4130 HOMEWORK 4. , a 2

Size: px
Start display at page:

Download "4130 HOMEWORK 4. , a 2"

Transcription

1 4130 HOMEWORK 4 Due Tuesday March 2 (1) Let N N denote the set of all sequences of natural numbers. That is, N N = {(a 1, a 2, a 3,...) : a i N}. Show that N N = P(N). We use the Schröder-Bernstein Theorem. First, there is an injection from P(N) to N N, because we may regard a subset of N as a sequence of zeroes and ones, or equivalently as a sequence of 1 s and 2 s, and this gives the desired injection. The hard part is showing that there is an injection N N P(N). To see this, note that a sequence of natural numbers is the same thing as a function N N. But by definition, a function is a special kind of subset of N N. In this way, we get an injection N N P(N N). But it was shown in class that N N and N have the same cardinality, and hence so do their power sets. In this way, we get the desired injection N N P(N). Working through the above proof, we can explicitly write down an injection if we like. An example is: (a 1, a 2,...) {2 3 a 1, a 2,...} N. (2) Let {x n } be a Cauchy sequence of rational numbers. Regarding {x n } as a sequence of real numbers, show that {x n } converges to the real number x defined as the equivalence class of the sequence {x n }. The hardest part of this is working out what to prove in the first place. Let ε > 0 be a real number. Choose A N with 3/2A < ε. Since {x n } is a Cauchy sequence of rational numbers, there exists N N such that if m, n > N then x n x m < 1/A. In other words, if m, n > N then 1/A < x m x n < 1/A. Now fix some m > N and consider the sequence of rational numbers {y n } where y n = x m x n 1

2 for n 1. We have chosen N so that if n > N then 1/A < y n < 1/A. This implies that for n > N, we have and y n + 3/2A > 1/2A 3/2A y n > 1/2A. The first inequality is the statement that the real number defined as the equivalence class of the Cauchy sequence {y n + 3/2A} is positive. (Ex: why is this sequence Cauchy?) If we let y = [{y n }], then we have an inequality in the real numbers Similarly, the other inequality gives y + 3/2A > 0. 3/2A y > 0. Putting these together, we have, for n > N, 3/2A < y < 3/2A. But y = [{x m x n } n 1 ] = [{x m, x m,...}] [{x 1, x 2,...}] which is the real number x m x, by definition of how the rationals are embedded in the reals. Thus, we have and hence 3/2A < x m x < 3/2A x m x < 3/2A < ε. This holds for any given m > N. So we have shown that for all ε > 0 we can find N N such that if m > N then x m x < ε, as required. (3) Section # 4. Let x R be the equivalence class of the Cauchy sequence {x n } where x i Q. We construct a sequence q n of rational numbers which is increasing and converges to x. To start with, take q 1 Q with x > q 1 > x 1. Now suppose we have constructed q 1,..., q n 1 with q n 1 < x. Let q n be a rational number with x > q n > max{q n 1, x 1/n}. Then the sequence {q n } is increasing and q n < x for all n. Also, 2

3 q n > x 1/n, so x q n = x q n < 1/n, and thus {q n } x. In particular, {q n } is Cauchy. We now have an increasing Cauchy sequence of rational numbers {q n }, and it remains to show that this sequence is equivalent to {x n }. For this, let ε > 0. Choose N 1 N such that if n > N 1 then x q n < ε/2. By the previous problem, we can choose N 2 N such that if n > N 2 then x x n < ε/2. Now if n > max{n 1, N 2 } then x n q n x n x + x q n < ε, which shows that the sequences {x n } and {q n } are equivalent sequences of rationals. (4) Show that every subset S of R which is bounded below has a greatest lower bound. (Hint: see p. 75 of the textbook.) Let S be a subset of R which is bounded below. Let S = { x : x S}. Then S is bounded above, so it has a least upper bound s := sup( S). We claim that s is the greatest lower bound of S. First, s is a lower bound because if x S then x s and so x s. Also, if b is any other lower bound for S, then b is an upper bound for S, and so b s, whence b s and so s is the greatest lower bound, as required. (5) Find, if they exist, the supremum (least upper bound) and infimum (greatest lower bound) of the following subsets of R. (a) {1, 2, 3}. Sup = 3, inf = 1. (b) (0, 1) {2} [3, 4) = {x R : 0 < x < 1 or x = 2 or 3 x < 4}. Sup = 4, inf = 0. (c) {1 1 n : n N}. (d) Q. The set is {0, 1/2, 2/3,...}. The supremum is 1 and the infimum is the smallest element, which is 0. This set is not bounded above or below, and so it does not have a finite sup or inf. (6) Prove Theorem in the textbook. 3

4 Let {x n } and {y n } be sequences of real numbers. (a) Suppose {x k } x and {y k } y. We must show that {x k + y k } x + y. Let ε > 0. Then there exists N 1 N such that if k > N 1 then x k x < ε/2. There also exists N 2 such that if k > N 2 then y k y < ε/2. Now suppose k > max{n 1, N 2 }. Then (x k + y k ) (x + y) x k x + y k y < ε. Next, we need to show that {x k y k } xy. convergent sequence of real numbers is bounded. We have x k x k x + x. To do this, we first show that a Taking ε = 1, we know that there exists N such that if k > N then x k x < 1. Therefore, if k > N then x k < 1 + x. It follows that for all k, x k B where B = max{ x 1, x 2,..., x N, 1 + x }. Thus, every convergent sequence of real numbers is bounded. Now we show that {x k y k } xy. Let ε > 0 and choose B such that x k B for all k and y B. Choose N 1 such that if k > N 1 then x k x < ε/2b. Choose N 2 such that if n > N 2 then y k y < ε/2b. Then if N > max{n 1, N 2 } then x k y k xy = x k (y k y) + y(x k x) x k y k y + y x k x < ε. Next, suppose y 0. Then for all ε > 0 there exists N N such that if n > N then y n y < ε. So y n (y ε, y + ε). If y > 0 then y ε > 0 for some ε > 0. If y < 0 then y + ε < 0 for some ε > 0. In either case, we have y n 0 for sufficiently large n, as desired. We show that {1/y k } 1/y. As stated in the book, we may as well assume that y k 0 for all k; otherwise we can neglect the terms with y k = 0. By convergence of {y n }, there exists N N such that if n > N then Then if n > N, we have y n y < y /2. y n y y y n > y y /2 = y /2. 4

5 Therefore, 1 1 y n y = y n y 2 y n y y y 2 n y, for n > N. Let ε > 0. Choose N 2 such that if n > N 2 then y n y < ε y 2 /2. Then for n > max{n, N 2 }, we get as required. 1 y n 1 y < ε Now the statement that {x k /y k } x/y follows from writing x k /y k = x k (1/y k ). (b) Suppose there is m N such that x k y k for k > m. Suppose for a contradiction that x < y. Then let 0 < ε < (y x)/2. There exists N 1 N such that if n > N 1 then x n x < ε and there exists N 2 N such that if n > N 2 then y n y < ε. Therefore, if n > max{n 1, N 2, m} then x n < x + ε < x + (y x)/2 = (x + y)/2 = y (y x)/2 < y ε < y n which contradicts x n y n. 5

Structure of R. Chapter Algebraic and Order Properties of R

Structure of R. Chapter Algebraic and Order Properties of R Chapter Structure of R We will re-assemble calculus by first making assumptions about the real numbers. All subsequent results will be rigorously derived from these assumptions. Most of the assumptions

More information

Due date: Monday, February 6, 2017.

Due date: Monday, February 6, 2017. Modern Analysis Homework 3 Solutions Due date: Monday, February 6, 2017. 1. If A R define A = {x R : x A}. Let A be a nonempty set of real numbers, assume A is bounded above. Prove that A is bounded below

More information

2.2 Some Consequences of the Completeness Axiom

2.2 Some Consequences of the Completeness Axiom 60 CHAPTER 2. IMPORTANT PROPERTIES OF R 2.2 Some Consequences of the Completeness Axiom In this section, we use the fact that R is complete to establish some important results. First, we will prove that

More information

Homework 1 (revised) Solutions

Homework 1 (revised) Solutions Homework 1 (revised) Solutions 1. Textbook, 1.1.1, # 1.1.2 (p. 24) Let S be an ordered set. Let A be a non-empty finite subset. Then A is bounded and sup A, inf A A Solution. The hint was: Use induction,

More information

MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #7

MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #7 MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #7 Real Number Summary of terminology and theorems: Definition: (Supremum & infimum) A supremum (or least upper bound) of a non-empty

More information

Sequences. Limits of Sequences. Definition. A real-valued sequence s is any function s : N R.

Sequences. Limits of Sequences. Definition. A real-valued sequence s is any function s : N R. Sequences Limits of Sequences. Definition. A real-valued sequence s is any function s : N R. Usually, instead of using the notation s(n), we write s n for the value of this function calculated at n. We

More information

Homework 1 Solutions

Homework 1 Solutions MATH 171 Spring 2016 Problem 1 Homework 1 Solutions (If you find any errors, please send an e-mail to farana at stanford dot edu) Presenting your arguments in steps, using only axioms of an ordered field,

More information

Principles of Real Analysis I Fall I. The Real Number System

Principles of Real Analysis I Fall I. The Real Number System 21-355 Principles of Real Analysis I Fall 2004 I. The Real Number System The main goal of this course is to develop the theory of real-valued functions of one real variable in a systematic and rigorous

More information

1 The Real Number System

1 The Real Number System 1 The Real Number System The rational numbers are beautiful, but are not big enough for various purposes, and the set R of real numbers was constructed in the late nineteenth century, as a kind of an envelope

More information

Selected solutions for Homework 9

Selected solutions for Homework 9 Math 424 B / 574 B Due Wednesday, Dec 09 Autumn 2015 Selected solutions for Homework 9 This file includes solutions only to those problems we did not have time to cover in class. We need the following

More information

Scalar multiplication and addition of sequences 9

Scalar multiplication and addition of sequences 9 8 Sequences 1.2.7. Proposition. Every subsequence of a convergent sequence (a n ) n N converges to lim n a n. Proof. If (a nk ) k N is a subsequence of (a n ) n N, then n k k for every k. Hence if ε >

More information

2.4 The Extreme Value Theorem and Some of its Consequences

2.4 The Extreme Value Theorem and Some of its Consequences 2.4 The Extreme Value Theorem and Some of its Consequences The Extreme Value Theorem deals with the question of when we can be sure that for a given function f, (1) the values f (x) don t get too big or

More information

Solution of the 7 th Homework

Solution of the 7 th Homework Solution of the 7 th Homework Sangchul Lee December 3, 2014 1 Preliminary In this section we deal with some facts that are relevant to our problems but can be coped with only previous materials. 1.1 Maximum

More information

HOMEWORK ASSIGNMENT 6

HOMEWORK ASSIGNMENT 6 HOMEWORK ASSIGNMENT 6 DUE 15 MARCH, 2016 1) Suppose f, g : A R are uniformly continuous on A. Show that f + g is uniformly continuous on A. Solution First we note: In order to show that f + g is uniformly

More information

Problem List MATH 5143 Fall, 2013

Problem List MATH 5143 Fall, 2013 Problem List MATH 5143 Fall, 2013 On any problem you may use the result of any previous problem (even if you were not able to do it) and any information given in class up to the moment the problem was

More information

Maths 212: Homework Solutions

Maths 212: Homework Solutions Maths 212: Homework Solutions 1. The definition of A ensures that x π for all x A, so π is an upper bound of A. To show it is the least upper bound, suppose x < π and consider two cases. If x < 1, then

More information

Economics 204 Summer/Fall 2011 Lecture 2 Tuesday July 26, 2011 N Now, on the main diagonal, change all the 0s to 1s and vice versa:

Economics 204 Summer/Fall 2011 Lecture 2 Tuesday July 26, 2011 N Now, on the main diagonal, change all the 0s to 1s and vice versa: Economics 04 Summer/Fall 011 Lecture Tuesday July 6, 011 Section 1.4. Cardinality (cont.) Theorem 1 (Cantor) N, the set of all subsets of N, is not countable. Proof: Suppose N is countable. Then there

More information

MATH 117 LECTURE NOTES

MATH 117 LECTURE NOTES MATH 117 LECTURE NOTES XIN ZHOU Abstract. This is the set of lecture notes for Math 117 during Fall quarter of 2017 at UC Santa Barbara. The lectures follow closely the textbook [1]. Contents 1. The set

More information

Consequences of the Completeness Property

Consequences of the Completeness Property Consequences of the Completeness Property Philippe B. Laval KSU Today Philippe B. Laval (KSU) Consequences of the Completeness Property Today 1 / 10 Introduction In this section, we use the fact that R

More information

Fall TMA4145 Linear Methods. Exercise set 10

Fall TMA4145 Linear Methods. Exercise set 10 Norwegian University of Science and Technology Department of Mathematical Sciences TMA445 Linear Methods Fall 207 Exercise set 0 Please justify your answers! The most important part is how you arrive at

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #1. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #1. Solutions Math 501 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 015 EXERCISES FROM CHAPTER 1 Homework #1 Solutions The following version of the

More information

Studying Rudin s Principles of Mathematical Analysis Through Questions. August 4, 2008

Studying Rudin s Principles of Mathematical Analysis Through Questions. August 4, 2008 Studying Rudin s Principles of Mathematical Analysis Through Questions Mesut B. Çakır c August 4, 2008 ii Contents 1 The Real and Complex Number Systems 3 1.1 Introduction............................................

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter The Real Numbers.. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {, 2, 3, }. In N we can do addition, but in order to do subtraction we need to extend

More information

Assignment-10. (Due 11/21) Solution: Any continuous function on a compact set is uniformly continuous.

Assignment-10. (Due 11/21) Solution: Any continuous function on a compact set is uniformly continuous. Assignment-1 (Due 11/21) 1. Consider the sequence of functions f n (x) = x n on [, 1]. (a) Show that each function f n is uniformly continuous on [, 1]. Solution: Any continuous function on a compact set

More information

Homework for MAT 603 with Pugh s Real Mathematical Analysis. Damien Pitman

Homework for MAT 603 with Pugh s Real Mathematical Analysis. Damien Pitman Homework for MAT 603 with Pugh s Real Mathematical Analysis Damien Pitman CHAPTER 1 Real Numbers 1. Preliminaries (1) In what sense is Euclid s method of reasoning superior to Aristotle s? (2) What role

More information

1 Definition of the Riemann integral

1 Definition of the Riemann integral MAT337H1, Introduction to Real Analysis: notes on Riemann integration 1 Definition of the Riemann integral Definition 1.1. Let [a, b] R be a closed interval. A partition P of [a, b] is a finite set of

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Econ Lecture 2. Outline

Econ Lecture 2. Outline Econ 204 2010 Lecture 2 Outline 1. Cardinality (cont.) 2. Algebraic Structures: Fields and Vector Spaces 3. Axioms for R 4. Sup, Inf, and the Supremum Property 5. Intermediate Value Theorem 1 Cardinality

More information

Solutions, Project on p-adic Numbers, Real Analysis I, Fall, 2010.

Solutions, Project on p-adic Numbers, Real Analysis I, Fall, 2010. Solutions, Project on p-adic Numbers, Real Analysis I, Fall, 2010. (24) The p-adic numbers. Let p {2, 3, 5, 7, 11,... } be a prime number. (a) For x Q, define { 0 for x = 0, x p = p n for x = p n (a/b),

More information

Lecture 2. Econ August 11

Lecture 2. Econ August 11 Lecture 2 Econ 2001 2015 August 11 Lecture 2 Outline 1 Fields 2 Vector Spaces 3 Real Numbers 4 Sup and Inf, Max and Min 5 Intermediate Value Theorem Announcements: - Friday s exam will be at 3pm, in WWPH

More information

5.5 Deeper Properties of Continuous Functions

5.5 Deeper Properties of Continuous Functions 5.5. DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 195 5.5 Deeper Properties of Continuous Functions 5.5.1 Intermediate Value Theorem and Consequences When one studies a function, one is usually interested

More information

MAS221 Analysis Semester Chapter 2 problems

MAS221 Analysis Semester Chapter 2 problems MAS221 Analysis Semester 1 2018-19 Chapter 2 problems 20. Consider the sequence (a n ), with general term a n = 1 + 3. Can you n guess the limit l of this sequence? (a) Verify that your guess is plausible

More information

Chapter One. The Real Number System

Chapter One. The Real Number System Chapter One. The Real Number System We shall give a quick introduction to the real number system. It is imperative that we know how the set of real numbers behaves in the way that its completeness and

More information

A lower bound for X is an element z F such that

A lower bound for X is an element z F such that Math 316, Intro to Analysis Completeness. Definition 1 (Upper bounds). Let F be an ordered field. For a subset X F an upper bound for X is an element y F such that A lower bound for X is an element z F

More information

Midterm 1. Every element of the set of functions is continuous

Midterm 1. Every element of the set of functions is continuous Econ 200 Mathematics for Economists Midterm Question.- Consider the set of functions F C(0, ) dened by { } F = f C(0, ) f(x) = ax b, a A R and b B R That is, F is a subset of the set of continuous functions

More information

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals

MATH 102 INTRODUCTION TO MATHEMATICAL ANALYSIS. 1. Some Fundamentals MATH 02 INTRODUCTION TO MATHEMATICAL ANALYSIS Properties of Real Numbers Some Fundamentals The whole course will be based entirely on the study of sequence of numbers and functions defined on the real

More information

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a

Thus, X is connected by Problem 4. Case 3: X = (a, b]. This case is analogous to Case 2. Case 4: X = (a, b). Choose ε < b a Solutions to Homework #6 1. Complete the proof of the backwards direction of Theorem 12.2 from class (which asserts the any interval in R is connected). Solution: Let X R be a closed interval. Case 1:

More information

Postulate 2 [Order Axioms] in WRW the usual rules for inequalities

Postulate 2 [Order Axioms] in WRW the usual rules for inequalities Number Systems N 1,2,3,... the positive integers Z 3, 2, 1,0,1,2,3,... the integers Q p q : p,q Z with q 0 the rational numbers R {numbers expressible by finite or unending decimal expansions} makes sense

More information

Set, functions and Euclidean space. Seungjin Han

Set, functions and Euclidean space. Seungjin Han Set, functions and Euclidean space Seungjin Han September, 2018 1 Some Basics LOGIC A is necessary for B : If B holds, then A holds. B A A B is the contraposition of B A. A is sufficient for B: If A holds,

More information

Introduction to Mathematical Analysis I. Second Edition. Beatriz Lafferriere Gerardo Lafferriere Nguyen Mau Nam

Introduction to Mathematical Analysis I. Second Edition. Beatriz Lafferriere Gerardo Lafferriere Nguyen Mau Nam Introduction to Mathematical Analysis I Second Edition Beatriz Lafferriere Gerardo Lafferriere Nguyen Mau Nam Introduction to Mathematical Analysis I Second Edition Beatriz Lafferriere Gerardo Lafferriere

More information

MATH 131A: REAL ANALYSIS

MATH 131A: REAL ANALYSIS MATH 131A: REAL ANALYSIS NICKOLAS ANDERSEN The textbook for the course is Ross, Elementary Analysis [2], but in these notes I have also borrowed from Tao, Analysis I [3], and Abbott, Understanding Analysis

More information

Essential Background for Real Analysis I (MATH 5210)

Essential Background for Real Analysis I (MATH 5210) Background Material 1 Essential Background for Real Analysis I (MATH 5210) Note. These notes contain several definitions, theorems, and examples from Analysis I (MATH 4217/5217) which you must know for

More information

MA 1124 Solutions 14 th May 2012

MA 1124 Solutions 14 th May 2012 MA 1124 Solutions 14 th May 2012 1 (a) Use True/False Tables to prove (i) P = Q Q = P The definition of P = Q is given by P Q P = Q T T T T F F F T T F F T So Q P Q = P F F T T F F F T T T T T Since the

More information

Some Background Material

Some Background Material Chapter 1 Some Background Material In the first chapter, we present a quick review of elementary - but important - material as a way of dipping our toes in the water. This chapter also introduces important

More information

Math LM (24543) Lectures 01

Math LM (24543) Lectures 01 Math 32300 LM (24543) Lectures 01 Ethan Akin Office: NAC 6/287 Phone: 650-5136 Email: ethanakin@earthlink.net Spring, 2018 Contents Introduction, Ross Chapter 1 and Appendix The Natural Numbers N and The

More information

In N we can do addition, but in order to do subtraction we need to extend N to the integers

In N we can do addition, but in order to do subtraction we need to extend N to the integers Chapter 1 The Real Numbers 1.1. Some Preliminaries Discussion: The Irrationality of 2. We begin with the natural numbers N = {1, 2, 3, }. In N we can do addition, but in order to do subtraction we need

More information

Economics 204. Lecture 2, July 28, 2009

Economics 204. Lecture 2, July 28, 2009 Economics 04 Lecture, July 8, 009 Section 14, Cardinality (Cont) Theorem 1 (Cantor) N, the set of all subsets of N, isnot countable Proof: Suppose N is countable Then there is a bijection f : N N Let A

More information

THE REAL NUMBERS Chapter #4

THE REAL NUMBERS Chapter #4 FOUNDATIONS OF ANALYSIS FALL 2008 TRUE/FALSE QUESTIONS THE REAL NUMBERS Chapter #4 (1) Every element in a field has a multiplicative inverse. (2) In a field the additive inverse of 1 is 0. (3) In a field

More information

Upper and Lower Bounds

Upper and Lower Bounds James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University August 30, 2017 Outline 1 2 s 3 Basic Results 4 Homework Let S be a set of real numbers. We

More information

6.2 Deeper Properties of Continuous Functions

6.2 Deeper Properties of Continuous Functions 6.2. DEEPER PROPERTIES OF CONTINUOUS FUNCTIONS 69 6.2 Deeper Properties of Continuous Functions 6.2. Intermediate Value Theorem and Consequences When one studies a function, one is usually interested in

More information

M17 MAT25-21 HOMEWORK 6

M17 MAT25-21 HOMEWORK 6 M17 MAT25-21 HOMEWORK 6 DUE 10:00AM WEDNESDAY SEPTEMBER 13TH 1. To Hand In Double Series. The exercises in this section will guide you to complete the proof of the following theorem: Theorem 1: Absolute

More information

Real Analysis - Notes and After Notes Fall 2008

Real Analysis - Notes and After Notes Fall 2008 Real Analysis - Notes and After Notes Fall 2008 October 29, 2008 1 Introduction into proof August 20, 2008 First we will go through some simple proofs to learn how one writes a rigorous proof. Let start

More information

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9 MAT 570 REAL ANALYSIS LECTURE NOTES PROFESSOR: JOHN QUIGG SEMESTER: FALL 204 Contents. Sets 2 2. Functions 5 3. Countability 7 4. Axiom of choice 8 5. Equivalence relations 9 6. Real numbers 9 7. Extended

More information

Mathematics 220 Workshop Cardinality. Some harder problems on cardinality.

Mathematics 220 Workshop Cardinality. Some harder problems on cardinality. Some harder problems on cardinality. These are two series of problems with specific goals: the first goal is to prove that the cardinality of the set of irrational numbers is continuum, and the second

More information

The Real Number System

The Real Number System MATH 337 The Real Number System Sets of Numbers Dr. Neal, WKU A set S is a well-defined collection of objects, with well-defined meaning that there is a specific description from which we can tell precisely

More information

A lower bound for X is an element z F such that

A lower bound for X is an element z F such that Math 316, Intro to Analysis Completeness. Definition 1 (Upper bounds). Let F be an ordered field. For a subset X F an upper bound for X is an element y F such that A lower bound for X is an element z F

More information

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall. .1 Limits of Sequences. CHAPTER.1.0. a) True. If converges, then there is an M > 0 such that M. Choose by Archimedes an N N such that N > M/ε. Then n N implies /n M/n M/N < ε. b) False. = n does not converge,

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

Metric Space Topology (Spring 2016) Selected Homework Solutions. HW1 Q1.2. Suppose that d is a metric on a set X. Prove that the inequality d(x, y)

Metric Space Topology (Spring 2016) Selected Homework Solutions. HW1 Q1.2. Suppose that d is a metric on a set X. Prove that the inequality d(x, y) Metric Space Topology (Spring 2016) Selected Homework Solutions HW1 Q1.2. Suppose that d is a metric on a set X. Prove that the inequality d(x, y) d(z, w) d(x, z) + d(y, w) holds for all w, x, y, z X.

More information

Sequences. We know that the functions can be defined on any subsets of R. As the set of positive integers

Sequences. We know that the functions can be defined on any subsets of R. As the set of positive integers Sequences We know that the functions can be defined on any subsets of R. As the set of positive integers Z + is a subset of R, we can define a function on it in the following manner. f: Z + R f(n) = a

More information

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA address:

Topology. Xiaolong Han. Department of Mathematics, California State University, Northridge, CA 91330, USA  address: Topology Xiaolong Han Department of Mathematics, California State University, Northridge, CA 91330, USA E-mail address: Xiaolong.Han@csun.edu Remark. You are entitled to a reward of 1 point toward a homework

More information

Principle of Mathematical Induction

Principle of Mathematical Induction Advanced Calculus I. Math 451, Fall 2016, Prof. Vershynin Principle of Mathematical Induction 1. Prove that 1 + 2 + + n = 1 n(n + 1) for all n N. 2 2. Prove that 1 2 + 2 2 + + n 2 = 1 n(n + 1)(2n + 1)

More information

Advanced Calculus: MATH 410 Real Numbers Professor David Levermore 5 December 2010

Advanced Calculus: MATH 410 Real Numbers Professor David Levermore 5 December 2010 Advanced Calculus: MATH 410 Real Numbers Professor David Levermore 5 December 2010 1. Real Number System 1.1. Introduction. Numbers are at the heart of mathematics. By now you must be fairly familiar with

More information

Real Variables: Solutions to Homework 3

Real Variables: Solutions to Homework 3 Real Variables: Solutions to Homework 3 September 3, 011 Exercise 0.1. Chapter 3, # : Show that the cantor set C consists of all x such that x has some triadic expansion for which every is either 0 or.

More information

Homework for MATH 4603 (Advanced Calculus I) Fall Homework 13: Due on Tuesday 15 December. Homework 12: Due on Tuesday 8 December

Homework for MATH 4603 (Advanced Calculus I) Fall Homework 13: Due on Tuesday 15 December. Homework 12: Due on Tuesday 8 December Homework for MATH 4603 (Advanced Calculus I) Fall 2015 Homework 13: Due on Tuesday 15 December 49. Let D R, f : D R and S D. Let a S (acc S). Assume that f is differentiable at a. Let g := f S. Show that

More information

Describing the Real Numbers

Describing the Real Numbers Describing the Real Numbers Anthony Várilly Math 25a, Fall 2001 1 Introduction The goal of these notes is to uniquely describe the real numbers by taking certain statements as axioms. This exercise might

More information

xy xyy 1 = ey 1 = y 1 i.e.

xy xyy 1 = ey 1 = y 1 i.e. Homework 2 solutions. Problem 4.4. Let g be an element of the group G. Keep g fixed and let x vary through G. Prove that the products gx are all distinct and fill out G. Do the same for the products xg.

More information

Problem Set 2: Solutions Math 201A: Fall 2016

Problem Set 2: Solutions Math 201A: Fall 2016 Problem Set 2: s Math 201A: Fall 2016 Problem 1. (a) Prove that a closed subset of a complete metric space is complete. (b) Prove that a closed subset of a compact metric space is compact. (c) Prove that

More information

Intertibility and spectrum of the multiplication operator on the space of square-summable sequences

Intertibility and spectrum of the multiplication operator on the space of square-summable sequences Intertibility and spectrum of the multiplication operator on the space of square-summable sequences Objectives Establish an invertibility criterion and calculate the spectrum of the multiplication operator

More information

3.1 Basic properties of real numbers - continuation Inmum and supremum of a set of real numbers

3.1 Basic properties of real numbers - continuation Inmum and supremum of a set of real numbers Chapter 3 Real numbers The notion of real number was introduced in section 1.3 where the axiomatic denition of the set of all real numbers was done and some basic properties of the set of all real numbers

More information

Lecture Notes in Real Analysis Anant R. Shastri Department of Mathematics Indian Institute of Technology Bombay

Lecture Notes in Real Analysis Anant R. Shastri Department of Mathematics Indian Institute of Technology Bombay Lecture Notes in Real Analysis 2010 Anant R. Shastri Department of Mathematics Indian Institute of Technology Bombay August 6, 2010 Lectures 1-3 (I-week) Lecture 1 Why real numbers? Example 1 Gaps in the

More information

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers

Theorems. Theorem 1.11: Greatest-Lower-Bound Property. Theorem 1.20: The Archimedean property of. Theorem 1.21: -th Root of Real Numbers Page 1 Theorems Wednesday, May 9, 2018 12:53 AM Theorem 1.11: Greatest-Lower-Bound Property Suppose is an ordered set with the least-upper-bound property Suppose, and is bounded below be the set of lower

More information

Continuity. Chapter 4

Continuity. Chapter 4 Chapter 4 Continuity Throughout this chapter D is a nonempty subset of the real numbers. We recall the definition of a function. Definition 4.1. A function from D into R, denoted f : D R, is a subset of

More information

Math 61CM - Solutions to homework 6

Math 61CM - Solutions to homework 6 Math 61CM - Solutions to homework 6 Cédric De Groote November 5 th, 2018 Problem 1: (i) Give an example of a metric space X such that not all Cauchy sequences in X are convergent. (ii) Let X be a metric

More information

Chapter 1. Sets and Numbers

Chapter 1. Sets and Numbers Chapter 1. Sets and Numbers 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

Characterisation of Accumulation Points. Convergence in Metric Spaces. Characterisation of Closed Sets. Characterisation of Closed Sets

Characterisation of Accumulation Points. Convergence in Metric Spaces. Characterisation of Closed Sets. Characterisation of Closed Sets Convergence in Metric Spaces Functional Analysis Lecture 3: Convergence and Continuity in Metric Spaces Bengt Ove Turesson September 4, 2016 Suppose that (X, d) is a metric space. A sequence (x n ) X is

More information

Math 220A Complex Analysis Solutions to Homework #2 Prof: Lei Ni TA: Kevin McGown

Math 220A Complex Analysis Solutions to Homework #2 Prof: Lei Ni TA: Kevin McGown Math 220A Complex Analysis Solutions to Homework #2 Prof: Lei Ni TA: Kevin McGown Conway, Page 14, Problem 11. Parts of what follows are adapted from the text Modular Functions and Dirichlet Series in

More information

FINAL EXAM Math 25 Temple-F06

FINAL EXAM Math 25 Temple-F06 FINAL EXAM Math 25 Temple-F06 Write solutions on the paper provided. Put your name on this exam sheet, and staple it to the front of your finished exam. Do Not Write On This Exam Sheet. Problem 1. (Short

More information

In last semester, we have seen some examples about it (See Tutorial Note #13). Try to have a look on that. Here we try to show more technique.

In last semester, we have seen some examples about it (See Tutorial Note #13). Try to have a look on that. Here we try to show more technique. MATH202 Introduction to Analysis (2007 Fall and 2008 Spring) Tutorial Note #4 Part I: Cauchy Sequence Definition (Cauchy Sequence): A sequence of real number { n } is Cauchy if and only if for any ε >

More information

Section 2.5 : The Completeness Axiom in R

Section 2.5 : The Completeness Axiom in R Section 2.5 : The Completeness Axiom in R The rational numbers and real numbers are closely related. The set Q of rational numbers is countable and the set R of real numbers is not, and in this sense there

More information

Topics in Logic, Set Theory and Computability

Topics in Logic, Set Theory and Computability Topics in Logic, Set Theory and Computability Homework Set #3 Due Friday 4/6 at 3pm (by email or in person at 08-3234) Exercises from Handouts 7-C-2 7-E-6 7-E-7(a) 8-A-4 8-A-9(a) 8-B-2 8-C-2(a,b,c) 8-D-4(a)

More information

That is, there is an element

That is, there is an element Section 3.1: Mathematical Induction Let N denote the set of natural numbers (positive integers). N = {1, 2, 3, 4, } Axiom: If S is a nonempty subset of N, then S has a least element. That is, there is

More information

Math 410 Homework 6 Due Monday, October 26

Math 410 Homework 6 Due Monday, October 26 Math 40 Homework 6 Due Monday, October 26. Let c be any constant and assume that lim s n = s and lim t n = t. Prove that: a) lim c s n = c s We talked about these in class: We want to show that for all

More information

A LITTLE REAL ANALYSIS AND TOPOLOGY

A LITTLE REAL ANALYSIS AND TOPOLOGY A LITTLE REAL ANALYSIS AND TOPOLOGY 1. NOTATION Before we begin some notational definitions are useful. (1) Z = {, 3, 2, 1, 0, 1, 2, 3, }is the set of integers. (2) Q = { a b : aεz, bεz {0}} is the set

More information

Midterm Review Math 311, Spring 2016

Midterm Review Math 311, Spring 2016 Midterm Review Math 3, Spring 206 Material Review Preliminaries and Chapter Chapter 2. Set theory (DeMorgan s laws, infinite collections of sets, nested sets, cardinality) 2. Functions (image, preimage,

More information

1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty.

1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty. 1. Supremum and Infimum Remark: In this sections, all the subsets of R are assumed to be nonempty. Let E be a subset of R. We say that E is bounded above if there exists a real number U such that x U for

More information

Seunghee Ye Ma 8: Week 2 Oct 6

Seunghee Ye Ma 8: Week 2 Oct 6 Week 2 Summary This week, we will learn about sequences and real numbers. We first define what we mean by a sequence and discuss several properties of sequences. Then, we will talk about what it means

More information

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges.

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges. 2..2(a) lim a n = 0. Homework 4, 5, 6 Solutions Proof. Let ɛ > 0. Then for n n = 2+ 2ɛ we have 2n 3 4+ ɛ 3 > ɛ > 0, so 0 < 2n 3 < ɛ, and thus a n 0 = 2n 3 < ɛ. 2..2(g) lim ( n + n) = 0. Proof. Let ɛ >

More information

a) Let x,y be Cauchy sequences in some metric space. Define d(x, y) = lim n d (x n, y n ). Show that this function is well-defined.

a) Let x,y be Cauchy sequences in some metric space. Define d(x, y) = lim n d (x n, y n ). Show that this function is well-defined. Problem 3) Remark: for this problem, if I write the notation lim x n, it should always be assumed that I mean lim n x n, and similarly if I write the notation lim x nk it should always be assumed that

More information

Real Analysis. Joe Patten August 12, 2018

Real Analysis. Joe Patten August 12, 2018 Real Analysis Joe Patten August 12, 2018 1 Relations and Functions 1.1 Relations A (binary) relation, R, from set A to set B is a subset of A B. Since R is a subset of A B, it is a set of ordered pairs.

More information

ALTERNATIVE SECTION 12.2 SUPPLEMENT TO BECK AND GEOGHEGAN S ART OF PROOF

ALTERNATIVE SECTION 12.2 SUPPLEMENT TO BECK AND GEOGHEGAN S ART OF PROOF ALTERNATIVE SECTION 12.2 SUPPLEMENT TO BECK AND GEOGHEGAN S ART OF PROOF MICHAEL P. COHEN Remark. The purpose of these notes is to serve as an alternative Section 12.2 for Beck and Geoghegan s Art of Proof.

More information

MATH 3150 Analysis I, Fall 2016

MATH 3150 Analysis I, Fall 2016 MATH 3150 Analysis I, Fall 2016 Arthur J. Parzygnat These are my personal notes. This is not a substitute for Abbott s book. You will not be responsible for any Remarks in these notes. However, everything

More information

EC9A0: Pre-sessional Advanced Mathematics Course. Lecture Notes: Unconstrained Optimisation By Pablo F. Beker 1

EC9A0: Pre-sessional Advanced Mathematics Course. Lecture Notes: Unconstrained Optimisation By Pablo F. Beker 1 EC9A0: Pre-sessional Advanced Mathematics Course Lecture Notes: Unconstrained Optimisation By Pablo F. Beker 1 1 Infimum and Supremum Definition 1. Fix a set Y R. A number α R is an upper bound of Y if

More information

A NEW SET THEORY FOR ANALYSIS

A NEW SET THEORY FOR ANALYSIS Article A NEW SET THEORY FOR ANALYSIS Juan Pablo Ramírez 0000-0002-4912-2952 Abstract: We present the real number system as a generalization of the natural numbers. First, we prove the co-finite topology,

More information

Important Properties of R

Important Properties of R Chapter 2 Important Properties of R The purpose of this chapter is to explain to the reader why the set of real numbers is so special. By the end of this chapter, the reader should understand the difference

More information

(a) We need to prove that is reflexive, symmetric and transitive. 2b + a = 3a + 3b (2a + b) = 3a + 3b 3k = 3(a + b k)

(a) We need to prove that is reflexive, symmetric and transitive. 2b + a = 3a + 3b (2a + b) = 3a + 3b 3k = 3(a + b k) MATH 111 Optional Exam 3 lutions 1. (0 pts) We define a relation on Z as follows: a b if a + b is divisible by 3. (a) (1 pts) Prove that is an equivalence relation. (b) (8 pts) Determine all equivalence

More information

The fundamental theorem of linear programming

The fundamental theorem of linear programming The fundamental theorem of linear programming Michael Tehranchi June 8, 2017 This note supplements the lecture notes of Optimisation The statement of the fundamental theorem of linear programming and the

More information

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES You will be expected to reread and digest these typed notes after class, line by line, trying to follow why the line is true, for example how it

More information

Axioms for the Real Number System

Axioms for the Real Number System Axioms for the Real Number System Math 361 Fall 2003 Page 1 of 9 The Real Number System The real number system consists of four parts: 1. A set (R). We will call the elements of this set real numbers,

More information

General Notation. Exercises and Problems

General Notation. Exercises and Problems Exercises and Problems The text contains both Exercises and Problems. The exercises are incorporated into the development of the theory in each section. Additional Problems appear at the end of most sections.

More information