information

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II Chapter 2 Further properties of analytic functions 21 Local/Global behavior of analytic functions;

More information

MA3111S COMPLEX ANALYSIS I

MA3111S COMPLEX ANALYSIS I MA3111S COMPLEX ANALYSIS I 1. The Algebra of Complex Numbers A complex number is an expression of the form a + ib, where a and b are real numbers. a is called the real part of a + ib and b the imaginary

More information

F (z) =f(z). f(z) = a n (z z 0 ) n. F (z) = a n (z z 0 ) n

F (z) =f(z). f(z) = a n (z z 0 ) n. F (z) = a n (z z 0 ) n 6 Chapter 2. CAUCHY S THEOREM AND ITS APPLICATIONS Theorem 5.6 (Schwarz reflection principle) Suppose that f is a holomorphic function in Ω + that extends continuously to I and such that f is real-valued

More information

Chapter 6: The metric space M(G) and normal families

Chapter 6: The metric space M(G) and normal families Chapter 6: The metric space MG) and normal families Course 414, 003 04 March 9, 004 Remark 6.1 For G C open, we recall the notation MG) for the set algebra) of all meromorphic functions on G. We now consider

More information

An Introduction to Complex Analysis and Geometry John P. D Angelo, Pure and Applied Undergraduate Texts Volume 12, American Mathematical Society, 2010

An Introduction to Complex Analysis and Geometry John P. D Angelo, Pure and Applied Undergraduate Texts Volume 12, American Mathematical Society, 2010 An Introduction to Complex Analysis and Geometry John P. D Angelo, Pure and Applied Undergraduate Texts Volume 12, American Mathematical Society, 2010 John P. D Angelo, Univ. of Illinois, Urbana IL 61801.

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

Math 220A Homework 4 Solutions

Math 220A Homework 4 Solutions Math 220A Homework 4 Solutions Jim Agler 26. (# pg. 73 Conway). Prove the assertion made in Proposition 2. (pg. 68) that g is continuous. Solution. We wish to show that if g : [a, b] [c, d] C is a continuous

More information

Math 220A - Fall Final Exam Solutions

Math 220A - Fall Final Exam Solutions Math 22A - Fall 216 - Final Exam Solutions Problem 1. Let f be an entire function and let n 2. Show that there exists an entire function g with g n = f if and only if the orders of all zeroes of f are

More information

Complex Variables. Cathal Ormond

Complex Variables. Cathal Ormond Complex Variables Cathal Ormond Contents 1 Introduction 3 1.1 Definition: Polar Form.............................. 3 1.2 Definition: Length................................ 3 1.3 Definitions.....................................

More information

MATH 566 LECTURE NOTES 4: ISOLATED SINGULARITIES AND THE RESIDUE THEOREM

MATH 566 LECTURE NOTES 4: ISOLATED SINGULARITIES AND THE RESIDUE THEOREM MATH 566 LECTURE NOTES 4: ISOLATED SINGULARITIES AND THE RESIDUE THEOREM TSOGTGEREL GANTUMUR 1. Functions holomorphic on an annulus Let A = D R \D r be an annulus centered at 0 with 0 < r < R

More information

4 Uniform convergence

4 Uniform convergence 4 Uniform convergence In the last few sections we have seen several functions which have been defined via series or integrals. We now want to develop tools that will allow us to show that these functions

More information

Complex Analysis. Chapter V. Singularities V.3. The Argument Principle Proofs of Theorems. August 8, () Complex Analysis August 8, / 7

Complex Analysis. Chapter V. Singularities V.3. The Argument Principle Proofs of Theorems. August 8, () Complex Analysis August 8, / 7 Complex Analysis Chapter V. Singularities V.3. The Argument Principle Proofs of Theorems August 8, 2017 () Complex Analysis August 8, 2017 1 / 7 Table of contents 1 Theorem V.3.4. Argument Principle 2

More information

III.2. Analytic Functions

III.2. Analytic Functions III.2. Analytic Functions 1 III.2. Analytic Functions Recall. When you hear analytic function, think power series representation! Definition. If G is an open set in C and f : G C, then f is differentiable

More information

Course 214 Basic Properties of Holomorphic Functions Second Semester 2008

Course 214 Basic Properties of Holomorphic Functions Second Semester 2008 Course 214 Basic Properties of Holomorphic Functions Second Semester 2008 David R. Wilkins Copyright c David R. Wilkins 1989 2008 Contents 7 Basic Properties of Holomorphic Functions 72 7.1 Taylor s Theorem

More information

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by

Homework 27. Homework 28. Homework 29. Homework 30. Prof. Girardi, Math 703, Fall 2012 Homework: Define f : C C and u, v : R 2 R by Homework 27 Define f : C C and u, v : R 2 R by f(z) := xy where x := Re z, y := Im z u(x, y) = Re f(x + iy) v(x, y) = Im f(x + iy). Show that 1. u and v satisfies the Cauchy Riemann equations at (x, y)

More information

Solutions to practice problems for the final

Solutions to practice problems for the final Solutions to practice problems for the final Holomorphicity, Cauchy-Riemann equations, and Cauchy-Goursat theorem 1. (a) Show that there is a holomorphic function on Ω = {z z > 2} whose derivative is z

More information

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r 2. A harmonic conjugate always exists locally: if u is a harmonic function in an open set U, then for any disk D(z 0, r) U, there is f, which is analytic in D(z 0, r) and satisfies that Re f u. Since such

More information

Complex Analysis Homework 9: Solutions

Complex Analysis Homework 9: Solutions Complex Analysis Fall 2007 Homework 9: Solutions 3..4 (a) Let z C \ {ni : n Z}. Then /(n 2 + z 2 ) n /n 2 n 2 n n 2 + z 2. According to the it comparison test from calculus, the series n 2 + z 2 converges

More information

Complex Analysis. Travis Dirle. December 4, 2016

Complex Analysis. Travis Dirle. December 4, 2016 Complex Analysis 2 Complex Analysis Travis Dirle December 4, 2016 2 Contents 1 Complex Numbers and Functions 1 2 Power Series 3 3 Analytic Functions 7 4 Logarithms and Branches 13 5 Complex Integration

More information

Part IB. Complex Analysis. Year

Part IB. Complex Analysis. Year Part IB Complex Analysis Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 Paper 1, Section I 2A Complex Analysis or Complex Methods 7 (a) Show that w = log(z) is a conformal

More information

. Then g is holomorphic and bounded in U. So z 0 is a removable singularity of g. Since f(z) = w 0 + 1

. Then g is holomorphic and bounded in U. So z 0 is a removable singularity of g. Since f(z) = w 0 + 1 Now we describe the behavior of f near an isolated singularity of each kind. We will always assume that z 0 is a singularity of f, and f is holomorphic on D(z 0, r) \ {z 0 }. Theorem 4.2.. z 0 is a removable

More information

RIEMANN MAPPING THEOREM

RIEMANN MAPPING THEOREM RIEMANN MAPPING THEOREM VED V. DATAR Recall that two domains are called conformally equivalent if there exists a holomorphic bijection from one to the other. This automatically implies that there is an

More information

Notes on Complex Analysis

Notes on Complex Analysis Michael Papadimitrakis Notes on Complex Analysis Department of Mathematics University of Crete Contents The complex plane.. The complex plane...................................2 Argument and polar representation.........................

More information

COMPLEX ANALYSIS Spring 2014

COMPLEX ANALYSIS Spring 2014 COMPLEX ANALYSIS Spring 24 Homework 4 Solutions Exercise Do and hand in exercise, Chapter 3, p. 4. Solution. The exercise states: Show that if a

More information

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα Math 411, Complex Analysis Definitions, Formulas and Theorems Winter 014 Trigonometric Functions of Special Angles α, degrees α, radians sin α cos α tan α 0 0 0 1 0 30 π 6 45 π 4 1 3 1 3 1 y = sinα π 90,

More information

Math Final Exam.

Math Final Exam. Math 106 - Final Exam. This is a closed book exam. No calculators are allowed. The exam consists of 8 questions worth 100 points. Good luck! Name: Acknowledgment and acceptance of honor code: Signature:

More information

Solutions to Complex Analysis Prelims Ben Strasser

Solutions to Complex Analysis Prelims Ben Strasser Solutions to Complex Analysis Prelims Ben Strasser In preparation for the complex analysis prelim, I typed up solutions to some old exams. This document includes complete solutions to both exams in 23,

More information

ζ(u) z du du Since γ does not pass through z, f is defined and continuous on [a, b]. Furthermore, for all t such that dζ

ζ(u) z du du Since γ does not pass through z, f is defined and continuous on [a, b]. Furthermore, for all t such that dζ Lecture 6 Consequences of Cauchy s Theorem MATH-GA 45.00 Complex Variables Cauchy s Integral Formula. Index of a point with respect to a closed curve Let z C, and a piecewise differentiable closed curve

More information

The Residue Theorem. Integration Methods over Closed Curves for Functions with Singularities

The Residue Theorem. Integration Methods over Closed Curves for Functions with Singularities The Residue Theorem Integration Methods over losed urves for Functions with Singularities We have shown that if f(z) is analytic inside and on a closed curve, then f(z)dz = 0. We have also seen examples

More information

MORE CONSEQUENCES OF CAUCHY S THEOREM

MORE CONSEQUENCES OF CAUCHY S THEOREM MOE CONSEQUENCES OF CAUCHY S THEOEM Contents. The Mean Value Property and the Maximum-Modulus Principle 2. Morera s Theorem and some applications 3 3. The Schwarz eflection Principle 6 We have stated Cauchy

More information

COMPLEX ANALYSIS Notes Lent 2006

COMPLEX ANALYSIS Notes Lent 2006 Department of Pure Mathematics and Mathematical Statistics University of Cambridge COMPLEX ANALYSIS Notes Lent 2006 T. K. Carne. t.k.carne@dpmms.cam.ac.uk c Copyright. Not for distribution outside Cambridge

More information

Math 185 Fall 2015, Sample Final Exam Solutions

Math 185 Fall 2015, Sample Final Exam Solutions Math 185 Fall 2015, Sample Final Exam Solutions Nikhil Srivastava December 12, 2015 1. True or false: (a) If f is analytic in the annulus A = {z : 1 < z < 2} then there exist functions g and h such that

More information

INTRODUCTION TO REAL ANALYTIC GEOMETRY

INTRODUCTION TO REAL ANALYTIC GEOMETRY INTRODUCTION TO REAL ANALYTIC GEOMETRY KRZYSZTOF KURDYKA 1. Analytic functions in several variables 1.1. Summable families. Let (E, ) be a normed space over the field R or C, dim E

More information

Chapter 4: Open mapping theorem, removable singularities

Chapter 4: Open mapping theorem, removable singularities Chapter 4: Open mapping theorem, removable singularities Course 44, 2003 04 February 9, 2004 Theorem 4. (Laurent expansion) Let f : G C be analytic on an open G C be open that contains a nonempty annulus

More information

MATH 215A NOTES MOOR XU NOTES FROM A COURSE BY KANNAN SOUNDARARAJAN

MATH 215A NOTES MOOR XU NOTES FROM A COURSE BY KANNAN SOUNDARARAJAN MATH 25A NOTES MOOR XU NOTES FROM A COURSE BY KANNAN SOUNDARARAJAN Abstract. These notes were taken during Math 25A (Complex Analysis) taught by Kannan Soundararajan in Fall 2 at Stanford University. They

More information

MATH5685 Assignment 3

MATH5685 Assignment 3 MATH5685 Assignment 3 Due: Wednesday 3 October 1. The open unit disk is denoted D. Q1. Suppose that a n for all n. Show that (1 + a n) converges if and only if a n converges. [Hint: prove that ( N (1 +

More information

Complex Analysis Math 185A, Winter 2010 Final: Solutions

Complex Analysis Math 185A, Winter 2010 Final: Solutions Complex Analysis Math 85A, Winter 200 Final: Solutions. [25 pts] The Jacobian of two real-valued functions u(x, y), v(x, y) of (x, y) is defined by the determinant (u, v) J = (x, y) = u x u y v x v y.

More information

MATH8811: COMPLEX ANALYSIS

MATH8811: COMPLEX ANALYSIS MATH8811: COMPLEX ANALYSIS DAWEI CHEN Contents 1. Classical Topics 2 1.1. Complex numbers 2 1.2. Differentiability 2 1.3. Cauchy-Riemann Equations 3 1.4. The Riemann Sphere 4 1.5. Möbius transformations

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. Determine whether the following statements are true or false. Justify your answer (i.e., prove the claim, derive a contradiction or give a counter-example). (a) (10

More information

13 Maximum Modulus Principle

13 Maximum Modulus Principle 3 Maximum Modulus Principle Theorem 3. (maximum modulus principle). If f is non-constant and analytic on an open connected set Ω, then there is no point z 0 Ω such that f(z) f(z 0 ) for all z Ω. Remark

More information

Complex Analysis review notes for weeks 1-6

Complex Analysis review notes for weeks 1-6 Complex Analysis review notes for weeks -6 Peter Milley Semester 2, 2007 In what follows, unless stated otherwise a domain is a connected open set. Generally we do not include the boundary of the set,

More information

III. Consequences of Cauchy s Theorem

III. Consequences of Cauchy s Theorem MTH6 Complex Analysis 2009-0 Lecture Notes c Shaun Bullett 2009 III. Consequences of Cauchy s Theorem. Cauchy s formulae. Cauchy s Integral Formula Let f be holomorphic on and everywhere inside a simple

More information

Complex Variables Notes for Math 703. Updated Fall Anton R. Schep

Complex Variables Notes for Math 703. Updated Fall Anton R. Schep Complex Variables Notes for Math 703. Updated Fall 20 Anton R. Schep CHAPTER Holomorphic (or Analytic) Functions. Definitions and elementary properties In complex analysis we study functions f : S C,

More information

CONSEQUENCES OF POWER SERIES REPRESENTATION

CONSEQUENCES OF POWER SERIES REPRESENTATION CONSEQUENCES OF POWER SERIES REPRESENTATION 1. The Uniqueness Theorem Theorem 1.1 (Uniqueness). Let Ω C be a region, and consider two analytic functions f, g : Ω C. Suppose that S is a subset of Ω that

More information

The result above is known as the Riemann mapping theorem. We will prove it using basic theory of normal families. We start this lecture with that.

The result above is known as the Riemann mapping theorem. We will prove it using basic theory of normal families. We start this lecture with that. Lecture 15 The Riemann mapping theorem Variables MATH-GA 2451.1 Complex The point of this lecture is to prove that the unit disk can be mapped conformally onto any simply connected open set in the plane,

More information

Analysis Comprehensive Exam, January 2011 Instructions: Do as many problems as you can. You should attempt to answer completely some questions in both

Analysis Comprehensive Exam, January 2011 Instructions: Do as many problems as you can. You should attempt to answer completely some questions in both Analysis Comprehensive Exam, January 2011 Instructions: Do as many problems as you can. You should attempt to answer completely some questions in both real and complex analysis. You have 3 hours. Real

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x + iy, x,y

More information

Fundamental Properties of Holomorphic Functions

Fundamental Properties of Holomorphic Functions Complex Analysis Contents Chapter 1. Fundamental Properties of Holomorphic Functions 5 1. Basic definitions 5 2. Integration and Integral formulas 6 3. Some consequences of the integral formulas 8 Chapter

More information

Complex Analysis Important Concepts

Complex Analysis Important Concepts Complex Analysis Important Concepts Travis Askham April 1, 2012 Contents 1 Complex Differentiation 2 1.1 Definition and Characterization.............................. 2 1.2 Examples..........................................

More information

POWER SERIES AND ANALYTIC CONTINUATION

POWER SERIES AND ANALYTIC CONTINUATION POWER SERIES AND ANALYTIC CONTINUATION 1. Analytic functions Definition 1.1. A function f : Ω C C is complex-analytic if for each z 0 Ω there exists a power series f z0 (z) := a n (z z 0 ) n which converges

More information

MATH SPRING UC BERKELEY

MATH SPRING UC BERKELEY MATH 85 - SPRING 205 - UC BERKELEY JASON MURPHY Abstract. These are notes for Math 85 taught in the Spring of 205 at UC Berkeley. c 205 Jason Murphy - All Rights Reserved Contents. Course outline 2 2.

More information

FINAL EXAM MATH 220A, UCSD, AUTUMN 14. You have three hours.

FINAL EXAM MATH 220A, UCSD, AUTUMN 14. You have three hours. FINAL EXAM MATH 220A, UCSD, AUTUMN 4 You have three hours. Problem Points Score There are 6 problems, and the total number of points is 00. Show all your work. Please make your work as clear and easy to

More information

Riemann Mapping Theorem (4/10-4/15)

Riemann Mapping Theorem (4/10-4/15) Math 752 Spring 2015 Riemann Mapping Theorem (4/10-4/15) Definition 1. A class F of continuous functions defined on an open set G is called a normal family if every sequence of elements in F contains a

More information

= F (b) F (a) F (x i ) F (x i+1 ). a x 0 x 1 x n b i

= F (b) F (a) F (x i ) F (x i+1 ). a x 0 x 1 x n b i Real Analysis Problem 1. If F : R R is a monotone function, show that F T V ([a,b]) = F (b) F (a) for any interval [a, b], and that F has bounded variation on R if and only if it is bounded. Here F T V

More information

Complex Analysis Slide 9: Power Series

Complex Analysis Slide 9: Power Series Complex Analysis Slide 9: Power Series MA201 Mathematics III Department of Mathematics IIT Guwahati August 2015 Complex Analysis Slide 9: Power Series 1 / 37 Learning Outcome of this Lecture We learn Sequence

More information

MATH 566 LECTURE NOTES 6: NORMAL FAMILIES AND THE THEOREMS OF PICARD

MATH 566 LECTURE NOTES 6: NORMAL FAMILIES AND THE THEOREMS OF PICARD MATH 566 LECTURE NOTES 6: NORMAL FAMILIES AND THE THEOREMS OF PICARD TSOGTGEREL GANTUMUR 1. Introduction Suppose that we want to solve the equation f(z) = β where f is a nonconstant entire function and

More information

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106 Name (Last name, First name): MTH 32 Complex Variables Final Exam May, 27 3:3pm-5:3pm, Skurla Hall, Room 6 Exam Instructions: You have hour & 5 minutes to complete the exam. There are a total of problems.

More information

Introductory Complex Analysis

Introductory Complex Analysis Introductory Complex Analysis Course No. 100 312 Spring 2007 Michael Stoll Contents Acknowledgments 2 1. Basics 2 2. Complex Differentiability and Holomorphic Functions 3 3. Power Series and the Abel Limit

More information

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3 Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,

More information

Part II. Riemann Surfaces. Year

Part II. Riemann Surfaces. Year Part II Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2018 96 Paper 2, Section II 23F State the uniformisation theorem. List without proof the Riemann surfaces which are uniformised

More information

Chapter 30 MSMYP1 Further Complex Variable Theory

Chapter 30 MSMYP1 Further Complex Variable Theory Chapter 30 MSMYP Further Complex Variable Theory (30.) Multifunctions A multifunction is a function that may take many values at the same point. Clearly such functions are problematic for an analytic study,

More information

THIRD SEMESTER M. Sc. DEGREE (MATHEMATICS) EXAMINATION (CUSS PG 2010) MODEL QUESTION PAPER MT3C11: COMPLEX ANALYSIS

THIRD SEMESTER M. Sc. DEGREE (MATHEMATICS) EXAMINATION (CUSS PG 2010) MODEL QUESTION PAPER MT3C11: COMPLEX ANALYSIS THIRD SEMESTER M. Sc. DEGREE (MATHEMATICS) EXAMINATION (CUSS PG 2010) MODEL QUESTION PAPER MT3C11: COMPLEX ANALYSIS TIME:3 HOURS Maximum weightage:36 PART A (Short Answer Type Question 1-14) Answer All

More information

VII.5. The Weierstrass Factorization Theorem

VII.5. The Weierstrass Factorization Theorem VII.5. The Weierstrass Factorization Theorem 1 VII.5. The Weierstrass Factorization Theorem Note. Conway motivates this section with the following question: Given a sequence {a k } in G which has no limit

More information

4.6 Montel's Theorem. Robert Oeckl CA NOTES 7 17/11/2009 1

4.6 Montel's Theorem. Robert Oeckl CA NOTES 7 17/11/2009 1 Robert Oeckl CA NOTES 7 17/11/2009 1 4.6 Montel's Theorem Let X be a topological space. We denote by C(X) the set of complex valued continuous functions on X. Denition 4.26. A topological space is called

More information

Hartogs Theorem: separate analyticity implies joint Paul Garrett garrett/

Hartogs Theorem: separate analyticity implies joint Paul Garrett  garrett/ (February 9, 25) Hartogs Theorem: separate analyticity implies joint Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ (The present proof of this old result roughly follows the proof

More information

MASTERS EXAMINATION IN MATHEMATICS SOLUTIONS

MASTERS EXAMINATION IN MATHEMATICS SOLUTIONS MASTERS EXAMINATION IN MATHEMATICS PURE MATHEMATICS OPTION SPRING 010 SOLUTIONS Algebra A1. Let F be a finite field. Prove that F [x] contains infinitely many prime ideals. Solution: The ring F [x] of

More information

INDEX. Bolzano-Weierstrass theorem, for sequences, boundary points, bounded functions, 142 bounded sets, 42 43

INDEX. Bolzano-Weierstrass theorem, for sequences, boundary points, bounded functions, 142 bounded sets, 42 43 INDEX Abel s identity, 131 Abel s test, 131 132 Abel s theorem, 463 464 absolute convergence, 113 114 implication of conditional convergence, 114 absolute value, 7 reverse triangle inequality, 9 triangle

More information

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0

1. If 1, ω, ω 2, -----, ω 9 are the 10 th roots of unity, then (1 + ω) (1 + ω 2 ) (1 + ω 9 ) is A) 1 B) 1 C) 10 D) 0 4 INUTES. If, ω, ω, -----, ω 9 are the th roots of unity, then ( + ω) ( + ω ) ----- ( + ω 9 ) is B) D) 5. i If - i = a + ib, then a =, b = B) a =, b = a =, b = D) a =, b= 3. Find the integral values for

More information

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm

Complex Analysis, Stein and Shakarchi Meromorphic Functions and the Logarithm Complex Analysis, Stein and Shakarchi Chapter 3 Meromorphic Functions and the Logarithm Yung-Hsiang Huang 217.11.5 Exercises 1. From the identity sin πz = eiπz e iπz 2i, it s easy to show its zeros are

More information

COMPLEX ANALYSIS 1 Douglas N. Arnold 2

COMPLEX ANALYSIS 1 Douglas N. Arnold 2 COMPLEX ANALYSIS 1 Douglas N. Arnold 2 References: John B. Conway, Functions of One Complex Variable, Springer-Verlag, 1978. Lars V. Ahlfors, Complex Analysis, McGraw-Hill, 1966. Raghavan Narasimhan, Complex

More information

Exercises for Part 1

Exercises for Part 1 MATH200 Complex Analysis. Exercises for Part Exercises for Part The following exercises are provided for you to revise complex numbers. Exercise. Write the following expressions in the form x+iy, x,y R:

More information

Chapter 11. Cauchy s Integral Formula

Chapter 11. Cauchy s Integral Formula hapter 11 auchy s Integral Formula If I were founding a university I would begin with a smoking room; next a dormitory; and then a decent reading room and a library. After that, if I still had more money

More information

PICARD S THEOREM STEFAN FRIEDL

PICARD S THEOREM STEFAN FRIEDL PICARD S THEOREM STEFAN FRIEDL Abstract. We give a summary for the proof of Picard s Theorem. The proof is for the most part an excerpt of [F]. 1. Introduction Definition. Let U C be an open subset. A

More information

IV.3. Zeros of an Analytic Function

IV.3. Zeros of an Analytic Function IV.3. Zeros of an Analytic Function 1 IV.3. Zeros of an Analytic Function Note. We now explore factoring series in a way analogous to factoring a polynomial. Recall that if p is a polynomial with a zero

More information

= 2 x y 2. (1)

= 2 x y 2. (1) COMPLEX ANALYSIS PART 5: HARMONIC FUNCTIONS A Let me start by asking you a question. Suppose that f is an analytic function so that the CR-equation f/ z = 0 is satisfied. Let us write u and v for the real

More information

Chapter 6: Residue Theory. Introduction. The Residue Theorem. 6.1 The Residue Theorem. 6.2 Trigonometric Integrals Over (0, 2π) Li, Yongzhao

Chapter 6: Residue Theory. Introduction. The Residue Theorem. 6.1 The Residue Theorem. 6.2 Trigonometric Integrals Over (0, 2π) Li, Yongzhao Outline Chapter 6: Residue Theory Li, Yongzhao State Key Laboratory of Integrated Services Networks, Xidian University June 7, 2009 Introduction The Residue Theorem In the previous chapters, we have seen

More information

Complex Analysis MATH 6300 Fall 2013 Homework 4

Complex Analysis MATH 6300 Fall 2013 Homework 4 Complex Analysis MATH 6300 Fall 2013 Homework 4 Due Wednesday, December 11 at 5 PM Note that to get full credit on any problem in this class, you must solve the problems in an efficient and elegant manner,

More information

Complex Analysis Math 220C Spring 2008

Complex Analysis Math 220C Spring 2008 Complex Analysis Math 220C Spring 2008 Bernard Russo June 2, 2008 Contents 1 Monday March 31, 2008 class cancelled due to the Master s travel plans 1 2 Wednesday April 2, 2008 Course information; Riemann

More information

MATH 6322, COMPLEX ANALYSIS

MATH 6322, COMPLEX ANALYSIS Complex numbers: MATH 6322, COMPLEX ANALYSIS Motivating problem: you can write down equations which don t have solutions, like x 2 + = 0. Introduce a (formal) solution i, where i 2 =. Define the set C

More information

MATH 8150 (Azoff) Spring Notes on Problems from Conway (in reverse order of assignments) Assignment 12 (Sections 9.1 and 10.

MATH 8150 (Azoff) Spring Notes on Problems from Conway (in reverse order of assignments) Assignment 12 (Sections 9.1 and 10. MATH 85 (Azoff) Spring 2 Notes on Problems from Conway (in reverse order of assignments) Assignment 2 (Sections 9. and.) 9... Let be a non-constant simple closed rectifiable curve with the property that

More information

MASTERS EXAMINATION IN MATHEMATICS

MASTERS EXAMINATION IN MATHEMATICS MASTERS EXAMINATION IN MATHEMATICS PURE MATHEMATICS OPTION FALL 2007 Full points can be obtained for correct answers to 8 questions. Each numbered question (which may have several parts) is worth the same

More information

ANALYSIS QUALIFYING EXAM FALL 2017: SOLUTIONS. 1 cos(nx) lim. n 2 x 2. g n (x) = 1 cos(nx) n 2 x 2. x 2.

ANALYSIS QUALIFYING EXAM FALL 2017: SOLUTIONS. 1 cos(nx) lim. n 2 x 2. g n (x) = 1 cos(nx) n 2 x 2. x 2. ANALYSIS QUALIFYING EXAM FALL 27: SOLUTIONS Problem. Determine, with justification, the it cos(nx) n 2 x 2 dx. Solution. For an integer n >, define g n : (, ) R by Also define g : (, ) R by g(x) = g n

More information

MA30056: Complex Analysis. Exercise Sheet 7: Applications and Sequences of Complex Functions

MA30056: Complex Analysis. Exercise Sheet 7: Applications and Sequences of Complex Functions MA30056: Complex Analysis Exercise Sheet 7: Applications and Sequences of Complex Functions Please hand solutions in at the lecture on Monday 6th March..) Prove Gauss Fundamental Theorem of Algebra. Hint:

More information

Part IB Complex Analysis

Part IB Complex Analysis Part IB Complex Analysis Theorems with proof Based on lectures by I. Smith Notes taken by Dexter Chua Lent 206 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Lecture 1 The complex plane. z ± w z + w.

Lecture 1 The complex plane. z ± w z + w. Lecture 1 The complex plane Exercise 1.1. Show that the modulus obeys the triangle inequality z ± w z + w. This allows us to make the complex plane into a metric space, and thus to introduce topological

More information

Sample Problems for the Second Midterm Exam

Sample Problems for the Second Midterm Exam Math 3220 1. Treibergs σιι Sample Problems for the Second Midterm Exam Name: Problems With Solutions September 28. 2007 Questions 1 10 appeared in my Fall 2000 and Fall 2001 Math 3220 exams. (1) Let E

More information

MA30056: Complex Analysis. Revision: Checklist & Previous Exam Questions I

MA30056: Complex Analysis. Revision: Checklist & Previous Exam Questions I MA30056: Complex Analysis Revision: Checklist & Previous Exam Questions I Given z C and r > 0, define B r (z) and B r (z). Define what it means for a subset A C to be open/closed. If M A C, when is M said

More information

z b k P k p k (z), (z a) f (n 1) (a) 2 (n 1)! (z a)n 1 +f n (z)(z a) n, where f n (z) = 1 C

z b k P k p k (z), (z a) f (n 1) (a) 2 (n 1)! (z a)n 1 +f n (z)(z a) n, where f n (z) = 1 C . Representations of Meromorphic Functions There are two natural ways to represent a rational function. One is to express it as a quotient of two polynomials, the other is to use partial fractions. The

More information

Math 185 Homework Problems IV Solutions

Math 185 Homework Problems IV Solutions Math 185 Homework Problems IV Solutions Instructor: Andrés Caicedo July 31, 22 12 Suppose that Ω is a domain which is not simply connected Show that the polynomials are not dense in H(Ω) PROOF As mentioned

More information

Paul-Eugène Parent. March 12th, Department of Mathematics and Statistics University of Ottawa. MAT 3121: Complex Analysis I

Paul-Eugène Parent. March 12th, Department of Mathematics and Statistics University of Ottawa. MAT 3121: Complex Analysis I Paul-Eugène Parent Department of Mathematics and Statistics University of Ottawa March 12th, 2014 Outline 1 Holomorphic power Series Proposition Let f (z) = a n (z z o ) n be the holomorphic function defined

More information

WEIERSTRASS THEOREMS AND RINGS OF HOLOMORPHIC FUNCTIONS

WEIERSTRASS THEOREMS AND RINGS OF HOLOMORPHIC FUNCTIONS WEIERSTRASS THEOREMS AND RINGS OF HOLOMORPHIC FUNCTIONS YIFEI ZHAO Contents. The Weierstrass factorization theorem 2. The Weierstrass preparation theorem 6 3. The Weierstrass division theorem 8 References

More information

COMPACTNESS AND UNIFORMITY

COMPACTNESS AND UNIFORMITY COMPACTNESS AND UNIFORMITY. The Extreme Value Theorem Because the continuous image of a compact set is compact, a continuous complexvalued function ϕ on a closed ball B is bounded, meaning that there exists

More information

A RAPID INTRODUCTION TO COMPLEX ANALYSIS

A RAPID INTRODUCTION TO COMPLEX ANALYSIS A RAPID INTRODUCTION TO COMPLEX ANALYSIS AKHIL MATHEW ABSTRACT. These notes give a rapid introduction to some of the basic results in complex analysis, assuming familiarity from the reader with Stokes

More information