ECEn 370 Introduction to Probability

Size: px
Start display at page:

Download "ECEn 370 Introduction to Probability"

Transcription

1 RED- You can write on this exam. ECEn 370 Introduction to Probability Section 00 Final Winter, 2009 Instructor Professor Brian Mazzeo Closed Book Non-graphing Calculator Allowed No Time Limit IMPORTANT! WRITE YOUR NAME on every page of the exam. Answer questions -25 (Part I) on the provided bubble sheet. Questions -25 are worth point each. Answer questions (Part II) directly on the exam. Questions have their points specied individually. Do not discuss the exam with other students.

2 Part I. In the experiment consisting of a single roll of a strange die, the sample space consists of {, 3, 5, 6, 7, 0}. The probability law for the experiment is: P({}) = 8 P({3}) = 4 P({5}) = 4 P({6}) = 8 P({7}) = 8 P({0}) = 8 Evaluate the following: P({, 0}) + P({the roll is even})+p({the roll is negative}) A) /8 B) /4 C) 3/8 D) /2 E) 5/8 F) 3/4 G) 7/8 H) I) 9/8 2. A test for the probability-phobia-disease is assumed to be correct 99% of the time. We also assume that the probability of any random person in our class having this disease is Given that you just tested positive for this disease, what is the probability that you actually have the disease? A) B) C) D) E) F) None of the Above 3. Consider two independent fair coin tosses, and the following events: H = H 2 = D = {st toss is a head} {2nd toss is a head} {the two tosses have different results} Which of the following statements are true? ) H and H 2 are pairwise independent events. 2) H and D are pairwise independent events. 3) H 2 and D are pairwise independent events. 4) H and H 2 and D are independent events. A) only. B) and 2 only. C) and 3 only. D), 2, and 3 only. E) 2 and 3 only. F), 2, 3, and 4. G) 4 only. H) None of the Above. 2

3 4. A joint probability density function is given by the following: c, if 0 x and 0 y, f X,Y (x, y) = 5, if x 3 and y 3, 0, otherwise. What is the value of c that will make this a legitimate PDF? A) /5 B) 2/5 C) 3/5 D) 4/5 E) F) 0 G) None of the Above 5. Suppose the probability of at least one ash ood in Provo is 0.0 this year, the probability of at least one major blizzard in Provo is 0. this year, and the probability of at least one tornado in Provo is 0.05 this year. Assume that these disasters are independent. What is the probability that this year we will have at least one ood, blizzard, or tornado in Provo this year? A) 0.0 B) 0.02 C) 0.06 D) 0.5 E) 0.6 F) 0.7 G) 0.23 H) None of the Above 6. The time until a lightbulb burns out is modeled by an exponential variable X with an expected lifetime of year. What is the probability that the bulb will burn out between 2 and 3 years? A) B) C) D) E) F) None of the Above 7. On any given day a student's score on an exam is a normal random variable with an average of 70 and a standard deviation of 0. The student takes an exam today. What is the probability that the student scores between 60 and 90? Φ(y) is the cumulative distribution function of a standard normal random variable. A) Φ(30) B) Φ(3) C) Φ(90) Φ(60) D) Φ(2) ( Φ()) E) Φ(2) Φ() F) ( Φ(2)) Φ() G) Φ(90) ( Φ(60)) H) None of the Above 8. A random variable X has a probability density function given by { 2(x 2) f X (x) = 9, if 2 x 5, 0, otherwise. 3

4 Find the cumulative distribution function, F X (x), and compute the value of the following expression: A) 0 B) C) 3/9 D) 5/3 E) 7/9 F) 2 G) 3 H) None of the Above F X (0) + F X (4) + F X (6) 9. If at rst you don't succeed, try, try, try again. A computer will successfully send a message across a network with probability 0.7. The computer will retry sending the message until it is successfully sent. Given that we know that the computer will successfully transmit the message on or before the fourth attempt, what is the probability that the computer successfully sends the message on the rst attempt? A) B) C) D) E) F) None of the Above 0. The PDF of a random variable X is given by Compute E[X] + var(x). A) /2 B) C) 3/2 D) 2 E) 5/2 F) 3 G) 7/2 H) 9/2 I) None of the Above f X (x) = { 2 9x, 0 x 3, 0, otherwise.. Consider n independent tosses of a biased coin whose probability of heads Y, is uniformly distributed over the interval [0, ]. With X being the number of heads obtained, we see that E[X Y ] = ny and var(x Y ) = ny ( Y ). What is the variance of X? A) n 6 B) n C) n2 2 D) n + n 2 E) n+n2 6 F) n 6 + n2 2 G) n 6 + n2 2 + n3 8 H) n 2 + n2 6 + n3 2 I) None of the Above 4

5 2. Let the random variables X and Y be described by a joint PMF consisting of the points (0,0), (,), (,2), and (2,4) where each of these points has a probability of 4. Find the correlation coecient ρ(x, Y ). A) 3/34 B) 6/70 C) 32/33 D) 3/35 E) 34/35 F) 3/33 G) 3/35 H) 33/35 I) 32/35 3. Let X be a continuous random variable with a uniform PDF on the interval [0, ]. Let Y be a continuous random variable with a uniform PDF on the interval [0, 2]. Suppose you have a random variable Z = max{x, Y }. What is f Z ( 3 4 ) + f Z( 5 4 )? A) /4 B) /2 C) 3/4 D) E) 5/4 F) 3/2 G) 7/4 H) 2 I) None of the Above 4. Let X be a continuous random variable with a uniform PDF between 0 and 2. Let Y be a random variable described by Y = (X ) 2. Evaluate f Y ( 2 ) + f Y (2). A) /4 B) 2/4 C) /2 D) 2/2 E) 3/4 F) 3 2/4 G) H) + 2/4 I) 5/4 5

6 5. Random variables X, Y, and Z are independent from each other and have associated transforms M X (s) = λ λ s, M Y (s) = e λ(es ), and M Z (s) = 2 e2s + 2 e3s. If Q = X + Y Z + 2 then the associated transform for Q is: ) ( A) M Q (s) = λeλ(es λ s 2 e2s + 2 e3s) +) ( B) M Q (s) = λeλ(es λ+s 2 e2s + 2 e3s) ) ( C) M Q (s) = λeλ(es λ s 2 e 2s + 2 e 3s) s D) M Q (s) = λeλ (e ) ( λ+s 2 e2s + 2 e3s) s E) M Q (s) = λeλ (e ) ( 2 e 2s + 2 e 3s) λ+s ) F) M Q (s) = λe2λ(es λ s ) G) M Q (s) = λe2λ(es λ s H) None of the Above ( 2 e2s + 2 e3s) ( 2 e 2s + 2 e 3s) 6. Given that the transform of a particular random variable X is M X (s) = λ λ s, what is the third moment of the random variable X, E [ X 3]? A) λ B) λ 3 C) D) /λ E) 2/λ 2 F) 6/λ 2 G) 6/λ 3 H) 24/λ 4 I) 6/λ 4 7. The transform M X (s) is associated with a random variable X, and we assume that M X (s) is nite for all s in some interval [ a, a] where a is a positive number. The random variable Y is independent of X and has an associated transform M Y (s). Which of the following statements are true? ) M X (s) uniquely determines the CDF of X. 2) M X (s) uniquely determines the PDF of X. 3) M X (s) = esx f X (x)dx if X is continuous. 4) If Z = ax + b, then M Z (s) = e sb M X (as). 5) M X+Y (s) = M X (s)m Y (s). A) only. B) 3 only. C) 4 only. D), 3 and 4 only. E), 4, and 5 only. F) 2, 3, and 4 only. G), 2, 3, and 5 only. H), 3, 4, and 5 only. I) 2, 3, 4, and 5 only. J), 2, 3, 4, and You decide your student housing needs a makeover and decide to put in hardwood ooring (wow!). You go to your building products company and they tell you that their boards have a width of 3 inches with a tolerance of +/-.2 inch, which you assume gives you a uniform distribution for a single board from 2.8 to 3.2 inches. The width of your room is 20 inches. If you buy 4 boards and plan to lay them side by side, what is the probability that you will be able to cover the width of your room? Use Φ(z) to denote the CDF of the standard normal random variable. 6

7 A) Φ( ) B) Φ( 2) C) Φ( 3) D) Φ( 4) E) Φ( 5) F) Φ( 6) G) None of the Above 9. Consider the following statements. Which of them are true? Let Y, Y 2,... be a sequence of random variables.. If the sequence Y n converges with probability then it also converges in probability. 2. If the sequence Y n converges in probability then it also converges with probability. Suppose Y, Y 2,... are independent identically distributed random variables with common mean µ and variance σ Let S n = Y + Y Y n. The CDF of S n converges to the standard normal CDF. 4. Let M n = Y+Y2+ +Yn n. The CDF of M n converges to the standard normal CDF. 5. Let Z n = Y+Y2+ +Yn nµ σ. The CDF of Z n n converges to the standard normal CDF. A) only. B) 2 only. C) and 3 only. D) 2 and 3 only. E), 3, 4, and 5 only. F) 3, 4, and 5 only. G) and 4 only. H) and 5 only. I) 2 and 5 only. J), 2, and 5 only. 20. A source transmits a string of symobls consisting of 0 and s through a noisy communication channel. Symbols are received correctly except for the following errors: Given that a 0 is transmitted, a is received with probability 0.0. Given that a is transmitted, a 0 is received with probability Errors in dierent symbol transmissions are independent. If the string of symbols 00 is transmitted, what is the probability that it is received correctly? A) B) C) D) E) F) G) None of the Above 7

8 2. An internet service provider in a very small town has installed 0 modems to serve the needs of a population of 3 dialup customers. It is known that at a given time, each customer will need a modem connection with probability 0.6. What is the probability that there are more customers needing a connection than there are modems? A) B) 0.03 C) D) E) F) G) None of the Above. 22. You have a signal s = +. It is corrupted by the addition of noise, N, which is uniformly distributed over [ 2, 2]. Thus ( the ) received signal is s + N. What is the probability that the received signal is less than zero? 3 A) Φ 2 ( ) B) Φ 3 2 C) /8 D) /4 E) /2 F) 3/4 G) None of the Above 23. You work at a pizza shop where customers arrive as a Poisson process with a rate of λ = 0 customers per hour. Strangely, you work for two hours and no customers arrive. What is the probability that in the next two hours you get 40 customers? A) e B) e 20! C) 2e D) e E) 2e 20! F) e G) e H) ! ! ( e I) ( e ) ( e ! ) ( e ) ) 8

9 Questions 24 and 25 refer to the following Markov chain for the state of a student every year: 0.2 High School Senior Slacking Off 2 3 Studying Hard Unemployment Fast Food Job Engineering Job Promotion 24. Given that the student is in the Unemployment/Fast Food Job class, what is the probability that in any year the student is working at the Fast Food Job? A) /7 B) 3/4 C) 2/7 D) 5/4 E) 3/7 F) /2 G) 4/7 H) 9/4 I) 5/5 25. Given that a student is in state Slacking O, what is the probability that the student ends up in the class which contains an Engineering Job? A) 2/3 B) 6/3 C) 8/3 D) 0/3 E) 5/3 F) 7/3 G) 9/3 H) 2/3 I) 23/3 J) None of the above. 9

10 Part II 26. (4 points) Convergence Problem. a) In a small city, the quoted time for a paramedic to reach you after a 9 call is an average of 3 minutes. Without any other information, what is the upper bound on the probability that you call and it takes longer than 2 minutes for a paramedic to arrive? b) Suppose that you now know that the average arrival is 3 minutes and it has a standard deviation of /2 minute. What is the lower bound on the probability that after a call it arrives within 2 and 4 minutes? c) Suppose that the arrival time is normally distributed with an average time of 3 minutes and standard deviation of /2 minute. Suppose X and Y are random variables of the arrival times of two independent arrivals. Find the transforms of X and Y, M X (s) and M Y (s). Suppose that Z = X Y, the dierence of the two arrival times. Use transform methods to help you nd the PDF of Z. d) Suppose that you make 00 calls on separate occasions and the paramedic arrives 00 times with arrival times independent from each other, but with an average arrival time of 3 minutes and standard deviation of /2 minute. What is the probability that the total time the paramedic spends trying to get to you is more than 30 minutes? You can leave your answer in terms of Φ(z) where Φ is the standard normal CDF. 0

11 27. (4 points) The following Markov Chain represents an message transitioning between dierent servers in a computer network with unit time in each state. Source Server Lost Server Lost Server Server 2 Server Lost Server 6 7 Destination Server a) Given that a message starts at the source server, what is the probability that it will arrive at the destination server? b) What is the probability that you send ten messages and six of them reach the destination correctly? c) How many transitions would we expect it to take to go from the source to either the destination or lost classes? d) Suppose our message is in the lost server class. What is the probability that at a time far into the future (i.e. steady-state) that it will be found at lost server 6?

ECEn 370 Introduction to Probability

ECEn 370 Introduction to Probability ECEn 370 Introduction to Probability Section 001 Midterm Winter, 2014 Instructor Professor Brian Mazzeo Closed Book - You can bring one 8.5 X 11 sheet of handwritten notes on both sides. Graphing or Scientic

More information

Discrete Random Variables

Discrete Random Variables CPSC 53 Systems Modeling and Simulation Discrete Random Variables Dr. Anirban Mahanti Department of Computer Science University of Calgary mahanti@cpsc.ucalgary.ca Random Variables A random variable is

More information

1 Random Variable: Topics

1 Random Variable: Topics Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel. 1 Random Variable: Topics Chap 2, 2.1-2.4 and Chap 3, 3.1-3.3 What is a random variable?

More information

EECS 70 Discrete Mathematics and Probability Theory Fall 2015 Walrand/Rao Final

EECS 70 Discrete Mathematics and Probability Theory Fall 2015 Walrand/Rao Final EECS 70 Discrete Mathematics and Probability Theory Fall 2015 Walrand/Rao Final PRINT Your Name:, (last) SIGN Your Name: (first) PRINT Your Student ID: CIRCLE your exam room: 220 Hearst 230 Hearst 237

More information

Queueing Theory and Simulation. Introduction

Queueing Theory and Simulation. Introduction Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University, Japan

More information

Name of the Student:

Name of the Student: SUBJECT NAME : Probability & Queueing Theory SUBJECT CODE : MA 6453 MATERIAL NAME : Part A questions REGULATION : R2013 UPDATED ON : November 2017 (Upto N/D 2017 QP) (Scan the above QR code for the direct

More information

General Random Variables

General Random Variables 1/65 Chia-Ping Chen Professor Department of Computer Science and Engineering National Sun Yat-sen University Probability A general random variable is discrete, continuous, or mixed. A discrete random variable

More information

Midterm Exam 1 Solution

Midterm Exam 1 Solution EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2015 Kannan Ramchandran September 22, 2015 Midterm Exam 1 Solution Last name First name SID Name of student on your left:

More information

STAT 311 Practice Exam 2 Key Spring 2016 INSTRUCTIONS

STAT 311 Practice Exam 2 Key Spring 2016 INSTRUCTIONS STAT 311 Practice Exam 2 Key Spring 2016 Name: Key INSTRUCTIONS 1. Nonprogrammable calculators (or a programmable calculator cleared in front of the professor before class) are allowed. Exam is closed

More information

MATH 407 FINAL EXAM May 6, 2011 Prof. Alexander

MATH 407 FINAL EXAM May 6, 2011 Prof. Alexander MATH 407 FINAL EXAM May 6, 2011 Prof. Alexander Problem Points Score 1 22 2 18 Last Name: First Name: USC ID: Signature: 3 20 4 21 5 27 6 18 7 25 8 28 Total 175 Points total 179 but 175 is maximum. This

More information

Chapter 2 Random Variables

Chapter 2 Random Variables Stochastic Processes Chapter 2 Random Variables Prof. Jernan Juang Dept. of Engineering Science National Cheng Kung University Prof. Chun-Hung Liu Dept. of Electrical and Computer Eng. National Chiao Tung

More information

Tutorial 1 : Probabilities

Tutorial 1 : Probabilities Lund University ETSN01 Advanced Telecommunication Tutorial 1 : Probabilities Author: Antonio Franco Emma Fitzgerald Tutor: Farnaz Moradi January 11, 2016 Contents I Before you start 3 II Exercises 3 1

More information

THE QUEEN S UNIVERSITY OF BELFAST

THE QUEEN S UNIVERSITY OF BELFAST THE QUEEN S UNIVERSITY OF BELFAST 0SOR20 Level 2 Examination Statistics and Operational Research 20 Probability and Distribution Theory Wednesday 4 August 2002 2.30 pm 5.30 pm Examiners { Professor R M

More information

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for

P 1.5 X 4.5 / X 2 and (iii) The smallest value of n for DHANALAKSHMI COLLEGE OF ENEINEERING, CHENNAI DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING MA645 PROBABILITY AND RANDOM PROCESS UNIT I : RANDOM VARIABLES PART B (6 MARKS). A random variable X

More information

DISCRETE VARIABLE PROBLEMS ONLY

DISCRETE VARIABLE PROBLEMS ONLY DISCRETE VARIABLE PROBLEMS ONLY. A biased die with four faces is used in a game. A player pays 0 counters to roll the die. The table below shows the possible scores on the die, the probability of each

More information

(Practice Version) Midterm Exam 2

(Practice Version) Midterm Exam 2 EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran November 7, 2014 (Practice Version) Midterm Exam 2 Last name First name SID Rules. DO NOT open

More information

Chapter 1: Revie of Calculus and Probability

Chapter 1: Revie of Calculus and Probability Chapter 1: Revie of Calculus and Probability Refer to Text Book: Operations Research: Applications and Algorithms By Wayne L. Winston,Ch. 12 Operations Research: An Introduction By Hamdi Taha, Ch. 12 OR441-Dr.Khalid

More information

Math Fall 2010 Some Old Math 302 Exams There is always a danger when distributing old exams for a class that students will rely on them

Math Fall 2010 Some Old Math 302 Exams There is always a danger when distributing old exams for a class that students will rely on them Math 302.102 Fall 2010 Some Old Math 302 Exams There is always a danger when distributing old exams for a class that students will rely on them solely for their final exam preparations. The final exam

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran September 23, 2014.

EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran September 23, 2014. EECS 126 Probability and Random Processes University of California, Berkeley: Fall 2014 Kannan Ramchandran September 23, 2014 Midterm Exam 1 Last name First name SID Rules. DO NOT open the exam until instructed

More information

MAT 271E Probability and Statistics

MAT 271E Probability and Statistics MAT 271E Probability and Statistics Spring 2011 Instructor : Class Meets : Office Hours : Textbook : Supp. Text : İlker Bayram EEB 1103 ibayram@itu.edu.tr 13.30 16.30, Wednesday EEB? 10.00 12.00, Wednesday

More information

Review of Probability. CS1538: Introduction to Simulations

Review of Probability. CS1538: Introduction to Simulations Review of Probability CS1538: Introduction to Simulations Probability and Statistics in Simulation Why do we need probability and statistics in simulation? Needed to validate the simulation model Needed

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

Chapter 2 Queueing Theory and Simulation

Chapter 2 Queueing Theory and Simulation Chapter 2 Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University,

More information

Twelfth Problem Assignment

Twelfth Problem Assignment EECS 401 Not Graded PROBLEM 1 Let X 1, X 2,... be a sequence of independent random variables that are uniformly distributed between 0 and 1. Consider a sequence defined by (a) Y n = max(x 1, X 2,..., X

More information

16:330:543 Communication Networks I Midterm Exam November 7, 2005

16:330:543 Communication Networks I Midterm Exam November 7, 2005 l l l l l l l l 1 3 np n = ρ 1 ρ = λ µ λ. n= T = E[N] = 1 λ µ λ = 1 µ 1. 16:33:543 Communication Networks I Midterm Exam November 7, 5 You have 16 minutes to complete this four problem exam. If you know

More information

ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172.

ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172. ECE 302, Final 3:20-5:20pm Mon. May 1, WTHR 160 or WTHR 172. 1. Enter your name, student ID number, e-mail address, and signature in the space provided on this page, NOW! 2. This is a closed book exam.

More information

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu

Course: ESO-209 Home Work: 1 Instructor: Debasis Kundu Home Work: 1 1. Describe the sample space when a coin is tossed (a) once, (b) three times, (c) n times, (d) an infinite number of times. 2. A coin is tossed until for the first time the same result appear

More information

1 Basic continuous random variable problems

1 Basic continuous random variable problems Name M362K Final Here are problems concerning material from Chapters 5 and 6. To review the other chapters, look over previous practice sheets for the two exams, previous quizzes, previous homeworks and

More information

Discrete Random Variable

Discrete Random Variable Discrete Random Variable Outcome of a random experiment need not to be a number. We are generally interested in some measurement or numerical attribute of the outcome, rather than the outcome itself. n

More information

Probability and Statistics Concepts

Probability and Statistics Concepts University of Central Florida Computer Science Division COT 5611 - Operating Systems. Spring 014 - dcm Probability and Statistics Concepts Random Variable: a rule that assigns a numerical value to each

More information

FINAL EXAM: 3:30-5:30pm

FINAL EXAM: 3:30-5:30pm ECE 30: Probabilistic Methods in Electrical and Computer Engineering Spring 016 Instructor: Prof. A. R. Reibman FINAL EXAM: 3:30-5:30pm Spring 016, MWF 1:30-1:0pm (May 6, 016) This is a closed book exam.

More information

FINAL EXAM: Monday 8-10am

FINAL EXAM: Monday 8-10am ECE 30: Probabilistic Methods in Electrical and Computer Engineering Fall 016 Instructor: Prof. A. R. Reibman FINAL EXAM: Monday 8-10am Fall 016, TTh 3-4:15pm (December 1, 016) This is a closed book exam.

More information

STAT 418: Probability and Stochastic Processes

STAT 418: Probability and Stochastic Processes STAT 418: Probability and Stochastic Processes Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical

More information

6.041/6.431 Fall 2010 Final Exam Wednesday, December 15, 9:00AM - 12:00noon.

6.041/6.431 Fall 2010 Final Exam Wednesday, December 15, 9:00AM - 12:00noon. 6.041/6.431 Fall 2010 Final Exam Wednesday, December 15, 9:00AM - 12:00noon. DO NOT TURN THIS PAGE OVER UNTIL YOU ARE TOLD TO DO SO Name: Recitation Instructor: TA: Question Score Out of 1.1 4 1.2 4 1.3

More information

2. Suppose (X, Y ) is a pair of random variables uniformly distributed over the triangle with vertices (0, 0), (2, 0), (2, 1).

2. Suppose (X, Y ) is a pair of random variables uniformly distributed over the triangle with vertices (0, 0), (2, 0), (2, 1). Name M362K Final Exam Instructions: Show all of your work. You do not have to simplify your answers. No calculators allowed. There is a table of formulae on the last page. 1. Suppose X 1,..., X 1 are independent

More information

MATH/STAT 3360, Probability

MATH/STAT 3360, Probability MATH/STAT 3360, Probability Sample Final Examination This Sample examination has more questions than the actual final, in order to cover a wider range of questions. Estimated times are provided after each

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

MAS108 Probability I

MAS108 Probability I 1 BSc Examination 2008 By Course Units 2:30 pm, Thursday 14 August, 2008 Duration: 2 hours MAS108 Probability I Do not start reading the question paper until you are instructed to by the invigilators.

More information

Test 2 VERSION A STAT 3090 Fall 2017

Test 2 VERSION A STAT 3090 Fall 2017 Multiple Choice: (Questions 1 20) Answer the following questions on the scantron provided using a #2 pencil. Bubble the response that best answers the question. Each multiple choice correct response is

More information

HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, , , (extra credit) A fashionable country club has 100 members, 30 of whom are

HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, , , (extra credit) A fashionable country club has 100 members, 30 of whom are HW1 (due 10/6/05): (from textbook) 1.2.3, 1.2.9, 1.2.11, 1.2.12, 1.2.16 (extra credit) A fashionable country club has 100 members, 30 of whom are lawyers. Rumor has it that 25 of the club members are liars

More information

MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM

MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM MATH 3510: PROBABILITY AND STATS July 1, 2011 FINAL EXAM YOUR NAME: KEY: Answers in blue Show all your work. Answers out of the blue and without any supporting work may receive no credit even if they are

More information

Massachusetts Institute of Technology Department of Electrical Engineering & Computer Science 6.041/6.431: Probabilistic Systems Analysis

Massachusetts Institute of Technology Department of Electrical Engineering & Computer Science 6.041/6.431: Probabilistic Systems Analysis 6.04/6.43: Probabilistic Systems Analysis Question : Multiple choice questions. CLEARLY circle the best answer for each question below. Each question is worth 4 points each, with no partial credit given.

More information

ECE 302 Division 1 MWF 10:30-11:20 (Prof. Pollak) Final Exam Solutions, 5/3/2004. Please read the instructions carefully before proceeding.

ECE 302 Division 1 MWF 10:30-11:20 (Prof. Pollak) Final Exam Solutions, 5/3/2004. Please read the instructions carefully before proceeding. NAME: ECE 302 Division MWF 0:30-:20 (Prof. Pollak) Final Exam Solutions, 5/3/2004. Please read the instructions carefully before proceeding. If you are not in Prof. Pollak s section, you may not take this

More information

Raquel Prado. Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010

Raquel Prado. Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010 Raquel Prado Name: Department of Applied Mathematics and Statistics AMS-131. Spring 2010 Final Exam (Type B) The midterm is closed-book, you are only allowed to use one page of notes and a calculator.

More information

MATH/STAT 3360, Probability Sample Final Examination Model Solutions

MATH/STAT 3360, Probability Sample Final Examination Model Solutions MATH/STAT 3360, Probability Sample Final Examination Model Solutions This Sample examination has more questions than the actual final, in order to cover a wider range of questions. Estimated times are

More information

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random Variables CDA6530: Performance Models of Computers and Networks Chapter 2: Review of Practical Random Variables Two Classes of R.V. Discrete R.V. Bernoulli Binomial Geometric Poisson Continuous R.V. Uniform Exponential,

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015. EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2015 Abhay Parekh February 17, 2015 Midterm Exam Last name First name SID Rules. You have 80 mins (5:10pm - 6:30pm)

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Math 493 Final Exam December 01

Math 493 Final Exam December 01 Math 493 Final Exam December 01 NAME: ID NUMBER: Return your blue book to my office or the Math Department office by Noon on Tuesday 11 th. On all parts after the first show enough work in your exam booklet

More information

1 Basic continuous random variable problems

1 Basic continuous random variable problems Name M362K Final Here are problems concerning material from Chapters 5 and 6. To review the other chapters, look over previous practice sheets for the two exams, previous quizzes, previous homeworks and

More information

Section 9.1. Expected Values of Sums

Section 9.1. Expected Values of Sums Section 9.1 Expected Values of Sums Theorem 9.1 For any set of random variables X 1,..., X n, the sum W n = X 1 + + X n has expected value E [W n ] = E [X 1 ] + E [X 2 ] + + E [X n ]. Proof: Theorem 9.1

More information

Statistics 100A Homework 5 Solutions

Statistics 100A Homework 5 Solutions Chapter 5 Statistics 1A Homework 5 Solutions Ryan Rosario 1. Let X be a random variable with probability density function a What is the value of c? fx { c1 x 1 < x < 1 otherwise We know that for fx to

More information

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes.

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 60 minutes. Closed book and notes. 60 minutes. A summary table of some univariate continuous distributions is provided. Four Pages. In this version of the Key, I try to be more complete than necessary to receive full

More information

Week 12-13: Discrete Probability

Week 12-13: Discrete Probability Week 12-13: Discrete Probability November 21, 2018 1 Probability Space There are many problems about chances or possibilities, called probability in mathematics. When we roll two dice there are possible

More information

Math 447. Introduction to Probability and Statistics I. Fall 1998.

Math 447. Introduction to Probability and Statistics I. Fall 1998. Math 447. Introduction to Probability and Statistics I. Fall 1998. Schedule: M. W. F.: 08:00-09:30 am. SW 323 Textbook: Introduction to Mathematical Statistics by R. V. Hogg and A. T. Craig, 1995, Fifth

More information

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random

CDA6530: Performance Models of Computers and Networks. Chapter 2: Review of Practical Random CDA6530: Performance Models of Computers and Networks Chapter 2: Review of Practical Random Variables Definition Random variable (RV)X (R.V.) X: A function on sample space X: S R Cumulative distribution

More information

ECE 313: Conflict Final Exam Tuesday, May 13, 2014, 7:00 p.m. 10:00 p.m. Room 241 Everitt Lab

ECE 313: Conflict Final Exam Tuesday, May 13, 2014, 7:00 p.m. 10:00 p.m. Room 241 Everitt Lab University of Illinois Spring 1 ECE 313: Conflict Final Exam Tuesday, May 13, 1, 7: p.m. 1: p.m. Room 1 Everitt Lab 1. [18 points] Consider an experiment in which a fair coin is repeatedly tossed every

More information

MTH U481 : SPRING 2009: PRACTICE PROBLEMS FOR FINAL

MTH U481 : SPRING 2009: PRACTICE PROBLEMS FOR FINAL MTH U481 : SPRING 2009: PRACTICE PROBLEMS FOR FINAL 1). Two urns are provided as follows: urn 1 contains 2 white chips and 4 red chips, while urn 2 contains 5 white chips and 3 red chips. One chip is chosen

More information

We introduce methods that are useful in:

We introduce methods that are useful in: Instructor: Shengyu Zhang Content Derived Distributions Covariance and Correlation Conditional Expectation and Variance Revisited Transforms Sum of a Random Number of Independent Random Variables more

More information

Math 105 Course Outline

Math 105 Course Outline Math 105 Course Outline Week 9 Overview This week we give a very brief introduction to random variables and probability theory. Most observable phenomena have at least some element of randomness associated

More information

For a list of topics, look over the previous review sheets. Since the last quiz we have... Benford s Law. When does it appear? How do people use it?

For a list of topics, look over the previous review sheets. Since the last quiz we have... Benford s Law. When does it appear? How do people use it? Here are a whole lot of problems! I will keep browsing good sources of problems and posting them here until the last day of class. As always, Grinstead and Snell, Ross and problems from previous courses

More information

STAT/MA 416 Midterm Exam 2 Thursday, October 18, Circle the section you are enrolled in:

STAT/MA 416 Midterm Exam 2 Thursday, October 18, Circle the section you are enrolled in: STAT/MA 46 Midterm Exam 2 Thursday, October 8, 27 Name Purdue student ID ( digits) Circle the section you are enrolled in: STAT/MA 46-- STAT/MA 46-2- 9: AM :5 AM 3: PM 4:5 PM REC 4 UNIV 23. The testing

More information

ECE Homework Set 2

ECE Homework Set 2 1 Solve these problems after Lecture #4: Homework Set 2 1. Two dice are tossed; let X be the sum of the numbers appearing. a. Graph the CDF, FX(x), and the pdf, fx(x). b. Use the CDF to find: Pr(7 X 9).

More information

Previous Exam Questions, Chapter 2

Previous Exam Questions, Chapter 2 ECE 302: Probabilistic Methods in Electrical and Computer Engineering Instructor: Prof. A. R. Reibman Previous Exam Questions, Chapter 2 Reibman (compiled September 2018) These form a collection of 36

More information

PRACTICE PROBLEMS FOR EXAM 2

PRACTICE PROBLEMS FOR EXAM 2 PRACTICE PROBLEMS FOR EXAM 2 Math 3160Q Fall 2015 Professor Hohn Below is a list of practice questions for Exam 2. Any quiz, homework, or example problem has a chance of being on the exam. For more practice,

More information

CSE 312 Foundations, II Final Exam

CSE 312 Foundations, II Final Exam CSE 312 Foundations, II Final Exam 1 Anna Karlin June 11, 2014 DIRECTIONS: Closed book, closed notes except for one 8.5 11 sheet. Time limit 110 minutes. Calculators allowed. Grading will emphasize problem

More information

Part 3: Parametric Models

Part 3: Parametric Models Part 3: Parametric Models Matthew Sperrin and Juhyun Park August 19, 2008 1 Introduction There are three main objectives to this section: 1. To introduce the concepts of probability and random variables.

More information

X = X X n, + X 2

X = X X n, + X 2 CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 22 Variance Question: At each time step, I flip a fair coin. If it comes up Heads, I walk one step to the right; if it comes up Tails, I walk

More information

Probability, Random Processes and Inference

Probability, Random Processes and Inference INSTITUTO POLITÉCNICO NACIONAL CENTRO DE INVESTIGACION EN COMPUTACION Laboratorio de Ciberseguridad Probability, Random Processes and Inference Dr. Ponciano Jorge Escamilla Ambrosio pescamilla@cic.ipn.mx

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 08 SUBJECT NAME : Probability & Random Processes SUBJECT CODE : MA645 MATERIAL NAME : University Questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) (Scan the

More information

Math/Stats 425, Sec. 1, Fall 04: Introduction to Probability. Final Exam: Solutions

Math/Stats 425, Sec. 1, Fall 04: Introduction to Probability. Final Exam: Solutions Math/Stats 45, Sec., Fall 4: Introduction to Probability Final Exam: Solutions. In a game, a contestant is shown two identical envelopes containing money. The contestant does not know how much money is

More information

STAT 414: Introduction to Probability Theory

STAT 414: Introduction to Probability Theory STAT 414: Introduction to Probability Theory Spring 2016; Homework Assignments Latest updated on April 29, 2016 HW1 (Due on Jan. 21) Chapter 1 Problems 1, 8, 9, 10, 11, 18, 19, 26, 28, 30 Theoretical Exercises

More information

STAT515, Review Worksheet for Midterm 2 Spring 2019

STAT515, Review Worksheet for Midterm 2 Spring 2019 STAT55, Review Worksheet for Midterm 2 Spring 29. During a week, the proportion of time X that a machine is down for maintenance or repair has the following probability density function: 2( x, x, f(x The

More information

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 This exam is closed book. YOU NEED TO SHOW YOUR WORK. Honor Code: Students are expected to behave honorably, following the accepted

More information

EE 278 October 26, 2017 Statistical Signal Processing Handout #12 EE278 Midterm Exam

EE 278 October 26, 2017 Statistical Signal Processing Handout #12 EE278 Midterm Exam EE 278 October 26, 2017 Statistical Signal Processing Handout #12 EE278 Midterm Exam This is a take home exam. The total number of points is 100. The exam is open notes and open any electronic reading

More information

Chapter 4. Continuous Random Variables

Chapter 4. Continuous Random Variables Chapter 4. Continuous Random Variables Review Continuous random variable: A random variable that can take any value on an interval of R. Distribution: A density function f : R R + such that 1. non-negative,

More information

57:022 Principles of Design II Final Exam Solutions - Spring 1997

57:022 Principles of Design II Final Exam Solutions - Spring 1997 57:022 Principles of Design II Final Exam Solutions - Spring 1997 Part: I II III IV V VI Total Possible Pts: 52 10 12 16 13 12 115 PART ONE Indicate "+" if True and "o" if False: + a. If a component's

More information

ECE 650 1/11. Homework Sets 1-3

ECE 650 1/11. Homework Sets 1-3 ECE 650 1/11 Note to self: replace # 12, # 15 Homework Sets 1-3 HW Set 1: Review Assignment from Basic Probability 1. Suppose that the duration in minutes of a long-distance phone call is exponentially

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Final Examination December 16, 2009 MATH Suppose that we ask n randomly selected people whether they share your birthday.

Final Examination December 16, 2009 MATH Suppose that we ask n randomly selected people whether they share your birthday. 1. Suppose that we ask n randomly selected people whether they share your birthday. (a) Give an expression for the probability that no one shares your birthday (ignore leap years). (5 marks) Solution:

More information

Midterm Exam 1 (Solutions)

Midterm Exam 1 (Solutions) EECS 6 Probability and Random Processes University of California, Berkeley: Spring 07 Kannan Ramchandran February 3, 07 Midterm Exam (Solutions) Last name First name SID Name of student on your left: Name

More information

1. If X has density. cx 3 e x ), 0 x < 0, otherwise. Find the value of c that makes f a probability density. f(x) =

1. If X has density. cx 3 e x ), 0 x < 0, otherwise. Find the value of c that makes f a probability density. f(x) = 1. If X has density f(x) = { cx 3 e x ), 0 x < 0, otherwise. Find the value of c that makes f a probability density. 2. Let X have density f(x) = { xe x, 0 < x < 0, otherwise. (a) Find P (X > 2). (b) Find

More information

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators.

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. IE 230 Seat # Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators. Score Exam #3a, Spring 2002 Schmeiser Closed book and notes. 60 minutes. 1. True or false. (for each,

More information

Assignment 9. Due: July 14, 2017 Instructor: Dr. Mustafa El-Halabi. ! A i. P (A c i ) i=1

Assignment 9. Due: July 14, 2017 Instructor: Dr. Mustafa El-Halabi. ! A i. P (A c i ) i=1 CCE 40: Communication Systems Summer 206-207 Assignment 9 Due: July 4, 207 Instructor: Dr. Mustafa El-Halabi Instructions: You are strongly encouraged to type out your solutions using mathematical mode

More information

3 Continuous Random Variables

3 Continuous Random Variables Jinguo Lian Math437 Notes January 15, 016 3 Continuous Random Variables Remember that discrete random variables can take only a countable number of possible values. On the other hand, a continuous random

More information

Queueing Theory. VK Room: M Last updated: October 17, 2013.

Queueing Theory. VK Room: M Last updated: October 17, 2013. Queueing Theory VK Room: M1.30 knightva@cf.ac.uk www.vincent-knight.com Last updated: October 17, 2013. 1 / 63 Overview Description of Queueing Processes The Single Server Markovian Queue Multi Server

More information

Engineering Mathematics : Probability & Queueing Theory SUBJECT CODE : MA 2262 X find the minimum value of c.

Engineering Mathematics : Probability & Queueing Theory SUBJECT CODE : MA 2262 X find the minimum value of c. SUBJECT NAME : Probability & Queueing Theory SUBJECT CODE : MA 2262 MATERIAL NAME : University Questions MATERIAL CODE : SKMA104 UPDATED ON : May June 2013 Name of the Student: Branch: Unit I (Random Variables)

More information

Find the value of n in order for the player to get an expected return of 9 counters per roll.

Find the value of n in order for the player to get an expected return of 9 counters per roll. . A biased die with four faces is used in a game. A player pays 0 counters to roll the die. The table below shows the possible scores on the die, the probability of each score and the number of counters

More information

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY GRADUATE DIPLOMA, Statistical Theory and Methods I. Time Allowed: Three Hours

EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY GRADUATE DIPLOMA, Statistical Theory and Methods I. Time Allowed: Three Hours EXAMINATIONS OF THE HONG KONG STATISTICAL SOCIETY GRADUATE DIPLOMA, 008 Statistical Theory and Methods I Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks.

More information

Stochastic Models in Computer Science A Tutorial

Stochastic Models in Computer Science A Tutorial Stochastic Models in Computer Science A Tutorial Dr. Snehanshu Saha Department of Computer Science PESIT BSC, Bengaluru WCI 2015 - August 10 to August 13 1 Introduction 2 Random Variable 3 Introduction

More information

RYERSON UNIVERSITY DEPARTMENT OF MATHEMATICS MTH 514 Stochastic Processes

RYERSON UNIVERSITY DEPARTMENT OF MATHEMATICS MTH 514 Stochastic Processes RYERSON UNIVERSITY DEPARTMENT OF MATHEMATICS MTH 514 Stochastic Processes Midterm 2 Assignment Last Name (Print):. First Name:. Student Number: Signature:. Date: March, 2010 Due: March 18, in class. Instructions:

More information

Exam 1. Problem 1: True or false

Exam 1. Problem 1: True or false Exam 1 Problem 1: True or false We are told that events A and B are conditionally independent, given a third event C, and that P(B C) > 0. For each one of the following statements, decide whether the statement

More information

Final Exam STAT On a Pareto chart, the frequency should be represented on the A) X-axis B) regression C) Y-axis D) none of the above

Final Exam STAT On a Pareto chart, the frequency should be represented on the A) X-axis B) regression C) Y-axis D) none of the above King Abdul Aziz University Faculty of Sciences Statistics Department Final Exam STAT 0 First Term 49-430 A 40 Name No ID: Section: You have 40 questions in 9 pages. You have 90 minutes to solve the exam.

More information

ECEN 5612, Fall 2007 Noise and Random Processes Prof. Timothy X Brown NAME: CUID:

ECEN 5612, Fall 2007 Noise and Random Processes Prof. Timothy X Brown NAME: CUID: Midterm ECE ECEN 562, Fall 2007 Noise and Random Processes Prof. Timothy X Brown October 23 CU Boulder NAME: CUID: You have 20 minutes to complete this test. Closed books and notes. No calculators. If

More information

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018.

EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018. EECS 126 Probability and Random Processes University of California, Berkeley: Spring 2018 Kannan Ramchandran February 14, 2018 Midterm 1 Last Name First Name SID You have 10 minutes to read the exam and

More information

6 The normal distribution, the central limit theorem and random samples

6 The normal distribution, the central limit theorem and random samples 6 The normal distribution, the central limit theorem and random samples 6.1 The normal distribution We mentioned the normal (or Gaussian) distribution in Chapter 4. It has density f X (x) = 1 σ 1 2π e

More information

Carleton University. Final Examination Winter DURATION: 2 HOURS No. of students: 275

Carleton University. Final Examination Winter DURATION: 2 HOURS No. of students: 275 Carleton University Final Examination Winter 2017 DURATION: 2 HOURS No. of students: 275 Department Name & Course Number: Computer Science COMP 2804B Course Instructor: Michiel Smid Authorized memoranda:

More information

Gamma and Normal Distribuions

Gamma and Normal Distribuions Gamma and Normal Distribuions Sections 5.4 & 5.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 15-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes?

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes? IEOR 3106: Introduction to Operations Research: Stochastic Models Fall 2006, Professor Whitt SOLUTIONS to Final Exam Chapters 4-7 and 10 in Ross, Tuesday, December 19, 4:10pm-7:00pm Open Book: but only

More information